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1  Einführung 

Für die Einschätzung umweltpolitischer Fragestellungen ist die genaue Kenntnis der 
Immissionssituation in verschiedenen räumlichen und zeitlichen Maßstäben unabding-
bar. Die Messung und die numerische Simulation atmosphärischer Spurenstoffkonzen-
trationen ergeben aber immer nur ein unvollständiges Abbild der Wirklichkeit. Die Mo-
dellrechnungen sind aufgrund der Unzulänglichkeit der Modelle und der von ihnen be-
nötigten Eingabedaten einschließlich der Rand- und Startwerte fehlerhaft. Modelle kön-
nen jedoch für verschiedenste Zeiten und Gebiete Immissionsdaten berechnen. 
Messungen der Immission sind nur für ausgewählte Orte und für wenige Spezies vor-
handen. Sie sind mit einem Messgerätefehler behaftet und ihre räumliche Repräsentati-
vität ist äußerst variabel und schwer spezifizierbar Messungen liegen nur für bodennahe 
Konzentrationen von Ozon, Stickoxiden, Schwefeldioxid, Kohlenmonoxid und TSP 
vor. Die Stationsdichte ist dabei in Mitteleuropa am höchsten. Die Genauigkeit der 
Messungen ist insbesondere für Stickoxide und Kohlenmonoxid unzureichend. Ein-
zelne operationelle Radiosondenaufstiege vermitteln das vertikale Profil der Ozonkon-
zentration. Satellitenmessungen (z.B. von GOME1 auf dem Satelliten ERS-2) der tro-
posphärischen Ozonsäule sind in den letzten Jahren verfügbar geworden. Der guten 
Flächenabdeckung steht eine große Messunsicherheit (Standardabweichung von 40-50 
% ) gegenüber (Debruyn,1998). Daneben sind Feldmesskampagnen (z.B. BERLIOZ) 
durchgeführt worden, um einen genauen Einblick in die Prozesse und die dreidimensio-
nalen Verteilung der atmosphärischen Spurenstoffe zu gewinnen. 
Die möglichst realitätsnahe räumliche Darstellung der Spurenstoffkonzentration wird in 
Anlehnung an die meteorologische Praxis Analyse2 genannt. Die modernen Analyse-
verfahren3  führen die Information der einzelnen Beobachtungen mit modellierten Fel-
dern zusammen. Sie sind damit eine (passive) Form der Datenassimilation. Die dabei 
gewonnenen Analysen sind modellbezogen und abhängig von der Modellauflösung.  
Bei der passiven Datenassimilation werden Modellfelder und Beobachtungen verbun-
den, ohne dass die Analyse im Modell weiterverwendet wird. Die passive Datenassimi-
lation dient vorrangig der Kartierung der Immissionsfelder und relevanter Luftgütepa-
rameter.  
Man spricht von aktiver Datenassimilation, wenn Informationen aus Messungen zu 
verschiedenen Zeitpunkten im Modellauf verwendet werden. Durch die Analyse wer-
den die Beobachtungsdaten in skalengerecht in den Modellzustandsvektor eingebracht. 
Durch die aktive Datenassimilation wird die Information der Beobachtungen im Modell 
fortgepflanzt. Sie wird dadurch für Gebiete und Modellgrößen nutzbar gemacht, für die 
keine Beobachtungen vorliegen. Die Modelldynamik bewirkt, dass die entstandene 
Analyse in physikalisch chemischer Hinsicht konsistenter wird. 

                                                 
1 Global Ozone Monitoring Experiment 
2 Unter Analyse versteht man sowohl den Prozess der Erstellung als auch deren Resultat 
3 Im Gegensatz zur subjektiven Analyse werden meist statistisch motivierte Kriterien für die Analyse 
verwendet. Die Erstellung der Analyse erfolgt numerisch 
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2 Methodik der Analyse und 
Datenassimilation 

2.1 Problemstellung  

Die Vorstellung eines kontinuierlichen Feldes der atmosphärischen Eigenschaften ist 
von zentraler Bedeutung in der Meteorologie. Die dreidimensionale Variabilität wird 
häufig mit der Vorstellung von zweidimensionalen Feldern in mehreren Höhenniveaus 
ausgedrückt. 
Die Kontinuität des Feldes impliziert eine gewisse „Glattheit“ und damit eine untere 
Schranke für die räumliche Skala (Größenmaßstab) der darstellbaren Phänomene. Der 
Begriff der Skala ist für die Meteorologie entscheidend, da die Prozesse in verschiede-
nen Skalen häufig methodisch separiert4 werden. 
Die Eigenschaften des Feldes werden gewöhnlich nur an ausgewählten Orten mit Mess-
instrumenten beobachtet. Methoden der räumlichen Interpolation, mit denen aus punkt-
bezogenen Messungen eine Felddarstellung an regelmäßig verteilten Gitterpunkten 
gewonnen wird, werden in der Meteorologie mit dem Begriff Analyse zusammenge-
fasst.  
Die gewonnene Felddarstellung wird gleichfalls Analyse genannt. Sie hat eine be-
stimmte räumliche Auflösung, die die untere Schranke für die kleinste darstellbare 
Skala vorgibt. Die Wahl der Auflösung sollte demzufolge durch die interessierenden 
bzw. die erfassbaren Skalen bestimmt sein.  
Die Kartierung5 als Grundlage der Visualisierung von atmosphärischen Feldern ist 
eine wichtige Motivation für die Analyse. Durch die Felddarstellung können räumliche 
Beziehungen, wie z. B. das geostrophische Gleichgewicht, erkannt werden. Darüber 
hinaus kann das erzeugte Feld als Zustandsvektor eines dynamischen Modells verwen-
det werden. Die Analyse ist damit eine Methode, um Beobachtungswerte in Modell-
rechnungen einfließen zu lassen. Die Analyse ist ein Kernpunkt in allen Verfahren der 
Datenassimilation. Die Modellauflösung stellt hierbei die Begrenzung für die erfass-
baren Skalen dar, die sich von denen der Beobachtungen in vielen Fällen unterscheidet. 
Die Separation der für Analyse und Beobachtungen relevanten Skalen ist ein wichtiger 
Punkt bei allen Analyseverfahren. 
In den letzten 40 Jahren ist in der numerischen Wettervorhersage ein umfangreiches 
Instrumentarium von Analyse- und Datenassimilationsmethoden entwickelt worden6. 
                                                 
4 Durch die Nichtlinearität der zugrundeliegenden physikalischen und chemischen Gleichungen beein-
flussen die Prozesse der nicht erfassten Skalen die größerskaligen Phänomene. Dies führt zum Schlie-
ßungsproblem, d. h. zur Parametrisierung des Einflusses der nichtaufgelösten Skalen auf der Basis der 
aufgelösten Skalen. 
5 Auch bei der Kartierung ist die räumliche Auflösung von Bedeutung; insbesondere für den Algorithmus 
zur Isolinienfindung.  
6 Ein Standardwerk zu dieser Thematik ist das Buch von Daley (1991). 
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Die modernen Verfahren beruhen auf der Theorie der Prognose7 von stochastischen 
Prozessen, die unter dem Begriff Optimale Interpolation von Gandin (1965) in die 
Meteorologie eingeführt wurden. Parallel dazu ist der statistische Zugang für die räum-
liche Interpolation unter dem Begriff Kriging8 in der Geostatistik ausgearbeitet worden. 
Immissionsdaten werden häufig mit dem Kriging-Ansatz interpoliert. 
Die statistischen Methoden haben sich bewährt, da sie ein Instrumentarium bieten, um 
die räumlichen Beziehungen zu quantifizieren. Die statistisch geschätzte räumliche 
Kovarianzfunktion ist die Grundlage für die Bestimmung des Einflusses der Beobach-
tungen bei der räumlichen Interpolation. Gleichzeitig kann ein möglicher Beobach-
tungsfehler berücksichtigt werden, der sowohl Ausdruck des Messgerätefehlers als 
auch des Fehlers durch mangelnde Repräsentativität ist. Letzterer ist die Folge man-
gelnder Übereinstimmung zwischen den erfassten Skalen von Beobachtung und Analy-
se. Die statistischen Ansätze beinhalten die Möglichkeit zur Bestimmung von Vertrau-
ensbereichen der interpolierten Werte. Damit kann die Güte der Analyse bewertet und 
in einem weiteren Schritt die Messnetzanordnung optimiert werden. Der erste Punkt ist 
für die Aufgabenstellung dieses Forschungsvorhabens von besonderem Interesse, da 
die Felddarstellungen zur Ableitung von administrativen Luftgütestandards dienen 
können. 
Die Anwendung der modernen Methoden der Analyse und der Datenassimilation für 
die numerische Wettervorhersage beruht meist auf der Annahme von homogenen statis-
tischen Eigenschaften der Felder und Beobachtungen. Diese Annahmen sind für bo-
dennahe Immissionsfelder häufig nicht gerechtfertigt. Im Folgenden sind Eigenschaften 
der Immissionsfelder und ihrer Messung aufgelistet, die bei der Anwendung von statis-
tischen Analyseverfahren zu berücksichtigen sind:  
 

1. Die bodennahen Immissionsfelder sind aufgrund der Emissionsverteilung räum-
lich sehr inhomogen.  

2. Die Messstationen liegen gehäuft in den belasteten Gebieten und dienen haupt-
sächlich dazu, kleinräumige Spitzenkonzentrationen und nicht ein möglichst 
großes Gebiet zu erfassen. 

3. Die räumliche Repräsentativität und die Güte der Messung sind nur in geringem 
Maße bekannt. 

4. Die Häufigkeitsverteilungen der semi-positiv definiten9 Immissionswerte sind 
unsymmetrisch und können mehrere Größenordnungen umfassen.  

5. Immissionsdaten zeichnen sich durch eine hohe zeitliche Variabilität aus. 
6. Es existieren keine räumlichen Balancebeziehungen10, dafür aber lokale chemi-

sche Kopplungen11.  
7. Die Güte der Chemie-Transport-Modelle liegt hinsichtlich der relevanten Vari-

ablen unter denen der numerischen Wettervorhersage12. 

                                                 
7 In Anlehnung an die Statistik von Zeitreihen wird häufig von Prädiktion bei der räumlichen Interpolati-
on gesprochen. 
8 Benannt nach einem südafrikanischen Bergbauingenieur D.G. Krige, der das Verfahren zur Interpolati-
on von Probebohrungen entwickelte. 
9 Stets größer gleich Null 
10 wie z. B. der geostrophische Wind 
11 z. B. das fotostationäre Gleichgewicht zwischen Ozon, NO und NO2 
12 Da CTM häufig mit modellierten Daten der Wettervorhersage angetrieben werden, ist diese Aussage 
trivial. Hier ist jedoch gemeint, dass die Fehlermaße für Ozon etc. weit größer sind als die der Tempera-
tur- oder Windprognose. 
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2.2 Zielstellung 

Das Ziel dieses Forschungsvorhabens ist die Entwicklung, Anwendung und der Ver-
gleich von Verfahren zur statistischen Analyse von bodennahen Immissionsmessungen. 
Damit sollen Felder von stündlichen Werten von Ozon, NO2, NO, SO2 und PM10 für 
Deutschland bzw. Mitteleuropa erzeugt werden. Die räumliche Auflösung der Analysen 
beträgt dabei ca. 15 km. Eine Darstellung der Strukturen der urbanen Skala wird damit 
nicht angestrebt.  
Die aufgeführten Stoffe unterscheiden sich hinsichtlich der räumlichen Variabilität 
aufgrund der Struktur ihrer Quellen und ihrer atmosphärischen Lebensdauer. Aus 
Gründen der Vereinfachung und der Vergleichbarkeit wird jedoch versucht, eine mög-
lichst einheitliche Methodik für alle Stoffe zu entwickeln. 
Der methodische Ansatz der Analyse ist vorrangig die passive Datenassimilation, d. h. 
die Kombination der Beobachtungen mit den Modellfeldern des Eulerschen Ausbrei-
tungsmodells REM/Calgrid (Stern, 2003a; Stern, 1994). In Anbetracht der gestellten 
Aufgabe, stündliche Immissionsfelder für mehrere Jahre zu gewinnen, wird auf die 
Anwendung der numerisch aufwendigen aktiven 4-dimensionalen Datenassimilations-
verfahren verzichtet. Es wird ein auf der Optimalen Interpolation beruhendes passives 
Analyseverfahren13 entwickelt, dass die in Kapitel 2.1 aufgeführten Besonderheiten der 
Immissionsdaten berücksichtigt. Zu Vergleichzwecken wird jedoch eine aktive Assimi-
lation auf der Basis der Optimalen Interpolation und die Anwendung eines Kalman-
Filter diskutiert. Bei der aktiven Datenassimilation ersetzt die Analyse die Modellfelder 
und bewirkt damit eine Assimilation der Beobachtungen während des Modellaufes. 
In dem Bericht wird den räumlich statistischen Eigenschaften der Beobachtung und 
ihrer Fehler besondere Aufmerksamkeit geschenkt. Die Ergebnisse dieser Untersu-
chung sind auch für alle weiteren Datenassimilationsverfahren von Bedeutung. Für das 
Analyseverfahren werden terminbezogene und klimatische Kovarianzmodelle der 
Beobachtungsinkremente bzw. Modellfehler abgeleitet. Die terminbezogenen Kovari-
anzmodelle erlauben eine bessere Wiedergabe der zeitlichen Variabilität; klimatische 
Kovarianzmodelle sind besser geeignet, die räumliche Inhomogenität abzubilden.  
Darüber hinaus werden ausschließlich auf Beobachtungen oder auf Modelldaten beru-
hende räumliche Kovarianzmodelle gewonnen. Diese können für die Evaluierung von 
Modellen verwendet werden, die über den Vergleich der ortsbezogenen statistischen 
Maße, wie Mittelwert und Varianz, hinausgeht.  

2.3 Literaturüberblick 

Die für dieses Forschungsvorhaben relevante Literatur lässt sich in zwei Gruppen 
einteilen. Es sind zum einem Arbeiten, die die Interpolation von Immissionsbeobach-
tungen für deren Kartierung zum Thema haben (Kapitel 2.3.2). Zum anderen werden 
Arbeiten zur Datenassimilation von vorrangig bodennahen Messungen mit Eulerschen 
Chemie-Transportmodellen (Kapitel 2.3.3) vorgestellt. Zu Beginn wird ein kurzer 
Überblick über praktische Anwendung gegeben (Kapitel 2.3.1), da der gegebene Über-

                                                 
13 Da die Analyse immer ein wesentlicher Bestandteil der 4D-Datenassimilation ist, können die dabei 
gewonnenen Erkenntnisse zur Verbesserung der Assimilation von Spurenstoffkonzentrationen verwendet 
werden. 
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blick vorrangig durch die Methodik motiviert ist. Es liegt in der Natur der Sache, dass 
die vorgestellte Auswahl unvollständig und subjektiv ist. 
 

2.3.1 Anwendungsgebiete 

Die meisten Verfahren der Immissionskartierung dienen der räumlichen Darstellung 
der Luftqualität. Sie beziehen sich auf die wirkungsspezifischen Eigenschaften, d. h. 
auf abgeleitete klimatische Felder14, mit denen Luftreinhaltungsziele formuliert wer-
den. Es sind dies Jahresmittelwerte, Maximalwerte oder dosisbezogene Größen wie 
AOT4015-Werte. Die Darstellung orientiert sich dabei vorrangig an der Überschreitung 
von umweltpolitisch vorgegebenen Grenzwerten oder ökologischen Toleranzbereichen. 
Neben der Kartierung sind Untersuchungen zur optimalen Messnetzgestaltung ein 
weiteres Anwendungsgebiet der Geostatistik. Es beruht auf der Untersuchung der 
Interpolationsfehler für verschiedene Messnetzkonfigurationen (Nychka und Saltzman, 
1998 und Shindo et al., 1990). 
Ein weiteres Anwendungsfeld der Immissionskartierung ist die Evaluierung von Che-
mie-Transport-Modellen. Aufgrund des Skalenunterschiedes der Beobachtungen hin-
sichtlich der Gitterboxmittelwerte des Modells erscheint ein direkter Vergleich von 
Rechnung und Messung problematisch (McNair et al., 1996). Dies gilt besonders dann, 
wenn die räumliche Repräsentativität der Messung gering oder unbekannt ist. Ein 
möglicher Lösungsansatz ist, die Modellergebnisse mit einer aus den Beobachtungen 
interpolierten Felddarstellung zu vergleichen. Die Felddarstellung muss dabei der 
Auflösung bzw. Skala des Modells entsprechen. Beispiele für dieses Vorgehen bei der 
Evaluierung sind die Arbeiten von Schaug et al. (1993), Davis et al. (2000) und Flem-
ming et al. (2001). 
Aufgrund der hohen Komplexität wird die Datenassimilation für Chemie-Transport-
Modelle meist nur in Prozess- und Modellstudien mit Episodencharakter angewendet. 
Neben den bodennahen Immissionsmessungen liegt der Schwerpunkt auf der Assimila-
tion von Satellitendaten für großräumige Modellrechnungen (Jeuken et al., 1999). Die 
Initialisierung von operationellen Immissionsprognosen mit gemessenen Ozonkonzent-
rationen ist ein Beispiel für die Anwendungen von einfachen Assimilationstechniken 
(Flemming, 1996). In einem weiteren Zusammenhang stehen Methoden der inversen 
Modellierung, bei denen aus Beobachtungsdaten Emissionswerte abgeleitet werden. 
 

2.3.2 Interpolation von Messwerten 

Das Standardwerk für Fragen der räumlichen Statistik, mit Beispielen für Immissions-
daten, ist Cressie (1993). Darauf aufbauend werden neue inhomogene Ansätze von 
Smith (2001) behandelt. 
Die Auswahl der nun vorgestellten Arbeiten orientiert sich vorrangig an der Methodik, 
mit der Lösungsansätze für die in Kapitel 2.1 erwähnten Probleme angeboten werden. 
Homogenere Felder wie die von Ozon sind mit geringeren Schwierigkeiten zu interpo-
lieren als die stark strukturierten Felder von NO oder Feinstaub (PM10). 
                                                 
14 Für die Datenassimilation mit einem dynamischen Modell, aber auch für die Sommersmogproblematik 
werden Analyseverfahren für aktuelle Immissionsfelder benötigt. 
15 Akkumulierte Dosis über 40 pbb Belastung. 



8             UBA F&E Vorhaben 298 41 252       Grundlagen von OI und Kalman Filter 
 

 
Obwohl Beobachtungsfehler und die ungleichmäßige Stationsdichte nicht ohne weite-
res behandelt werden können, sind für die Interpolation der Messwerte formale 
nichtstochastische Methoden geläufig, da sie die aufwendige Schätzung der Kovarianz-
funktion und der Beobachtungsfehler vermeiden (Wiegand und Dickmann, 2000). Die 
direkte Berücksichtigung16 der Stationsdichte muss bei diesen Ansätzen (siehe 2.5.5) 
zusätzlich eingeführt werden. Falke und Husar (1998) liefert hierfür ein Beispiel bei der 
Interpolation von Ozonmessungen. 
 

2.3.2.1 Homogene statistische Ansätze 

Zier (1976) entwickelte ein verteilungsunabhängiges Interpolationsverfahren auf der 
Basis von Quantilkorrelationsmaßen für die Staubbelastung in der DDR. Das Interpola-
tionsergebnis ist kein absoluter Wert, sondern die Wahrscheinlichkeit, dass der Wert in 
einem bestimmten Werteintervall liegt17.  
Eine grundlegende Anwendung der statistischen Interpolation stündlicher Werte von 
SO2 und zusätzlich für NO2, NO sowie Ozon in den Niederlanden geben van Egmond 
und Onderdelinden (1981). Die erstellte Analyse hat dabei eine Auflösung von 40 bzw. 
28 km. Die Autoren vergleichen drei Interpolationsmethoden mit 1) einem exponentiel-
len Korrelationsmodell (Optimale Interpolation, OI), 2) einem nichtparametrischen 
Ansatz (Eigenvektorinterpolation, siehe Kapitel 3.2.5.2) und 3) mit formaler Abstand-
wichtung. Dabei wird eine leichte Überlegenheit der ersten beiden statistischen Ansätze 
festgestellt. Die notwendigen empirischen Korrelationswerte werden sowohl terminbe-
zogen (rein räumlich, siehe Kapitel 3.2.1) als auch klimatisch (aus Zeitreihen, siehe 
Kapitel 3.2.2) ermittelt. Aufgrund mangelnder zeitlicher Filterung ergeben sich dabei 
größere Unterschiede, die für die Bewertung der relativen Analysefehler und Beobach-
tungsfehler von Bedeutung sind. Die Beobachtungsfehlervarianz wird für SO2 auf ca. 5-
10 % der terminbezogenen Varianz geschätzt.  
 Cressie et al. (1999) liefern ein Beispiel für die räumliche Interpolation von PM10 in 
der urbanen Skala. In dieser Arbeit wird Standard-Kriging für logarhitmisch normalver-
teilte Daten mit einem modernen Markov-Zufallsfeld-Ansatz mit Hilfe von cross vali-
dation18 verglichen. Letzteres Verfahren liefert Felder mit stärkeren Gradienten, be-
rücksichtigt jedoch nicht die Wirkung von Beobachtungsfehlern. Weiterhin treten 
Probleme bei ungleichmäßiger Stationsverteilung auf 
.  

2.3.2.2 Raum-Zeit-Zusammenhänge 

Die Gesamtheit der Raum-Zeit Variabilität erfasst Bilonick (1985 und 1988) mit der 
Modellierung von verbundenen Raum-Zeit Kovariogrammen zur Kartierung der mo-
natlichen sauren Deposition in den USA. Weiterentwicklungen der Kriging-Technik 
werden zur Bildung von Flächenmitteln (Block Kriging) und lokalen Histogrammen 
(Indikator Kriging) angewandt. Der letzte Ansatz ist eine Form der nichtlinearen statis-

                                                 
16 Dies gilt für die Interpolation und nicht für die Kovarianzmodellierung. 
17 Das Verfahren ähnelt sehr dem sogenannten Indikator-Kriging (siehe Kapitel 2.4.1.3). 
18 Die Interpolation für den Stationsort wird mit dem dabei nicht verwendeten Messwert verglichen.  
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tischen Interpolation, bei der die Interpolationsgewichte vom Messwert selbst abhän-
gen19.  
Die Spezifikation der zeitlich periodischen Erwartungswerte ist die Grundlage für die 
Interpolation von Ozon-AOT40-Werten in Norwegen (Host und Follestad (1999). Die 
vom Jahres- und Tagesgang befreiten Abweichungen bilden die Grundlage für die 
Schätzung der Kovarianzstruktur. Für die Gewinnung normalverteilter Ensembles 
werden die logarithmierten Ozonmessungen betrachtet. 
 

2.3.2.3  Inhomogene Kovarianzmodellierung 

Seit Beginn der 90er Jahre sind in der Geostatistik verstärkt Ansätze zur Behandlung 
inhomogener und anisotroper Zufallsfelder entwickelt worden (Meiring et al., 1997), 
die auch für Luftverschmutzungsprobleme angewendet werden. Smith (2001) gibt eine 
gute Darstellung und Diskussion dieser Entwicklungen. Es kann zwischen den folgen-
den Ansätzen20 der Kovarianzmodellierung unterschieden werden: 
 

• Moving-Window-Ansatz 
• Deformationsansatz 
• EOF-Erweiterung 

 
Der Moving-Window-Ansatz (Haas, 1990) spezifiziert eigenständige Kovarianzmodel-
le für Teile des Untersuchungsgebietes. Der Deformationsansatz (McNair et al., 1996) 
ist eine vielversprechende Methode, mit der anisotrope Strukturen behandelt werden 
können. Es wird dabei eine Verzerrung des räumlichen Koordinatensystems vorge-
nommen, so dass die zugehörige Kovarianzfunktion möglichst homogen und isotrop 
ist. Die EOF-Ansätze bilden ein nichtparametrisches Kovarianzmodell, das auf der 
Eigenvektoraufspaltung (SVD) der empirischen Kovarianzmatrix der Messwerte beruht 
(Obled und Creutin, 1986, siehe auch Kapitel 3.2.5.2).  
Die Basis für das Aufspüren der Inhomogenität ist die empirische Kovarianzmatrix für 
alle Paare von Stationsorten. Sie wird aus Zeitreihendaten ermittelt (siehe Abbildung 
3.1, S. 37). Damit ergibt sich für alle Methoden die Notwendigkeit zur Separation der 
zeitlichen Variabilität, um zeitlich unabhängige Realisierungen eines Zufallsfeldes zu 
erhalten (siehe 3.2.2).  
Das Grundproblem, die unbekannte Kovarianz zwischen Beobachtungs- und Interpola-
tionspunkt zu bestimmen, bleibt zunächst bestehen. Es wird gelöst, indem die für die 
Beobachtungsorte bestimmte Größen mit einfachen Ansätzen auf die Orte ohne Beo-
bachtung übertragen werden. Eine Alternative sind flächendeckende Immissionswerte, 
die durch Eulersche Modelle simuliert wurden.  
Mit dem Moving-Window-Ansatz identifiziert Haas (1995) für die USA 6 verschiedene 
Gebiete mit einer unterschiedlichen Kovarianzstruktur hinsichtlich der monatlichen 
Sulfatdeposition. Für jedes Teilgebiet wird ein homogenes Variogramm der logarith-
mierten Werte geschätzt und für das Kriging des gesamten Gebietes verwendet. 
Der Deformationsansatz ist die Grundlage für die Analyse der stündlichen Ozonkon-
zentration in Gitterpunktsdarstellung in Meiring et al. (1998). Die Analyse wird zur 

                                                 
19 Die räumliche Kovarianzstruktur ist für höhere bzw. niedrigere Belastung verschiedenartig. 
20 Darüber hinaus gibt es komplexere Methoden, die mit Bayesschen Ansätzen die Linearität des traditi-
onellen Krigings aufgeben. 
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Evaluierung des Eulerschen Ausbreitungsmodells SARMAP in North Carolina für eine 
2-monatige Ozonepisode verwendet. Diese Arbeit ist von besonderem Interesse, da das 
Vorgehen bei der Behandlung der Zeit-Raum-Trennung Ähnlichkeiten mit dem hier 
gewählten aufweist. Aus einer Vorarbeit von Sampson und Guttorp (1998) stammt die 
Erkenntnis, dass die räumliche Kovarianzstruktur große Unterschiede im Verlauf des 
Tages aufweist und kein geeigneter Separationsansatz (siehe 2.4.2) für Raum und Zeit 
zu bilden ist. Aus diesem Grund wurde – wie in dieser Arbeit – ein eigenständiges 
räumliches Kovarianzmodell für jede Tagesstunde geschätzt. Die Analyse bezog sich 
dabei auf die logarithmierten Ozondaten, um eine Normalverteilung zu gewährleisten. 
Die Zeitreihen für jede Tagesstunde wurden mit dem Mittelwert zentriert und die wei-
terhin vorhandene zeitliche Korrelation mit Hilfe eines AR(2)-Modells21 detektiert. Die 
Residuen zu der mit AR(2) geglätteten Reihe wurden dann als zeitlich unabhängiges 
Ensemble zur Bildung der paarbezogenen Kovarianzwerte verwendet. Der Deformati-
onsansatz verzerrte nun das Koordinatensystem, um möglichst homogene exponentielle 
Kovarianzmodelle bilden zu können. Mit Hilfe dieser Modelle wurde dann der Wert 
des Residuums am Interpolationsort mit Block-Kriging ermittelt, um dem Mittelwert-
charakter der Gitterzellendarstellung gerecht zu werden. Zu diesem Wert wurden nun 
in Umkehrung der Filterung der Wert des AR(2)-Modells und der Mittelwert addiert. 
Da diese Werte für den Interpolationsort unbekannt sind, wurden die Koeffizienten für 
AR(2) und der Mittelwert von den Beobachtungsorten mit Hilfe eines einfachen nume-
rischen Interpolators ermittelt. 
Eine Anwendung der EOF-Erweiterung ist die Analyse der jahresgangbefreiten Wo-
chenmittel von SO2 im Osten der USA (Holland et al., 1999). Für diese Arbeit werden 
drei Kovarianzmodelle mit unterschiedlicher Komplexität angenommen: 1) das traditi-
onelle homogene und isotrope Kovarianzmodell, 2) ein homogenes und isotropes Kor-
relationsvarianzmodell bei räumlich variabler Varianz (siehe Gleichung {0.12}) und 3) 
ein Kovarianzmodell analog zu 2) mit einer zusätzlichen Erweiterung auf Basis der 
EOF der Kovarianzmatrix der Abweichung der empirischen Kovarianzmatrix vom 
Kovarianzmodell 2. Durch diese Erweiterung werden die großräumige Inhomogenität 
und Isotropie erfasst, der kleinräumigen Variabilität wird eine isotrope Struktur zuge-
schrieben. Median und 98%-Perzentil des Interpolationsfehlers lagen bei dem Kovari-
anzmodell 3) deutlich unter denen der anderen Ansätze.  
 

2.3.3 Datenassimilation  

Daley (1991) liefert die Grundlagen zur Analyse für die numerische Wettervorhersage. 
Einen guten Überblick über die modernen Methoden der Datenassimilation enthält die 
Darstellung von Bouttier und Courtier (1999). 
Die komplexen vier-dimensionalen Verfahren (Kalman-Filter, 4D-VAR) bedeuten 
einen hohen mathematisch-numerischen Aufwand, dessen Bewältigung auch häufig der 
Schwerpunkt der entsprechenden Publikationen ist. Dieser Überblick beleuchtet haupt-
sächlich die Frage, wie die besondere Spezifik (siehe Kapitel 2.1) der Immissionsbeo-
bachtungen und ihrer Modellierung behandelt wurden. 
Es wird vorrangig auf die Assimilation der bodennahen Messungen aus den Luftgüte-
messnetzen für Eulersche Chemie-Transport-Modelle eingegangen; Arbeiten mit Satel-
litendaten oder Lagrangesche Modelle sind nur kurz aufgeführt. Weiterhin werden 

                                                 
21 Autoregressives Modell auf Basis der beiden zurückliegenden Datenwerte  
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Arbeiten erwähnt, die sich mit der Analyse auf Basis von Beobachtungen und Modell-
betrachtungen befassen und damit als Vorstufen der Datenassimilation dienen können. 
 

2.3.3.1  Einfache Ansätze 

Einfache Ansätze für die Verbindung von Modellierung und Beobachtung stellt die 
Arbeit von Venkatram (1988) zur Kartierung der Sulfatdeposition dar. Hier wird ein 
Gauß-Modell verwendet, um einen inhomogenen Erwartungswert für die anschließende 
Interpolation mit normalem Kriging zu gewinnen.  
Stedman et al. (1997) gehen den umgekehrten Weg für die hochaufgelöste Kartierung 
der NOx-Jahresmittelwerte in Großbritannien. Sie verwenden die Jahresmittelwerte von 
Stationen mit ländlicher Charakteristik für die Interpolation eines Hintergrundfeldes 
mit Hilfe von Kriging. Die Darstellung der Immission in belasteten Gebieten beruht auf 
einem hochaufgelösten Emissionskataster. Mit Hilfe eines einfachen Regressionsmo-
dells wird ein Zusammenhang zwischen der Jahresemission und -immission gewonnen 
und für die Kartierung verwendet.  
Eine methodische Ähnlichkeit zum Kalman-Filter ist in der Arbeit von Nychka und 
Saltzman (1998) für die räumliche Interpolation von Ozonmessungen im Mittelwesten 
der USA zu finden. Hier werden die Ergebnisse des Eulerschen Modells ROM zur 
Schätzung eines inhomogenen Kovarianzmodells herangezogen. Das Modell liefert 
somit nicht die aktuellen Werte, sondern nur die räumlich statistischen Eigenschaften. 
Es wird dabei der Umstand ausgenutzt, dass die Modellrechnungen für jeden beliebigen 
Ort vorliegen und somit Inhomogenitäten erfassbar sind.  
 
Initialisierung von Ozonprognosen  
Für ein UBA-Projekt zur operationellen Ozonprognose mit REM3 wurde ein Initialise-
rungsverfahren mit Ozonbeobachtungen entwickelt (Flemming et al., 1999a,b). Für den 
Termin des Modellstarts um 15 UTC wird aus dem prognostizierten Ozonfeld und 
vorliegenden Messungen aus Deutschland eine Analyse mit Hilfe der optimalen Inter-
polation gewonnen (Gandin, 1965). Die Korrektur des Modellfehlers ist dabei auf die 
Ozonkonzentrationen in Deutschland beschränkt. Die Varianz des Beobachtungsfehlers 
wird mit der Beobachtungsmethode nach Hollingsworth und Lönnberg (1986) mit Hilfe 
eines terminbezogenen und homogenen Kovarianzmodells bestimmt. 
Diese Analyse dient als Startfeld für den nächsten Prognoselauf. Aufgrund des be-
schränkten Repräsentationsgebietes der Messungen erfolgte eine Änderung des Ozon-
feldes nur im deutschen Gebiet. Untersuchungen zeigten, dass eine alleinige Änderung 
der Ozonkonzentration der Bodenschicht des Modells keine Auswirkungen auf die 
prognostizierten Ozonkonzentrationen des nächsten Tages hat (Flemming, 1996). 
Mit der Annahme guter vertikaler Durchmischung der Grenzschicht zum Zeitpunkt des 
Modellstarts wurden die Bodenmessungen auch zur Analyse der zweiten Modellschicht 
herangezogen. Gleichzeitig wurden die NOx-Konzentrationen mit Hilfe des fotostatio-
nären Gleichgewichtes an die veränderten Ozonwerte angepasst. In einer Fallstudie für 
eine typische Sommersmog-Periode (20.7.-30.7.1994) reagierte das Modell auf diese 
Initialisierung mit besseren Ergebnissen, insbesondere bei hohen Ozonkonzentrationen. 
Für die Untersuchung wurden diagnostische Daten verwendet. Bei der Auswertung 
über den gesamten Zeitraum der Prognoseanwendung verringerte sich die festgestellte 
mittlere Beeinflussung des nächsten Tages durch die Initialisierung. Der Einfluss des 
zunehmenden Prognosefehlers der meteorologischen Daten überlagert den Effekt der 
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Initialisierung. Deutlich erkennbar ist jedoch der „Export“ der Initialisierung mit der 
Hauptwindrichtung nach Polen. Dies macht deutlich, dass Beobachtungen aus ganz 
Mitteleuropa für eine Initialisierung notwendig sind. Der Umstand, dass die Anfangs-
bedingungen des Ozons für die Rechnung mit troposphärischen Chemie-Transport-
Modellen keinen großen Einfluss haben, wird auch durch anderen Autoren bestätigt 
(Petry, 1993). 
 

2.3.3.2 Variationsansätze 

Assimilation von stratosphärischem Ozon 
Eine Hauptanwendung für die Datenassimilation von Spurengasen ist die Gewinnung 
von Anfangszuständen für globale numerische Wettervorhersagemodelle, in denen die 
atmosphärische Ozonkonzentration eine prognostische Variable ist (z. B. in Modellen 
am ECMWF, UK Met Office und NCEP). Dabei stehen die Dynamik und die Wech-
selwirkung mit der Strahlung des stratosphärischen Ozons im Mittelpunkt des Interes-
ses. Chemische Reaktionen werden von diesen Modellen nur in einfacher Form behan-
delt. 
Die Beobachtungen werden mit Hilfe satellitengestützter Fernerkundungsmethoden 
gewonnen. Um aus den Strahlungsdaten Konzentrationen zu gewinnen, müssen inverse 
Strahlungsrechnungen unter Vorgabe von Druck- und Temperaturprofilen durchgeführt 
werden. Variationsmethoden eignen sich besonders, diese Daten mit ihren komplizier-
ten Beobachtungsoperatoren in Modellzustände zu assimilieren bzw. zu analysieren 
(Anderson, 1992). 
 Die europäischen Aktivitäten auf diesem Gebiet sind im SODA22-Projekt zusammen-
gefasst. Variationsmethoden (4DVAR) wurden z. B. am ECMWF und am UK Met 
Office für die Satellitenmessungen von Ozon und weiteren Spurenstoffen entwickelt. 
Durch die Assimilation von stratosphärischem Ozon erhofft man sich eine Verbesse-
rung der Strahlungsrechnung, der UV-Strahlungsvorhersage am Boden und eine Über-
prüfung von Strömungsfeldern in der Stratosphäre (Fisher und Lary, 1995).  
 
4DVAR für das EURAD System  
In den letzten Jahren wurde von Elbern und Schmidt (2001) ein 4DVAR System für 
das Ausbreitungsmodell EURAD CTM2 entwickelt. Das adjoint model zur Minimie-
rung der Kostenfunktion ist für den Transportteil und den RADM2-Gasphasen-
Chemismus formuliert. 
Das Verhalten dieses Systems wurde mit „identical twin“-Experimenten untersucht. 
Dazu werden synthetische „Beobachtungen“ aus einem Modellauf mit bestmöglicher 
Konfiguration (Auflösung, Parameter etc.) entnommen. Das Assimilationsverhalten 
einer anderen Modellkonfiguration bezüglich dieser Beobachtungen ist dann Gegens-
tand der Untersuchung. 
Experimente mit 70 realen Ozonmessungen aus ganz Europa wurden für den August 
1997 durchgeführt. Die Assimilation erfolgte in einem 6-stündigen Intervall von 6 bis 
12 UTC. Von diesen Analysen ausgehend, konnten deutlich verbesserte Modellsimula-
tionen der Ozonkonzentration bis in die Abendstunden, d. h. mit einem Zeithorizont 
von 6 Stunden, verzeichnet werden. 

                                                 
22 European Union Satellite Ozone Data Assimilation 
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Der 4DVAR Ansatz wurde auch zur Analyse und Optimierung von Emissionsraten 
herangezogen. Eine genaue Einschätzung des praktischen Erfolgs dieser Optimierung 
war aus den beiden vorliegenden Publikationen nicht zu entnehmen.  
 

2.3.3.3 Kalman-Filter-Ansätze  

Ausbreitungsrechnung von SO2  
Erste Anwendungen vom Kalman-Filter für die Luftreinhaltung stammen aus den 
siebziger Jahren (Fronza et al., 1979).  
Für die SO2-Ausbreitungsrechnung wurden Kalman-Filter-Ansätze im Rahmen des 
UBA-Projektes ''Anwendung statistisch-systemdynamischer Methoden in der Ausbrei-
tungsrechnung von Luftbeimengungen'' untersucht (Dlabka et al., 1986). Mit dem 
Kalman-Filter wurde die Schätzung der optimalen Anfangskonzentrationsfelder für die 
SO2-Prognose des TUB-Modells durchgeführt. Das TUB-Modell ist ein Eulersches 
Ausbreitungsmodell ohne chemische Prozesse mit einer horizontalen Gitterweite von 3 
km und 10 Modellschichten. Es überdeckt das Stadtgebiet von Berlin. SO2-Messungen 
des Berliner Stadtmessnetzes BLUME wurden für die Assimilation in einer Winter-
Smog Episode vom 20.2.-28.2.1982 verwendet. Der Kalman-Filter wurde mit einem 
reduced-rank-Ansatz implementiert. Die Größe der Kovarianzmatrix des Modellzu-
standsvektors ist mit einer Aufspaltung in Modellteilgebiete verringert worden.  
Die mit dem Kalman-Filter erzeugten Anfangsfelder bewirkten eine verbesserte Prog-
noserechnung für einen Zeitraum von drei Stunden. Diese relativ geringe Zeitspanne ist 
mit der geringen räumlichen Ausbreitung des Modellgebiets zu erklären. Die Randbe-
dingungen haben so einen besonders großen Einfluss. Die Untersuchung widmete sich 
darum dem Vergleich von Randbedingungen aus Messungen und aus einer Rechnung 
eines großräumigen Ausbreitungsmodells. 
 
Ozonmodellierung mit LOTOS  
Im Umfeld der Abteilung für Technische Mathematik und Informatik der TU Delft 
wurden numerische Verfahren für die Implementierung von Kalman-Filter mit dem 
RRSQRT-Ansatz für nichtlineare Modelle entwickelt (Heemink et al., 1999). Die 
Anwendungen betreffen sowohl Gezeitenvorhersagemodelle als auch verschiedene 
Chemie-Transport-Modelle. 
Im Rahmen des RITFOZ (Regional differences in tropospheric Ozone) Projektes wurde 
zusammen mit der TNO ein Programmpaket für den KF im RRSQRT-Ansatz in ver-
schiedenen Ausbaustufen für das Modell LOTOS entwickelt (Segers et al., 1998 und 
van Loon et al., 1998). Für die Anwendung des Programmpaketes sind keine wesentli-
chen Modifikationen des Ausbreitungsmodells notwendig, so dass es relativ leicht auf 
andere Modelle übertragbar ist. Diese Implementierung wird auch im Rahmen dieser 
Arbeit angewendet werden. 
Um die Modellunsicherheiten für den Kalman-Filter zu beschreiben, wurde ein Set von 
länder- und speziesspezifischen Emissionsfaktoren für die noise-Parameter verwendet. 
Ihre Aufgabe ist es, eine stochastische Schwankung der Emissionen mit einer Stan-
dardabweichung von 25% zu simulieren. Die Schwankungen werden jedoch zeitlich 
korreliert, so dass eine allzu schnelle Variation der Emission vermieden wird. Mit der 
Aufnahme der noise-Parameter in den Zustandsvektor kann deren Verhalten untersucht 
werden. Die Analyse der noise-Parameter, d. h. die Betrachtung der Korrelationen 
zwischen diesen Parametern und den Abweichungen zwischen Modell und Beobach-
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tung, kann systematische Abweichungen aufdecken. Diese geben Hinweise auf mögli-
che Unter- oder Überschätzung der verwendeten Emissionsdaten. 
Die Simulation galt einer Periode im August 1997, in der bodennahe Ozonbeobachtun-
gen in Deutschland und den Niederlanden sowie drei Ozonsondenmessungen assimi-
liert wurden. Für alle Messungen ist eine Fehlerstandardabweichung von 10 % ange-
nommen worden. Die Satellitenmessungen der Ozonsäule durch den GOME-Satelliten 
konnten nicht direkt assimiliert werden; sie dienten als die obere Randbedingung des 
Modells. 
Das Assimilationsverhalten wurde mit Beobachtungen, die nicht in die Assimilation 
einbezogen wurden, bestimmt. Es konnte gezeigt werden, dass für diese Stationen eine 
deutliche Verbesserung der Modellrechnung erreicht wird (van Loon et al., 1998). 
Es kam jedoch auch zum Ausdruck, dass die durch die Emission eingeführten Modell-
fehler nur einen Teil der Unsicherheiten erfassten. Die Analyse der noise-Parameter 
ergab bisher keine belastbaren Aussagen über systematische Abweichungen der Emis-
sion. Ein wesentlicher Einfluss der GOME-Daten auf die Ozonkonzentration am Erd-
boden konnte nicht nachgewiesen werden (van Loon et al., 1999). 

2.4 Räumliche Zufallsprozesse  

Die atmosphärischen Eigenschaften sind in Raum und Zeit variable Größen. Deren 
Untersuchung im Rahmen der Theorie der Zufallsprozesse beschränkt sich meist auf 
eine rein zeitliche oder rein räumliche Herangehensweise. Im ersten Fall handelt es sich 
um die Betrachtung von Zeitreihen, im zweiten um jene von Feldern, die häufig „Geo-
statistik“ genannt wird (Cressie, 1993).  
Es gibt keine theoretischen Unterschiede bei der Behandlung von zeitlichen und räum-
lichen Zufallsprozessen. Dies führt dazu, dass in Lehrbüchern häufig nur Zeitreihen 
behandelt werden mit dem Hinweis, dass die Theorie auf räumliche Prozesse übertrag-
bar sei. Es gilt jedoch, die folgenden Besonderheiten der Zufallsfelder zu beachten: 
 

• Die unabhängige Variable der Zufallsfelder ist der mehrdimensionale Ortsvek-
tor r (2D oder 3D).  

• Die Beobachtungen von Zeitreihen liegen fast immer in äquidistanten Abstän-
den vor, während die räumliche Anordnung der Messstationen im Allgemeinen 
irregulär23 ist.  

• Begriffe wie Vergangenheit und Zukunft können für Felder nicht angewandt 
werden.  

 
Die statistische Analyse ist eine Anwendung der Geostatistik und beruht damit vorran-
gig auf der Theorie räumlicher Zufallsprozesse. Für die Schätzung der Momente der 
räumlichen Prozesse wird jedoch ein Ensemble benötigt, das aus den Beobachtungen 
des Feldes zu verschiedenen Zeitpunkten gewonnen werden kann24. Aufgrund des 
zeitlichen Zusammenhangs ist jedoch die notwendige Unabhängigkeit der Realisierun-
gen nicht gewährleistet. Die Beschäftigung mit der zeitlichen Komponente des Zufalls-
                                                 
23 Dadurch ist die Anwendung der spektralen Betrachtungsweise in der Praxis eingeschränkt. Daten eines 
Eulerschen Modells bilden dafür eine geeignete Grundlage. 
24 Es handelt sich dann um ein klimatologisches Kovarianzmodell, mit dem eine höhere räumliche 
Spezifizierung möglich ist (siehe Kapitel 3.2.2) 
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prozesses ist deshalb notwendig, um die zeitliche und räumliche Variabilität angemes-
sen zu trennen. Eine zusammenhängende Behandlung der Raum-Zeit-Prozesse bieten 
4D-Datenassimilationsverfahren.  
 

2.4.1 Beschreibung räumlicher Zufallsprozesse 

Der räumliche Zufallsprozess X(r) kann methodisch in eine mittlere Komponente µ(r), 
gegeben durch den Erwartungswert E(X(r)), und eine stochastische Komponente e(r) 
mit verschwindendem Erwartungswert zerlegt werden:  
 
 ( ) ( ) ( )X eµ= +r r r  {0.1} 
 
 
 ( ) ( )( ) ( )   und     ( ) 0E X E eµ= =r r r  {0.2} 
 
Für die Beschreibung der statistischen räumlichen Beziehungen25 wird auf die Momen-
te zweiter Ordnung zurückgegriffen. Handelt es sich um einen Gaußschen Zufallspro-
zess, so ist er mit den Momenten erster und zweiter Ordnung ausreichend charakteri-
siert. Es bieten sich hierfür zwei Größen an:  
 

1. Die Autokovarianzfunktion C = f(ri,rj) beruht auf den Produkten des stochasti-
schen Anteils e : 

 
 ( )1 2 1 2 1 2( , ) ( ( ), ( )) ( ) ( )C Cov X X E e e= =r r r r r r  {0.3} 

 
2. Die Strukturfunktion 2? = f(ri,rj) beschreibt den Erwartungswert der quadrati-

schen Differenz zwischen zwei Orten des Feldes ri, und rj. (Gandin, 1965):  
  

 ( ) ( ) ( )( )2
1 2 1 2 1 22 , ( ) ( ) ( ) ( )Var X X E e eγ = − = −r r r r r r  {0.4} 

 
Die Kovarianzfunktion C(r1,r2) muß positiv definit sein, d. h. es gilt für jede Menge 
von Orten ri und willkürlichen Koeffizienten ai die folgende Gleichung: 
 

 ,
1 1

( ) 0
n n

i j i j
i j

a a C
= =

≥∑∑ r r  {0.5} 

 
 Ein positive Spektraldichte ist dafür eine hinreichende Voraussetzung (Bochner-
Theorem). Die stetige Differenzierbarkeit der Kovarianzfunktion für den Abstand Null 
ist Ausdruck der Differenzierbarkeit des zugrundeliegenden Prozesses (Schweschni-
kow, 1965). 
 
 

                                                 
25 Persistenz 
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2.4.1.1 Statistisch motivierte Skalentrennung 

Der stochastische Anteil e(r) kann in unabhängige Komponenten aufgeteilt werden 
(Cressie, 1993), die im Sinne des meteorologischen Skalenbegriffs interpretierbar 
sind26. Die Kovarianzfunktionen der einzelnen Subprozesse addieren sich wegen der 
gegenseitigen Unabhängigkeit zu der des gesamten Prozesses:  
 

 ( )2 2 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
s ss

s ss

e e e e

Var e
ε

εσ σ σ σ

= + +

= = + +

r r r r

r r r r r
 {0.6} 

 
Die Komponente es(r) ist die räumliche Variabilität27, für die eine von Null verschiede-
ne kontinuierliche Kovarianzfunktion bzw. Strukturfunktion existiert. Die subskalige 
räumliche Variabilität28 ess(r) besitzt eine Kovarianz- bzw. Strukturfunktion nur im 
Bereich der nicht aufgelösten räumlichen Unterschiede, d. h. für Distanzen, die kleiner 
als der minimale Abstand der Beobachtungen bzw. Modellgitterpunkte sind. Der Bei-
trag ee(r) weist keine räumliche Korrelation auf. Er entspricht einem weißen Rauschen 
und wird häufig als Meßgerätefehler interpretiert. Zusammen mit dem subskaligen 
Anteil ess(r) bildet er den sogenannten Beobachtungsfehler eO(r ) (siehe Kapitel 2.5.2).  
Der Zufallsprozess XS(r) ohne den Beobachtungsfehler: 
 
 ( ) ( ) ( )S SX eµ= +r r r  {0.7} 
 
wird als der „glatte“ bzw. „rauschfreie“ Prozess von X(r) bezeichnet. Er ist das eigent-
liche Ziel der Interpolationsbemühungen (siehe Kapitel 2.4.1.3).  
Die konkrete Form der Zerlegung eines räumlichen Zufallsprozesses ist nicht eindeutig 
und hängt von der Problemstellung, der Datenverfügbarkeit und von der subjektiven 
Einschätzung ab.  
 

SPACE

OBSERVATION

SMOOTH SCALE FIELD

EXPECTATION FIELD

OBSERVATION
ERROR SD

STANDARD DEVIATION
SMOOTH SCALE FIELD

 
Abbildung 2.1 Schema eines räumlichen Zufallsprozesses und seiner Messung 

                                                 
26 Dieser Skalenbegriff ist mit dem Problem der Auflösung verbunden und geht nicht auf die physika-
lisch motivierten Skalen ein.  
27 Smooth scale variation 
28 sub scale variation 
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2.4.1.2 Homogenität und Isotropie  

Durch die Annahme der Homogenität29 und Isotropie hinsichtlich der 1. und 2. Mo-
mente ist es möglich, die Komplexität der statistischen Eigenschaften des Zufallsfeldes 
X(r) zu verringern. Homogenität hinsichtlich des Erwartungswertes bedeutet, dass er 
für das gesamte Feld einen konstanten Wert µ besitzt. Ist dieser Umstand nicht gege-
ben, so wird vor der weiteren statistischen Behandlung versucht, den mittleren Anteil 
µ(r) zu bestimmen. Die Abweichungen X’(r) =X(r)-µ(r) bilden dann ein Zufallsfeld 
mit homogenem mittleren Anteil.  
Homogenität hinsichtlich der Kovarianzfunktion bzw. der Strukturfunktion bewirkt, 
dass diese nicht mehr von der Lage im Raum, sondern nur noch von dem Differenzvek-
tor ? r = r1 - r2 abhängt. Durch die Annahme von Isotropie wird die Richtungsabhän-
gigkeit aufgegeben. Die Annahme der Homogenität und Isotropie führt dazu, dass die 
Kovarianz- und Strukturfunktion allein vom skalaren Abstand | ? r | = r der beiden Orte 
bestimmt ist. In diesem Fall, d. h. bei Homogenität und Isotropie, ist der statistische 
Apparat für Zeitreihen und räumliche Prozesse gleichartig.  
Homogenität für den Erwartungswert und die Kovarianzfunktion, d. h. das erste und 
zweite Moment, wird als Homogenität 2. Ordnung30 bezeichnet.  
 

                 ( )1 2

Homogenität 2. Ordnung

( ( )) und ( ), ( ) ( ) E X Cov X X C= µ = ∆r r r r
 {0.8} 

 
Homogenität hinsichtlich der Strukturfunktion und ein konstanter Erwartungswert wird 
intrinsische Homogenität (intrinsic stationarity) genannt. Diese Annahme ist etwas 
schwächer, da die Erwartungswerte homogen, aber nicht bekannt sein müssen. Die 
Strukturfunktion für einen homogenen (stationären) Prozess wird als Variogramm31 2? 
bezeichnet (Cressie, 1993).  
 

 ( ) ( ) ( )1 2 1 2

"Intrinsische Homogenität"

( ) ( ) 0 und ( ) ( ) 2  E X X Var X X γ− = − = ∆r r r r r
 {0.9} 

 
Unter der Annahme der Homogenität 2.Ordnung lässt sich jedoch eine einfache Bezie-
hung zwischen Strukturfunktion und räumlicher Autokovarianzfunktion finden. 
 
 ( ) ( ) ( )2 2 0 2C Cγ ∆ = − ∆r r  {0.10} 
 
Autokovarianzfunktion und Strukturfunktion sind bei Homogenität 2. Ordnung gleich-
wertig.32 Variogramme können jedoch robuster geschätzt werden (Gneithing et al., 
2000) und mit Gleichung {0.10} die Kovarianzfunktion festlegen (siehe 3.2.1). Der 
gegenläufige Charakter von Kovarianzfunktion und Variogramm (Strukturfunktion) 
wird bei großen Abständen deutlich. Geht man von einer verschwindenden Kovarianz-

                                                 
29 In Anlehnung an Zeitreihen auch häufig Stationarität (stationarity) genannt; Homogenität bezeichnet 
dann Stationarität und Isotropie. 
30auch Stationarität im weiteren Sinne (weak stationarity) genannt.  
31 ? heißt Semivariogramm  
32 mit Einschränkung der schwächeren Forderung der „intrinsic stationarity“ 



18             UBA F&E Vorhaben 298 41 252       Grundlagen von OI und Kalman Filter 
 

 
funktion aus, so entspricht das Variogramm bei sehr großen Abständen der homogenen 
Varianz s S

2 des glatten Feldes.  
Aufgrund der Wirkung der räumlich nichtkorrelierten Schwankung ess und der nicht 
auflösbaren Anteile ee (Gleichung {0.6}) ist die Varianz des glatten Prozesses s 2

S(r) 
um den Beitrag der Varianz des Beobachtungsfehlers s 2

O(r) = s 2
SS(r) + s 2

e(r) erhöht:  
 

 
2 2

2

0
( )

( ) 0
S O

S

r
C r

r r
σ σ
σ ρ

 + =
= 

>
 {0.11} 

 
Die Kovarianzfunktion des „kontaminierten“ Prozesse weist also einen Sprung am 
Abstand Null im Vergleich zum „glatten“ Prozess auf. Dieser Umstand wird genutzt, 
um mit Hilfe eines Kovarianzmodells die Varianz der Beobachtungsfehler zu schätzen 
(siehe Kapitel 3.2.6).  
Eine komplexere Form der Kovarianzfunktion ist gegeben, wenn sich Homogenität und 
Isotropie nur auf die Korrelationsfunktion33 ?(r) beziehen. Die räumlich variable Vari-
anz s 2(r) wird zur Normierung der Kovarianzfunktion verwendet (Daley, 1991).  
 

 
2 2

1 2
1 2

( ) ( ) 0
( , )

( ) ( ) ( ) 0
S O

S S

r
C

r r
σ σ

σ σ ρ

 + =
= 

>

r r
r r

r r
 {0.12} 

 

2.4.1.3 Interpolation 

Die räumliche Interpolation, d. h. die Prädiktion des unbekannten Wertes X(r0) aus 
i=1,n bekannten Werten X(ri), ist eine der Hauptanwendungen der räumlichen Statistik. 
Sie ist eine objektive Methode der Geowissenschaften, mit der aus Beobachtungswer-
ten ein zusammenhängendes Feld gewonnen wird. Die Interpolation bewirkt jedoch 
immer eine Glättung, da nur der Prozess ohne den räumlich unkorrelierten Anteil e(r) 
prognostiziert werden soll.  
Der verallgemeinerte Ansatz für die statistische Interpolation besteht darin, den Erwar-
tungswert (Minimale Varianz) oder den wahrscheinlichsten Wert (maximum likeli-
hood) der verbundenen Wahrscheinlichkeit 0( ( ) | ( ), 1, )ip X X i n=r r  zu finden.  
Daraus leiten sich zwei allgemeine Teilaufgaben ab: 1. Die Schätzung der statistischen 
Eigenschaften des Zufallsfeldes X(r) und 2. die Bestimmung des konkreten Feldwertes 
X(r0) mit Hilfe der bekannten Beobachtung X(ri) unter Verwendung der Ergebnisse 
von 1. Der erste Punkt umfasst meist die Schätzung von Erwartungswert und Autoko-
varianzfunktion. Der zweite Schritt wird zur Unterscheidung vom ersten auch im geo-
statistischen Kontext häufig Prädiktion genannt. Die Qualität der Interpolation ist we-
sentlich von der Richtigkeit der Schätzung der Momente bestimmt. 
Der optimale Prädiktor minimiert eine Kostenfunktion, die den Interpolationsfehler, 
also die Abweichung des interpolierten Werts vom wahren Wert bemißt. In dieser 
Arbeit wird die Schätzung über die Minimierung der Varianz gewonnen: 
 
                                                 
33 In den meisten Darstellungen der Optimalen Interpolation (Daley, 1991 und Gandin, 1965) werden 
Homogenität und Isotropie angenommen. Die Interpolationsgleichungen werden nur in Form von Korre-
lationen entwickelt. Die allgemeinere Darstellung mit Kovarianzen in dieser Arbeit wird verwendet, um 
die Zusammenhänge zwischen OI 3/4D-VAR und Kalman-Filter herauszuarbeiten.  
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 ( )( )2
( ) ( ) minpE X X− ⇒r r  {0.13} 

 
Diese Prädiktion34 ist biasfrei und linear. Der gesuchte Wert ergibt sich aus dem Mit-
telwert µ(r) und einer linearen Kombination der beobachteten Werte X(ri), wobei für X 
Gaußscher Zufallsprozess35 angenommen wird. Xp(r0) repräsentiert den „glatten“ Pro-
zess“ (siehe 2.4). Die Gewichte ki hängen nicht von den aktuellen Beobachtungswerten 
ab. Aus der Minimierung des quadratischen Interpolationsfehlers von Xp(r0) werden die 
Koeffizienten ki aus der Kovarianzfunktion oder dem Variogramm gewonnen. Die 
Lösung für die ki für die statistische Analyse ist Inhalt des Kapitels 2.5.4.  
In der statistischen Analyse und der Datenassimilation wird vorrangig mit Autokovari-
anzen gearbeitet. Sind Variogramme die Grundlage für die räumliche Interpolation, 
dann spricht man von der Kriging-Methode. Beruht die Interpolation auf Kovarianzen, 
dann muss nicht von Homogenität ausgegangen werden. Sie ist jedoch häufig die Vor-
aussetzung, um die Kovarianzfunktion aus vorgegebenem Datenmaterial abzuleiten 
(siehe Kapitel 3). 
Es existieren verschiedene Kriging-Entwicklungen (Cressie, 1993). Im Falle von „Ein-
fachem Kriging“ ist µ(r) bekannt, beim „Gewöhnlichen Kriging“ ist µ(r) unbekannt, 
aber konstant. Man spricht von „Universellem Kriging“, wenn der Mittelwert räumlich 
variabel ist und durch eine Funktionsfolge parametrisiert wird. „Block-Kriging“ ist ein 
Verfahren, um aus Beobachtungen Flächenmittelwerte oder Gitterzellenmittelwerte zu 
interpolieren. „Indikator-Kriging“ ist eine nichtlineare Interpolation, mit der lokale 
Histogramme geschätzt werden. 
 

2.4.2 Raum-Zeit-Prozesse 

Für die zusammenhängende Bearbeitung der Raum-Zeit-Zufallsprozesse gibt es nur 
wenige Beispiele (Bilonick, 1985). Zur Vereinfachung geht man von einer Separation 
in eine räumliche und zeitliche Komponente aus (Gneiting und Schlather, 2001). Damit 
werden die Raum- und Zeitkomponente als unabhängig voneinander angesehen:  
 

 

( )1 1 2 2 1 2 1 2

( , ) ( ) ( )

( , ) ( ) ( )

mit

( , ) ( , ) ( , ) ( , )

t

t

t

t t

e t e e t

Cov X t X t C C t t

µ = µ µ
=

=

r

r

r

r r

r r

r r r r

 {0.14} 

oder 

 

( )1 1 2 2 1 2 1 2

( , ) ( ) ( )

( , ) ( ) ( )

mit

( , ) ( , ) ( , ) ( , )

t

t

t

t t

e t e e t

Cov X t X t C C t t

µ = µ + µ
= +

= +

r

r

r

r r

r r

r r r r

 {0.15} 

                                                 
34 auch BLUE („best linear unbiased estimate“) genannt 
35 Bei der Varianzminimierung für nicht-normalverteilte Prozesse ist diese Schätzung die optimalste in 
der Klasse der linearen Schätzungen.  
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Dieses Vorgehen erscheint geeignet, wenn eine ortsunabhängige zeitliche Periodizität, 
wie z. B. der Tagesgang, erfasst werden soll. Die Wechselbeziehung der raum- und 
zeitabhängigen Prozesse kann damit nicht wiedergegeben werden. 
Ansätze ohne Separation entstehen z. B. durch die Bildung einer einheitlichen Raum-
Zeitmetrik. Dabei wird zu dem räumlichen Abstand der zeitliche Abstand in skalierter 
Form addiert. Die Skalierungsgröße der Zeit kann als eine konstante Driftgeschwindig-
keit physikalisch interpretiert werden. 
Auch wenn man sich auf Zeitreihenanalyse oder Geostatistik beschränkt, kann die 
fehlende Betrachtung der Raum-Zeit-Persistenz Fehlinterpretationen von statistischen 
Tests zur Folge haben, wenn die Unabhängigkeit der Stichprobe vorausgesetzt wurde. 
Aus dem Blickwinkel der Geostatistik führen weiterhin die Nichtbeachtung von zeitli-
cher Persistenz oder die Periodizität zu Fehlern in der Schätzung der Momente des 
räumlichen Prozesses. 
  

2.4.2.1 Schätzung der räumlichen Momente aus Zeitreihen 

In der statistischen Interpolation bzw. Analyse bestimmt sich der unbekannte Wert des 
Zufallsfeldes aus den bekannten Beobachtungen des gleichen Termins. Dafür wird nur 
die räumliche Struktur von Erwartungswert und Kovarianzfunktion benötigt (siehe 
2.4.1.3).  
Der zeitliche Zusammenhang ist jedoch bei der Bestimmung der Kovarianzfunktion 
von Bedeutung, wenn dies mit Hilfe eines klimatischen Kovarianzmodells (siehe 3.2.2) 
erfolgt. Es werden dafür Felder zu verschiedenen Zeitpunkten als Realisierungen des 
selben räumlichen Prozesses aufgefasst. Die Zeitreihen der Beobachtungen dienen der 
Schätzung von stationspaarbezogenen räumlichen Kovarianzwerten. Das klimatische 
Kovarianzmodell erlaubt aufgrund des erweiterten Ensembles eine höhere räumliche 
Strukturierung36.  
Aufgrund der zeitlichen Persistenz können die Felder zu verschiedenen Zeiten nicht 
ohne weiteres als unabhängige Realisierung des räumlichen Prozesses angesehen wer-
den (Zwiers und von Storch, 1995). Es bedarf einer Trennung der zeitlichen und räum-
lichen Kovarianzanteile durch Filterung der Daten (siehe Kapitel 3.2.2.1). Sie ent-
spricht einer zeitlichen Hochpassfilterung, die durch Differenzbildung mit einer 
geglätteten, die zeitliche Variation wiederspiegelnden Datenreihe erfolgt. Das En-
semble der Residuen wird dann zur Schätzung der räumlichen Kovarianz herangezo-
gen. Die Zeitreihe der Residuen muss dazu ergodisch sein.  
Im Gegensatz zum klimatischen wird das terminbezogene Kovarianzmodell nur aus 
den Daten der vorliegenden Realisierung unter der Annahme von räumlicher37 Ergodi-
zität38 gewonnen. Das Konzept der Ergodizität für räumliche Zufallsprozesse ist nur 
unvollständig ausgearbeitet39 (Cressie, 1993). Analog zur Stationarität ergodischer 
Zeitreihen ist dabei von einer räumlichen Homogenität auszugehen. Weiterhin gilt die 
physikalisch sinnvolle Forderung der verschwindenden Kovarianzfunktion für große 

                                                 
36 Dieser Ansatz ist die Grundlage für die Entwicklung von nichtstationären Kovarinzmodellen 
(Sampson et al., 2001). 
37 Das Konzept der räumlichen Ergodizität ist nicht vollständig ausgearbeitet. 
38 Die Folge von Ergodizität ist, dass die Parameter des Prozesses aus einer Realisierung gewonnen 
werden können. 
39 Insbesondere für die Turbulenzforschung ist der Zusammenhang zwischen Eulerscher (Zeitmittel) und 
Lagrangescher (Ensemblemittel) Kovarianzfunktion interessant (Roedel,  1992, S.246).  
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Abstände. Die Plausibilität der klimatischen Kovarianzmodelle kann mit Hilfe der 
terminbezogenen überprüft werden. 
 

2.4.2.2  Ergodozität von Zeitreihen 

Um für die klimatischen Kovarianzmodelle die Erwartungswerte aus zeitlichen Mittel-
werten zu gewinnen, müssen die entsprechenden Zeitreihen ergodisch sein 
(Schweschnikow, 1965). Der Erwartungswert einer ergodischen und damit stationären 
Gaußschen Zeitreihe X(r,t) ergibt sich für den Ort r aus dem zeitlichen Mittelwert:  
 

 ( ) 1
( ) lim ( ( , )

2

t

t
t

E X r X r t dt
t→∞

−

= ∫  {0.16} 

 
Die räumliche Kovarianz Cov(X(r1),X(r2)) für zwei Orte r1 und r2 kann aus den zwei 
ergodischen Gaußschen Zeitreihen X(r1,t=t1...t2) und X(r2, t=t1...t2) über deren Kreuzva-
rianz gebildet werden: 
 

 ( )
1

2

1 1 1 1 2 2

1
( ), ( ) lim ( ( , ) ( ( , ))( ( , ) ( ( , ))

2

t

t
t

Cov X r X r X r t E X r t X r t E X r t dt
t→∞

= − −∫ {0.17} 

 
Für die Ergodizität einer stationären Zeitreihe lässt sich die hinreichende Bedingung 
angeben, dass für große Zeitdifferenzen ? t die zeitliche Kovarianzfunktion Ct gegen 
Null geht (Schweschnikow, 1965, S. 167): 
 
 lim ( ) 0tt

C t
∆ →∞

∆ =  {0.18} 

 
Taubenheim (1969) erläutert die Bedingung für die zeitliche Ergodizität in der spektra-
len Betrachtungsweise. Danach darf das Spektrum der ergodischen Zeitreihe keine 
diskreten Spektrallinien enthalten, denn diese führen zu einer Schwingung der Autoko-
varianzfunktion, die auch für große Zeitabstände erhalten bleibt40.  
Für die Verwendung von Zeitreihen zur Berechnung der räumlichen Kovarianz für 
zwei Orte ist die Folge mangelnder Ergodizität sofort einsehbar. Weist das Feld an 
zwei weit entfernten Orten eine periodische Schwingung41 bzw. einen lineraren Trend 
auf und werden die lokalen Erwartungswerte durch zeitliche Mittelbildung gewonnen, 
so wird eine empirische Kovarianz geschätzt, die keine Entsprechung in der räumlichen 
Dimension hat. Um dies zu vermeiden, muss der periodische Anteil entfernt bzw. dem 
mittleren Anteil µ(r,t) zugeordnet werden.  
Trägt man die zeitlichen Kreuzvarianzwerte als Schätzung der räumlichen Kovarianz in 
Abhängigkeit vom Abstand auf, so sollten die Werte für große Abstände gegen Null 
streben. Damit besteht die Möglichkeit, die Ergodiziät der Zeitreihen X(r,t) zu testen. 

                                                 
40 Die Kovarianzfunktion ist die Fouriertransformierte des Energiespektrums (Wiener-Chinchin- Theo-
rem). 
41 z. B. der durch den Verkehr bedingte Tagesgang der Immission 
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2.5 Theorie der statistischen Analyse und Datenassimilation 

2.5.1 Grundprinzip 

Die Analyse stellt die bestmögliche Wiedergabe des Feldes von atmosphärischen Vari-
ablen in einer regelmäßigen räumlichen Auflösung dar. Der Begriff Analyse wird dabei 
auch für die Methode zur Gewinnung der Analyse aus Beobachtungsdaten verwendet. 
Man spricht von objektiver Analyse, wenn numerische Verfahren für die Analyse 
angewendet werden (Gandin, 1965).  
Die Auflösung der Analyse führt zu einer unteren Schranke für die kleinste darstellbare 
Skala. Weil die Beobachtungen auch durch nichtaufgelöste Prozesse beeinflusst wer-
den, ist die angemessene Separation42 der relevanten Skalen ein wichtiges Problem im 
Rahmen der Analyseverfahren.  
Die modernen Analyseverfahren beruhen auf statistischen Ansätzen zur Interpolation 
(siehe Kapitel 2.4.1, Interpolation). Sie zeichnen sich dadurch aus, dass sie neben den 
Beobachtungen y auf einer unabhängig vorgegebenen Feldverteilung xB basieren. Diese 
wird als Background43 bezeichnet und kann als eine erste Vorgabe für die Analyse 
betrachtet werden. Es handelt sich dabei meist um ein von einem Eulerschen Modell 
berechnetes Feld. Ein klimatologisch bestimmtes Feld oder die Analyse eines vorange-
gangenen Zeitpunkts sind weitere Möglichkeiten für den Background. Die räumliche 
Auflösung44 stimmen in Background und Analyse überein. 
Durch die Methodik, einen vorgegebenen Background durch Messungen zu verändern, 
werden neben der Information aus den Beobachtungen zusätzliche Informationsquel-
len45 für die zu erstellende Analyse herangezogen. Dies ist von Vorteil, wenn die Mes-
sungen aufgrund ihrer begrenzten Repräsentativität keine befriedigenden Rückschlüsse 
auf die gesamte Feldverteilung zulassen, wie es in beobachtungsarmen Gebieten der 
Fall ist. Dies gilt auch lokal, falls die Messungen Skalen wiedergeben, die in der Ana-
lyse nicht enthalten sein sollen. 
Im Fall der Datenassimilation ist der Background das von einem Modell berechnete 
Feld. Der Background xB ist somit ein Teil oder der gesamte Zustandsvektor des dyna-
mischen Modells. Die Beobachtungen fließen bei der Datenassimilation in die Modell-
rechnung ein, indem die Analyse den berechneten Zustandsvektor des Modells ersetzt. 
Für die statistische Analyse ist die verbundene Wahrscheinlichkeit von x bei gegebenen 
y und xB der theoretische Ausgangspunkt:  
 
 ( | , )p Bx y x  {0.19} 
 

                                                 
42 Filterung 
43 Der Background darf im Zusammenhang mit der Immissionsanalyse nicht mit einem Hintergrund im 
Sinne einer unbelasteten bzw. natürlichen Immissionssituation verwechselt werden. 
44 Falls in der Analyse vom Modell nicht wiedergegebene Skalen dargestellt werden sollen, so wird 
formal die Auflösung des Backgrounds erhöht. Die Auflösung ist eine technische, die kleinste wiederge-
gebene Skala eine inhaltliche Fragestellung. Die Auflösung stellt nur die untere Schranke für die kleinste 
wiedergegebene Skala dar. 
45 Da die Anzahl der Messwerte im Allgemeinen wesentlich geringer als die der Analysepunkte ist, stellt 
die Analyse im mathematischen Sinne ein unterbestimmtes Problem dar. Zu dessen Lösung werden 
weitere Informationsquellen (d. h. der Background) benötigt. 
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Die Analyse xA kann sich aus dem Erwartungswert {0.20} oder dem Modalwert {0.21} 
ergeben. Der erste Fall entspricht einer Schätzung nach dem Kriterium der minimalen 
Varianz, der zweite einem modifizierten46 Maximum likelihood Ansatz (Lorenc, 1986): 
 
 ( | )mv p d= ∫A Bx x x y, x x  {0.20} 

 
 ( | ) maxml für p= =A Bx x x y, x  {0.21} 
 
 

 
Abbildung 2.2 Schematisches Grundprinzip der Analyse und Datenassimilation 

 

2.5.2 Definition der Fehlermaße  

Die Zustandsvektoren bzw. die für Gitterpunkte I gegebenen Felder werden mit dem 
Vektor x bezeichnet. Es sind dies der Background xB, die Analyse xA und das nur me-
thodisch eingeführte „wahre“ Feld xtrue. Die Analyse wird durch eine Korrektur des 
Backgrounds gewonnen. Sie zielt damit auf die Abweichungen47 des Backgrounds 
hinsichtlich des „wahren“ Feldes xtrue, das durch xA geschätzt wird.  
Die Abweichung zwischen der Analyse und dem wahren Wert ist der zu minimierende 
Analysefehler eA: 
 

                        N
A A true A R= − ∈e x x x      {0.22} 

 

                                                 
46 “Maximum a posteriori probability estimation” Todling R. (1999)  
47 Damit ergibt sich ein enger Zusammenhang zwischen Analyse und der Modellevaluierung. 
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Der Fehlervektor des Backgrounds eB stellt die Abweichung des Modellzustandsvektors 
xB von dem hypothetischen wahren Zustandsvektor xtrue, dar: 
 

 , , ( 1, )N
B B true true IBR x N= − ∈ =Be x x x x  {0.23} 

 
Die unregelmäßig verteilten Beobachtungen i bilden den Vektor y. Die Fehler der 
Beobachtungen eo sind die Differenzen zwischen den Beobachtungen y und dem mit 
dem Beobachtungsoperator H transformierten Zustandsvektor xtrue.  
 

 

( ) Beobachtungsfehler

, ( , 1, )

Beobachtungsoperator

O true

m
i

N m

H

R y i m

H R ×

= −

∈ =

∈

e y x

y  {0.24} 

 
Der Beobachtungsfehler besteht aus dem Messgerätefehler (y - ytrue) und einem Fehler, 
der durch die Ungenauigkeit des Beobachtungsoperators H hervorgerufen wird. Dieser 
Anteil kann mit dem Fehler in der Repräsentativität der Messung für die Modellvariab-
le interpretiert werden (siehe Kapitel 2.5.3)  
Die aktuellen Werte von Modell- und Beobachtungsfehler sind unbekannt, da die 
„wahren“ Werte naturgemäß nicht bekannt sind. Die statistische Analyse beruht jedoch 
auf der Annahme, dass probabilistische Angaben über beide Fehler gemacht werden 
können. Es wird davon ausgegangen, dass die Fehler von Background und Beobach-
tung als Gaußsche Zufallsprozesse behandelbar und damit durch den Erwartungswert 
und die räumliche Kovarianzfunktion ausreichend beschrieben sind.  
Die Schätzung dieser Größen aus Modell- und Beobachtungsdaten ist der Inhalt von 
Kapitel 3. Es wird dabei auf die Beobachtungsinkremente eOB zurückgegriffen, die im 
Gegensatz zu den Fehlern direkt bestimmbar sind: 
  
                    B( ) BeobachtungsinkrementOB H= −e y x              {0.25} 
 
Die räumliche Beziehung der Fehler zwischen den einzelnen Elementen des Modellzu-
standsvektors bzw. zwischen den einzelnen Beobachtungen wird durch die Kovarianz-
matrizen B und R erfasst.  
Genauso wie der Zustandsvektor x die Diskretisierung eines kontinuierlichen Feldes 
darstellt, so ist die Matrix B die Diskretisierung der räumlichen Kovarianzfunktion C 
(siehe Kapitel 2.4). Die Beobachtungsfehler werden als unkorreliert angenommen, und 
so ergibt sich R als Diagonalmatrix: 
 
 ( ) ( )E E= = − −T T

B B B true B trueB e e (x x )(x x )  {0.26} 

 
 ( ) ( ) ( )2E E H H E= = − − =T T

O O true true OR e e (y x )(y x ) I e  {0.27} 
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Beide Matrizen sind symmetrisch und positiv definit48. Das Quadrat49 der Anzahl der 
Elemente des Modellzustandsvektors bzw. der Beobachtungen ist die Anzahl der Ele-
mente in den entsprechenden Matrizen.  
Die Hauptdiagonalelemente von B und R sind die Varianzen der entsprechenden Fehler 
s 2

BI und s 2
Oj für jeden Gitterpunkt I bzw. jede Beobachtung j.  

Analog zu den Matrizen B und R kann die Kovarianzmatrix A des Analysefehlers 
definiert werden:  
 
 ( ) ( )T T

A A A true A trueA = E e e = E (x - x )(x - x )  {0.28} 

 

2.5.3 Beobachtungsoperator 

Im Allgemeinen entsprechen die analysierten Modellvariablen x nicht vollkommen den 
Beobachtungen y: Die Beobachtungsorte stimmen meist nicht mit den Gitterpunkten 
überein bzw. die Modellvariablen besitzen einen anderen räumlichen und zeitlichen 
Mittelungscharakter als die Beobachtungen. Darüber hinaus können die Modellvariab-
len und Beobachtungen keine direkte Entsprechung haben, wie dies bei Satellitenbeo-
bachtungen oder bei der hier vorgestellten aktiven Assimilation für PM10 (siehe Kapi-
tel 4.1.7) der Fall ist. Die ursprünglichen Strahlungsmesswerte müssen erst in die 
prognostische Modellvariable umgerechnet werden bzw. die PM10-Masse muss auf die 
modellierten PM10-Bestandteile verteilt werden.  
Der Übergang50 aus dem Raum der Zustandsvektoren x (Modell oder Analysefeld) in 
den der Beobachtungen wird formal durch den Beobachtungsoperator H geleistet 
(Bouttier und Courtier, 1999):  
 
 ( )H↔y x  {0.29} 
 
Für die Ableitung der Gleichungen der Gewichte K durch eine Minimierung der Vari-
anz des Analysefehlers (siehe Kapitel 2.5.4) wird die Existenz eines linearisierten 
Beobachtungsoperators H gefordert51. Das bedeutet, dass dieser Beobachtungsoperator 
auch auf Differenzen bzw. Fehler des Zustandvektors xB anwendbar ist. H ergibt sich 
aus einer Taylor-Reihenentwicklung von H 
:  

 ( ) ( ) mit    
H

H H
∂

+ ∆ ≈ + ∆ =
∂

B

B B
x

x x x H x H
x

 {0.30} 

 

                                                 
48 Diese aus der Autokorrelation über das Bochner-Chinchin Theorem (eine Funktion ist positiv definit, 
wenn ihr Spektrum positiv ist) ableitbare Eigenschaft muss insbesondere bei der numerischen Behand-
lung der Backgroundfehlermatrix beachtet werden. 
49 Im Falle eines REM/Calgrid-Feldes (80*96 Gitterpunkte) hat sie 58 982 400 Elemente. 
50 z. B. falls Modellvariablen und Beobachtungen keine direkte Entsprechung haben, wie es bei aus 
Satellitenbeobachtungen abgeleiteten Temperaturprofilen der Fall ist. 
51 Im Rahmen der Datenassimilation mit 3/4DVAR ist diese Forderung nicht nötig. Darum eignet sich 
dieses Verfahren besonders für komplexe Beobachtungsoperatoren, wie es bei Satellitendaten der Fall 
ist. 
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Durch die Linearität ist H mit der Erwartungswertbildung vertauschbar, so dass H auf 
die Kovarianzmatrix B angewendet werden kann. Die entsprechenden Terme lauten 
HBHT und HB. 
Die elementarste Anwendung des Beobachtungsoperators ist die räumliche Verschie-
bung: Mit Hilfe des Beobachtungsoperators H oder H wird der Backgroundwert oder 
seine Varianz am Gitterpunkt J auf den Ort j der vorliegenden Beobachtung transfor-
miert, um die Beobachtungsinkremente bilden zu können. Die Beobachtung j liegt 
dabei in der zugehörigen Gitterbox J. Die HBHT ist damit die Kovarianzmatrix zwi-
schen den Orten der Beobachtung, HB zwischen den Beobachtungsorten und den Git-
terpunkten. HBHT + R entspricht demzufolge der Kovarianzmatrix der Beobachtungs-
inkremente eOB. 
Eine numerische Formulierung des Beobachtungsoperators H für den Skalenübergang 
ist meist nicht bekannt. Eine statistische Beschreibung des Skalenunterschieds kann 
jedoch mit dem Ansatz {0.6} erfolgen. Mit ihm wird die subskalige Komponente ess 
mit dem unkorrelierten Messfehler e zum Beobachtungsfehler zusammengefasst. Der 
Beobachtungsfehler ist damit auch Ausdruck der Unzulänglichkeit von H. Die Berück-
sichtigung des Skalenunterschiedes erfolgt somit durch die Erhöhung der Varianz des 
Beobachtungsfehlers, der Bestandteil der Matrix R ist.  
 
Der statistische Ansatz für die Skalentrennung geht von eine „Kontaminierung“ des 
„glatten“ Prozesses durch eine subskalige Komponente mit verschwindendem Mittel-
wert aus. Dieses Vorgehen ist für Immissionsbeobachtungen nur teilweise gerechtfer-
tigt, da die subskalige Komponente meist ein zusätzlicher und systematischer Auf-
schlag aufgrund kleinräumiger Emissionen ist. Der auf die Kovarianzmatrix 
angewendete linearisierte Beobachtungsoperator H enthält diesen Aufschlag nicht.  
Die entsprechende Emissionssituation kann aus den in Flemming (2003) bestimmten 
Immissionsregimes geschlussfolgert werden. Sie werden im folgenden verwendet, um 
eine sinnvolle Klassifizierung innerhalb des Kovarianzmodells einzuführen (siehe 
3.1.3). 
 

2.5.4 Analyse durch Varianzminimierung – Optimale 
Interpolation 

Für die genaue Herleitung der Analysegleichung durch eine Minimum-Varianz-
Schätzung mit Hilfe der in Kapitel 2.5.1 angedeuteten Prinzipien wird auf Todling 
(1999) oder Lorenc (1986) verwiesen. Die Herleitung wird vereinfacht, wenn man von 
folgendem linearen Ansatz ausgeht:  
 
 ( )( )H= + −a b Bx x K y x  {0.31} 
 
Die Analyse wird dabei aus dem Background xB und den Beobachtungsinkrementen  
(y - HxB) gebildet. Die Matrix K legt die Gewichte für den Einfluss der Beobachtungs-
inkremente fest. 
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Die Gleichung für die Gewichte {0.35} wird aus der Minimierung52 der Gesamtvarianz 
des Analysefehlers s 2

A gewonnen. Die Gesamtvarianz s 2
A ist die Spur Tr der Kovari-

anzmatrix des Analysefehlers A {0.28}.  
 

 ( )2 2

1 1

( ) ( ) min
N N

iA iA itrue
i i

Tr E x xσ
= =

= = − →∑ ∑A  {0.32} 

 
Bei der Minimierung werden folgende Voraussetzungen gemacht: 
 

1. Kein Bias zwischen den Beobachtungen und dem Modellfeld: 
 ( ) ( )B OE E= =e e 0  {0.33} 

2. Keine Korrelation (Kovarianz) zwischen den Fehlern von Modell und Beobach-
tungen:  

 ( )E =T
O Be e 0  {0.34} 

3. Existenz eines linearisierten Beobachtungsoperators, der auf die Kovarianz-
matrizen des Backgroundfehlers B anwendbar ist. 

 
Unter diesen Voraussetzungen ergibt sich für K das folgende Gleichungssystem aus 
den Kovarianzmatrizen von Background B und Beobachtung R. 
 

 
1

.bzw Invertierbarkeit
−

+ =

= +

T T

T

(HBH R) K HB

K HB(HBH R)

 {0.35} 

 
Setzt man Gleichung {0.31} in Gleichung {0.28} ein, so ergibt sich die Matrixglei-
chung für die Kovarianzmatrix des Analysefehlers A: 
  
 = − +T TA (I KH)B(IKH) KRK  {0.36} 
 
Mit den optimalen Gewichten K vereinfacht sich der Ausdruck für den Analysefehler: 
 
 = −A B KHB  {0.37} 
 

2.5.5 Vereinfachung und Diskussion der Analysegleichungen 

Die Struktur der Analysegleichungen {0.31} und {0.35} kann durchschaubarer ge-
macht werden, wenn die Analyse nur für einen Wert xAJ am Punkt J formuliert wird. 
Eine weitere Vereinfachung ergibt sich, wenn nur eine Auswahl von i =1, nJ Stationen 
zur Interpolation am Punkt J beiträgt. Der Backgroundwert xBi an den Beobachtungsor-

                                                 
52 Gleichwertig ist eine maximum-likelihood-Schätzung der Wahrscheinlichkeitsfunktion bei Gaußschen 
pdfs (Lorenc, 1986).  
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ten i wird durch den Beobachtungsoperator53 H(xBI) aus dem zugehörigen Gitter-
punktswert gewonnen: 
 

 
1

( )
Jn

AJ BJ Ji i Bi
i

x x k y x
=

= + −∑  {0.38} 

 
Diese Form der Analyse ist von Gandin (1965) unter dem Begriff Optimale Interpola-
tion in die Meteorologie eingeführt worden. Die Schätzung der räumlichen Kovarianz-
funktionen beruht bei den meisten weiteren Anwendungen auf homogenen und meist 
isotropen Verhältnissen.  
Es erscheint sinnvoll, nur Stationen in der Nähe des Analysepunktes zu verwenden. 
Das Verschwinden der Kovarianz HB kann als ein formales Kriterium für die Auswahl 
gelten. Es zeigt sich jedoch häufig, dass eine viel geringere Anzahl54 für die Analyse 
ausreicht, d. h. keine wesentlichen Veränderungen hinzukommen55. Durch die Datense-
lektion wird der numerische Aufwand für die Analyse stark reduziert, da für jeden 
Gitterpunkt ein Gleichungssystem von deutlich geringerer Größe gelöst werden muss. 
Die Analyse zeichnet sich durch folgende Eigenschaften aus, die aus der Diskussion 
von Gleichung {0.39} begründet werden: 
 

• Hohe Kovarianz des Backgrounds zwischen Beobachtungsort und Analyse-
punkt führen zu hohem Einfluss des zugehörigen Beobachtungsinkrements. 

 
• Hohe Kovarianz des Backgrounds zwischen zwei Beobachtungsorten verringert 

den Einfluss der zugehörigen Beobachtungsinkremente. 
 

• Hohe Varianz des Beobachtungsfehlers einer Messung führt zu einem geringen 
Einfluss des zugehörigen Beobachtungsinkrements. 

 
Durch die Stationsauswahl vereinfacht sich die Matrixgleichung {0.35} zu einem in-
homogenen linearen Gleichungssystem nj-ter Ordnung für die Gewichte kJi:  
 

 
11 11 1 1 1

1

n J J

n nn nn Jn Jn

b r b k b

b b r k b

+    
    =    
    +    

L
M O M M M

L
  {0.39} 

 
Die kJi werden hauptsächlich durch die rechte Seite, d. h. die Kovarianzen des Back-
groundfehlers bJi zwischen den Beobachtungsorten i und dem Analysepunkt J be-
stimmt. Je ausgeprägter die Beziehung, ausgedrückt durch die Kovarianzen, zwischen 
Beobachtungsort und Interpolationspunkt ist, desto wichtiger wird das ermittelte Beo-
bachtungsinkrement für die Analyse.  
Die Matrix der linken Seite beschreibt die Eigenschaften und Beziehungen zwischen 
den Beobachtungen. Dabei werden die Beobachtungsfehler und die Beziehung des 

                                                 
53 Der Beobachtungsoperator ist hier eine bilineare Interpolation von den Gitterpunktswerten am Station-
sort. 
54 Gandin zeigt für das 500 hPa Geopotential, dass ca. 10 Stationen ausreichend sind. 
55 Dies gilt nicht, wenn Gradienten etc. des Feldes betrachtet werden, da hier die von Punkt zu Punkt 
veränderliche Stationsauswahl zu Sprüngen führen kann. 
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Backgroundfeldes an den Beobachtungsorten berücksichtigt. Eine hohe Varianz des 
Beobachtungsfehlers rii = s 2

Oi der Messung i verringert den Einfluss der Beobachtung i 
für die Analyse. Die Stärke dieser Verringerung wird durch Varianz des Background-
fehlers bii = s 2

Bi relativiert. Es lässt sich zeigen, dass das Verhältnis s Oi und s Bi für die 
Bewertung des Beobachtungsinkrements am Ort i entscheidend ist (siehe Kapitel 
3.3.3.2).  
Weiterhin trägt die Beobachtungsfehlervarianz zur numerischen Stabilität des Glei-
chungssystems bei. Ohne ihn könnte die Matritx HBHT durch zwei nahezu identische 
Beobachtungsorte singulär werden.  
Die Nichtdiagonalelemente bij (i≠j) beschreiben die Beziehungen56 der Backgroundfeh-
ler an verschiedenen Beobachtungsorten zueinander. Hohe Werte der Kovarianz für 
zwei Orte reduzieren die individuellen Gewichte beider Beobachtungsinkremente. Die 
Beobachtungsinkremente sind in diesem Fall nicht unabhängig. Ihr individueller Ein-
fluss auf den Analysewert sollte individuell kleiner sein als der eines unabhängigeren 
Beobachtungsinkrements. Das Berücksichtigen der Beziehungen zwischen den Beo-
bachtungsorten wird als „declusterung“ bezeichnet und ist ein Vorteil der statistischen 
Analyse gegenüber anderen Verfahren. Durch ihn wird die variable Stationsdichte57 
berücksichtigt: Geht man von einem homogenen und isotropen Kovarianzmodell aus58, 
so erhalten alle Beobachtungen mit dem gleichen Abstand zum Analysepunkt das 
gleiche Gewicht. Befinden sich nun viele dieser Stationen dicht gedrängt, z. B. in einer 
Stadt, so würde der Analysewert stark durch die Beobachtungsinkremente aus diesem 
Gebiet beeinflusst werden. Die Berücksichtigung der Kovarianzen des Backgroundfeh-
lers führt jedoch dazu, dass der ungerechtfertigt hohe Einfluss dieses Gebietes verrin-
gert wird.  
Aus der Gleichung {0.36} ergibt sich die Varianz des Analysefehlers im Falle optimal 
spezifizierter Gewichte kIi aus:  

2 2 2

1

ˆ
In

JA JB Ii Ji JA
i

k bσ σ σ
=

= − ≤∑  

Die Varianz des Fehlers der optimalen Analyse s 2
JA liegt unter dem des Backgrounds 

s 2
JA. Der Wert stellt die theoretische untere Schranke für die tatsächliche Varianz des 

Analysefehlers 2ˆ JAσ  dar, bei nicht optimalen Koeffizienten aufgrund unzureichender 
Kenntnis der Matrizen B und R. Für eine suboptimale aber sinnvolle Interpolation 
sollte 2ˆ JAσ  kleiner als s 2

BI sein.  
Eine Möglichkeit, den tatsächlichen Analysefehler abzuschätzen, ergibt sich durch 
einen cross-validation-Ansatz für die Stationsorte. Dabei werden die Stationswerte 
prognostiziert, ohne sie bei der Interpolation zu verwenden (siehe Kapitel 4.2).  
 

2.5.6 Variationsansätze  

Neben der Minimierung der Varianz des Analysefehlers59 (siehe Kapitel 2.5.1) kann die 
Analyse als Variationsproblem formuliert werden. Der Ausgangspunkt ist die maxi-
mum-likelihood-Schätzung für die Analyse, die sich aus den mehrdimensionalen 

                                                 
56 Da keine Korrelation der Beobachtungsfehler angenommen wird, gilt rij = 0 für i ?j. 
57 Die Immissionsbeobachtungen zeichnen sich durch große Unterschiede in der Stationsdichte aus. 
58 gleichbedeutend mit einer reinen Abstandsabhängigkeit 
59 entspricht der Bestimmung des Erwartungswertes 
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Wahrscheinlichkeitsfunktionen für Background und Beobachtung ergibt (siehe Glei-
chung {0.19}). Gehorchen diese einer Gauß-Verteilung, so ist das Ergebnis des Ansat-
zes identisch mit dem der Varianzminimierung (Lorenc, 1986).  
Das Ergebnis des Maximum-Likelihood-Ansatzes ist eine skalare Kostenfunktion J 
{0.40}, die ihr Minimum bei dem wahrscheinlichsten Wert für x = xA hat. Die Kosten-
funktion besteht aus zwei Teilen, die die Abweichungen zum Background und zu den 
Beobachtungen bewerten. Die inversen Kovarianzmatrizen der Fehler von Background 
B und Beobachtung R dienen als verallgemeinerte Gewichte. Je höher der Fehler, umso 
geringer wird die Abweichung bewertet. 
Die Analyse wird durch die Minimierung der Kostenfunktion gefunden, die auf dem 
Gradient von J beruht. Ein Vorteil des Variationsansatzes ist, dass der Beobachtungs-
operator nicht linearisiert werden muss. Weiterhin können leicht Zwangsbedingungen 
eingeführt werden, denen der Zustandsvektor exakt oder in möglichst hohem Maße 
gehorchen soll (Sasaki, 1970). Dafür bieten sich physikalische und chemische Gleich-
gewichte60 oder eine Modellrechnung an. In der 4-dimensionalen Variationsrechnung 
(4D-VAR) werden die Abweichungen zu den Beobachtungen für mehrere Zeitpunkte 
einbezogen. Dabei gilt die starke Zwangsbedingung, dass die Modellzustandsvektoren 
x für verschiedene Zeiten durch eine Modellintegration gebildet werden. Für die itera-
tive Bestimmung des Minimums der Kostenfunktion wird der Gradient der Kosten-
funktion verwendet. Für seine Berechnung wird die Adjungierte des linearisierten61 
Modelloperators (adjoint model) benötigt (Bouttier und Courtier, 1999). Sie entspricht 
der transponierten Linearisierung des ursprünglichen Modells. Für die mit zeitlichen 
Differenzenschemata formulierten Modellteile (Advektion, Chemie etc.) ist die Pro-
grammierung des adjungiert-linearen Modells möglich (Talagrand, 1997). Im Rahmen 
der Chemie-Transport-Modellierung wird 4D-VAR für das EURAD-Modell verwendet 
(Elbern und Schmidt, 1997, 2001): 
 

 
1

tn
i i i i

i

J H H− −

=

= − − + − −∑T 1 T 1
B B(x) (x x ) B (x x ) (y x ) R (y x )  {0.40} 

 

 

1

t

mit Zwangsbedingung   

Modelloperator
Zeitpunkte i=1...n  

i iJ min M

M

+= =A(x ) x x

…  {0.41} 

2.5.7 Kalman-Filter 

Der Kalman-Filter62 kann als ein vierdimensionales Verfahren zur Datenassimilation 
verwendet werden. Sein Grundprinzip ist der Wechsel von Prognose und Analyse des 
Modellzustandsvektors x und seiner Fehlerkovarianzmatrix P63 (Abbildung 2.3). Der 

                                                 
60 z. B. das geostrophische Gleichgewicht für Wind- und Geopotentialfelder bzw. das fotostationäre 
Gleichgewicht.  
61 Die Linearisierung komplexer Modelle ist, wenn überhaupt, nur für kleine Zeitschritte möglich. Man 
spricht dann von dem tangential-linearisierten Modell. 
62 Kalman-Filter sind eine große Gruppe von optimalen rekursiven Methoden zur Prognose. Sie müssen 
nicht wie hier mit einem dynamischen Modell gekoppelt sein. 
63 Da diese sich ständig verändert, wird sie in Abgrenzung zur empirischen Kovarianzmatrix B mit P 
bezeichnet. 
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Kalman-Filter ist für lineare Modelle formuliert. Er wird als Kalman Bucy Filter für 
nichtlineare Modelle erweitert, wenn das Modell M durch eine lineare Approximation 
M für die Prognose der Kovarianzmatrix der Fehler P verwendet werden kann64 {0.43}
. Bei dieser Prognose wird der Fehlerhaftigkeit des Modells durch die Modellprognose-
fehlermatrix Q Rechnung getragen. Liegen Messungen y vor, so erfolgt eine Analyse 
xA, bei der der prognostizierte Zustandsvektor an die Messungen angepasst wird {0.45}
. Die prognostizierte Kovarianzmatrix Pt+1

 und die Fehlervarianzen der Messungen 
bestimmen dabei die Analysegewichte K {0.44}. Gleichzeitig wird die Kovarianz-
matrix für den analysierten Zustand PA berechnet {0.46}. Die Analysen des Modellzu-
standes und der Kovarianzmatrix werden nun als Ausgangspunkt für den nächsten 
Prognoseschritt verwendet. 
 

 t 1 t

Prognose des Zustandsvektors:

M+ = Ax x
 {0.42} 

 t 1 t

Prognose der Fehlerkovarianzmatrix: 
+ = +T

B AP MP M Q
 {0.43} 

 
Bestimmung der Analysegewichte:

t t t
B B

−= +T 1K HP (HP H R)
 {0.44} 

 
Analyse des Zustandsvektors:

t t t t t
A B BH= + −x x K (y x )

 {0.45} 

 
Bestimmen der Fehlerkovarianzmatrix der Analyse:

)t t t
A B= −P (I K H P

 {0.46} 

 
Der Analyseschritt gleicht dem nach dem Minimum-Varianz-Ansatz {0.31}. Es gelten 
auch für den Kalman-Filter die gleichen Voraussetzungen, d. h. kein Bias und keine 
Korrelation zwischen den Modell- und Beobachtungsfehlern. Für die Berechnung der 
Fehlerkovarianzen wird von deren Normalverteilung ausgegangen.  
Die Besonderheit des Kalman-Filters besteht in der Prognose und Analyse der Kovari-
anzmatrix P. Die Prognose ist dynamisch und durch die zugrundeliegenden Modell-
gleichungen bestimmt. Dadurch können Zusammenhänge innerhalb des Zustandsvek-
tors (z. B. Advektion oder chemische Kopplung) erfasst und bei der Analyse 
berücksichtigt werden: Ist eine entsprechende statistische Beziehung in P entwickelt 
worden, so erfolgt eine Korrektur auch in Teilen des Zustandsvektors, für die keine 
direkten Beobachtungen vorliegen. Durch das mehrmalige Durchlaufen des Zyklus 
wird der Analysefehler schrittweise bis zu einem Konvergenzniveau verringert. Für die 
Initialisierung des Kalman-Filters muss eine Kovarianzmatrix aus anderen Quellen 
bereitgestellt werden.  
Im einfachsten Fall ist die Kovarianzmatrix Q des Modellprognosefehlers eine reine 
Diagonalmatrix, die den Elementen des Zustandsvektors eine Varianz (Unsicherheit) 
zuordnet. Nichtprognostische Modellparameter können in gewissem Sinne überprüft 
werden, indem man sie in den Zustandsvektor und die Analyse mit einbezieht. Bewirkt 
die Analyse zu verschiedenen Zeitpunkten eine gleichgerichtete Korrektur dieser Wer-
te, so deutet dies auf einen systematischen Fehler hin, der im Modell korrigiert werden 
kann. Aufgrund des rein statistischen Zusammenhanges muss jedoch sichergestellt 

                                                 
64 Vereinfachend wird bei der Datenassimilation jedoch nur vom Kalman-Filter gesprochen. 
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werden, dass die richtige Ursache für die Modellfehler gefunden wurde und kein un-
physikalisches und rein episodenbezogenes „Modelltuning“ vorgenommen wird. Van 
Loon et al. (1999) verwenden diesen Ansatz, um Emissionsangaben in dem Modell 
LOTOS für eine bessere Modellleistung zu verändern. 
Der numerische Aufwand für die Prognose der Kovarianzmatrix ist sehr groß und 
würde N Modellintegrationen entsprechen, wobei N die Anzahl der Elemente des Mo-
dellzustandsvektors ist65. Aus diesem Grund sind Vereinfachungen nötig. Mit dem 
RRSQRT-Ansatz (reduced rank square root, siehe Kapitel 2.5.8) wird die Kovarianz-
matrix auf die wichtigen Moden der Variabilität beschränkt, so dass der Rechenzeitbe-
darf nur ca. 50-100 Modellintegrationen entspricht (Heemink et al., 1999). Für die 
Chemie-Transport-Modellierung werden Kalman-Filter-Ansätze z. B. für das LOTOS-
Modell angewendet (van Loon und Heemink, 1997):  

Observations

Observations

Analysis

Analysis

State xt Covariance Pt

State xt+1 Covariance Pt+1

State xt+1 Covariance Pt+1

State xA Covariance PA

State xA Covariance PA

Model
Forecast

Model
Forecast

Model
Forecast

 

Abbildung 2.3 Funktionsprinzip des Kalman-Filters 

2.5.8 RRSQRT-Ansatz für Kalman-Filter 

Die Abkürzung RRSQRT steht für reduced rank square root. Es ist eine Methode, die 
Prognose der Kovarianzmatrix P {0.43} für nichtlineare Modelle M zu realisieren, ohne 
explizit eine liniearisierte Form M angeben zu müssen (van Loon und Heemink, 1997). 
Zunächst wird die originale Kovarianzmatrix P durch die square root Matrix S („Wur-
zelmatrix“) ausgedrückt: 
                                                 
65 REM/Calgrid besitzt einen Zustandsvektor mit ca. 106 Elementen, der Rechenzeitaufwand beträgt 
damit für den vollständigen KBF das 106-fache der Modellrechenzeit. 
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 TP = SS  {0.47} 
 
Dadurch wird auch erreicht, dass die Matrix P immer positiv definit ist, was bei einer 
direkten Behandlung von P aufgrund von numerischen Ungenauigkeiten nicht immer 
der Fall sein muss. Die square root Matrix S ist eine Matrix aus m Reihen von Vektoren 
der Größe des Modellzustandsvektors x:  
 
 ' ' ' '  1 2 3 mS = x , x , x xL  {0.48} 

 
Die Anzahl m der Spalten bestimmt den Rang der Matrix P und damit deren statistische 
Güte. Für eine approximative Darstellung von P kann S jedoch eine bedeutend geringe-
re Anzahl von Spalten als die Dimension von x haben (Seghers, 2002). Selbst mit einer 
einspaltigen Matrix S lässt sich eine gültige Kovarianzmatrix bilden.  
Anschaulich kann man sich die Spalten von S als ein Ensemble von j = 1, m ver-
schiedenen, d. h. gestörten Modellzuständen x’, von denen der jeweilige Mittelwert 
abgezogen wurde, vorstellen. Je größer die Anzahl m, um so mehr Ensembleelemente, 
d. h. Realisierungen von Modellzuständen, wurden verwendet, um die Varianzen bzw. 
Kovarianzen in der Matrix P zu berechnen.  
Die Formulierung der Kalman-Filter-Gleichungen erfolgt mit der Matrix S und die Pro-
gnose von P wird mit einer Prognose von S ersetzt {0.43}. Dafür wird zu jeder Spalte 
von S ein Grundzustand addiert, so dass m Realisierungen eines Modellzustandsvektors 
entstehen. Diese können mit Hilfe des Computercodes des Modells M prognostiziert 
werden. Anschließend wird durch Abzug des prognostizierten Grundzustandes die 
prognostizierte Matrix St+1 gebildet.  
Um den Modellfehler, ausgedrückt durch die Matrix Q, in die Prognose der Matrix S 
einfließen zu lassen, werden q zusätzliche Modellzustände mit einer Störung zeitlich 
integriert. Die Störung wird gebildet, indem ausgewählte Modellparameter wie die 
Emission oder die Stärke des vertikalen Austauschs verändert werden. Sie werden mit 
angenommenen Unsicherheiten der Modellierung quantifiziert und als q Rausch-
Parameter (noise) formuliert. Die Differenz der so gestörten Zustände x* vom Grund-
zustand werden als zusätzliche Spalten in die square root Matrix S aufgenommen. Mit 
jedem Prognoseschritt erhöht sich demzufolge die Anzahl der Spalten in S um q:  
 
 1 1 1 1 1 * *

1' ' ' ' , ' 't t t t t
m

+ + + + +  1 2 3 qS = x , x , x x x xL L  {0.49} 

 
Um die Anzahl der Spalten von S und damit die Anzahl der notwendigen Modellschrit-
te konstant zu halten, wird eine Eigenvektoraufspaltung der Matrix P vorgenommen. 
Für den nächsten Prognoseschritt werden dann nur die m größten Eigenvektoren beibe-
halten. Die Matrix S wird damit durch Modellzustände repräsentiert, die einen we-
sentlichen Anteil an der Varianz bilden. Sie heißen darum auch die Moden von S. Im 
übertragenen Sinn bedeutet die Eigenvektoraufspaltung, dass gestörte Modellzustände 
konstruiert werden, die ein bedeutsames Anwachsen der Varianz vermuten lassen. 
Ohne die Eigenvektoraufspaltung wäre ein großes Ensemble von Modellzuständen nö-
tig, um P in ausreichender Güte zu gewinnen. Durch die Einführung von Moden reicht 
eine geringere Anzahl von Spalten und damit von notwendigen Modellprognosen aus, 
um P gleichwertig zu repräsentieren. 
Zum Beginn der Kalman-Filter Rechnung sind die Matrizen S bzw. P unbekannt. Man 
nimmt für sie Null Matrizen an. Mit jedem Prognoseschritt werden q neue Spalten in 
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die Matrix S eingebettet, um den stochastischen Modellfehler zu berücksichtigen. 
Übersteigt die Anzahl der Spalten die Anzahl m von handhabbaren Moden, so wird 
deren Anzahl mit der Eigenvektoraufspaltung auf die m größten beschränkt. Somit wird 
kontinuierlich die Matrix S bzw. P entwickelt. Dabei ist zu beachten, dass nur Kovari-
anzen modelliert werden, die durch die Wahl der Störung, z. B. Emissionsvariationen, 
im Modell entstehen. Die maximale Anzahl der notwendigen Moden muss durch Kon-
vergenzkriterien und die numerische Kapazität festgelegt werden. In den zitierten 
Anwendungen von LOTOS werden ca. 30-50 Moden verwendet. 
Es ist günstig, den konkreten Wert der q Rausch-Parameter (noise), z. B. eine Erhöhung 
der NOx-Emission, in den Modellzustand einzubeziehen. Jeder Analyseschritt verändert 
diese Werte im Lichte der vorliegenden Beobachtungen aufgrund der aufgebauten 
Kovarianzen. Die Auswirkung der gebildeten noise-Parameter auf die Modellrechnung 
ist dadurch erkennbar.  
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3 Kovarianzmodellierung der 
Immissionsfelder 

 
Im Kapitel 2.5 wurde die statistische Analyse der Immission auf Basis der Kovarianz-
matrizen von Background und Beobachtungen beschrieben, ohne Hinweise über deren 
Gewinnung zu geben. Die korrekte Schätzung dieser statistischen Momente, d. h. 
HBH, HB und R und der Erwartungswerte, ist das Hauptproblem bei der Analyse. Sie 
werden mit Hilfe von Kovarianzmodellen geschätzt und ausgedrückt. Das Kapitel 
beinhaltet einen Überblick über die Kovarianzmodellierung und stellt die für dieses 
Forschungsvorhaben entwickelten Kovarianzmodelle vor. Die Varianz des Beobach-
tungsfehlers R wird häufig durch subjektive Abschätzung festgelegt. Die Beobach-
tungsmethode (siehe Kapitel 3.2.6 ) stellt eine Möglichkeit dar, den Beobachtungsfeh-
ler mit Hilfe eines Kovarianzmodells des Backgrounds und der Varianz der 
Beobachtungsinkremente zu bestimmen. Im Kapitel 3.3 werden die Ergebnisse vorge-
stellt und diskutiert. 

3.1 Kovarianzmodelle für räumliche Prozesse 

Da der betrachtete räumliche Zufallsprozess X bzw. seine Diskretisierung x nur unzu-
reichend bekannt ist, müssen seine Momente aus Stichproben geschätzt werden. Das 
Ergebnis der Schätzung ist ein Kovarianzmodell, das alle benötigten Kovarianzen für 
die Analyse liefert. Dieses Kovarianzmodell beruht neben der Stichprobeninformation 
auf vereinfachenden Annahmen, um die Information der Stichprobe z. B. auf Orte ohne 
Messinformation zu erweitern. Die Unterschiede dieser Annahmen sind entscheidend 
für die verschiedenen Typen von Kovarianzmodellen. In einem weiteren Sinne wird in 
diesem Bericht auch die Ableitung der Beobachtungsfehler mit Kovarianzmodellen als 
Kovarianzmodellierung bezeichnet. 
Die Kovarianzmatrix B ist für große Zustandsvektoren nicht handhabbar66. Die zu-
sammenfassende Beschreibung von B stellt weiterhin eine wichtige Aufgabe des Kova-
rianzmodells dar, auch wenn B vollständig bekannt wäre.  
Von entscheidender Bedeutung für die Kovarianzmodellierung und die gesamte Analy-
se ist die Bestimmung des Erwartungswertes. Im Falle der Datenassimilation fungiert 
der Background, d. h. das biasfreie Modellfeld, als Erwartungswert. Die Bestimmung 
des Bias ist damit genauso wie die Schätzung des Beobachtungsfehler Bestandteil der 
Kovarianzmodellierung. 
Es gibt unterschiedlichste Varianten der Kovarianzmodelle, die sich durch ihre Kom-
plexität, ihren Aufwand und ihren Erfolg bei der Analyse unterscheiden. Im Folgenden 
wird versucht, eine Klassifizierung der Einteilungsprinzipien von Kovarianzmodellen 
zu geben. Kovarianzmodelle können unterteilt werden nach der Art 
                                                 
66 das Quadrat der Anzahl der Elemente des Zustandsvektors  



36             UBA F&E Vorhaben 298 41 252       Grundlagen von OI und Kalman Filter 
 

 
  

• ihrer Gewinnung (empirisch – dynamisch) 
• des wahrscheinlichkeitstheoretischen Ansatzes (bayessch) 
•  ihrer Darstellung (parametrisch – nichtparametrisch) 
• der zugrundeliegenden Annahmen hinsichtlich des Prozesses (homogen, i-

sotrop, normalverteilt etc. ) 
• der räumlichen oder zeitlichen Aggregation des Stichprobenmaterials (termin-

bezogen oder klimatisch67) 
 
Empirische oder dynamische Kovarianzmodelle  
Empirische Kovarianzmodelle werden mit Hilfe von empirisch geschätzten Kovari-
anzwerten gewonnen. Dynamische Kovarianzmodelle sind aus Kenntnissen der 
zugrundeliegenden physikalischen Vorgänge abgeleitet (Balgovind et al., 1983). Beim 
Kalman-Filter wird die Kovarianzmatrix dynamisch mit einem deterministischen Mo-
dell bestimmt.  
 
Nichtbayessche (klassische) oder bayessche Kovarianzmodelle 
Die klassischen Methoden beruhen auf der Annahme, dass die Kovarianzfunktion 
unbekannt, aber feststehend ist und durch empirische Daten geschätzt werden kann. 
Bayesianische Ansätze erlauben es, eine Wahrscheinlichkeitsfunktion für die Parameter 
der Kovarianzfunktion zu berücksichtigen.  
 
Parametrische oder nichtparametrische Kovarianzmodelle 
Parametrische Kovarianzmodelle gehen von einer bestimmten analytischen Funktion 
der Kovarianzfunktion aus. Deren Parameter werden durch Approximation (Fit) der 
Funktion mit empirischen Kovarianzwerten gewonnen. Dabei ist ein Kompromiss 
zwischen der Anzahl der Parameter und der Güte ihrer Schätzung zu finden.  
Nichtparametrische Kovarianzmodelle verzichten auf die Approximation mit einer 
analytischen Funktion. Sie verwenden Kernel-Ansätze (Altman, 1990) oder eine Ei-
genvektoraufspaltung (SVD) der empirischen Kovarianzmatrix HBH an den Beobach-
tungsorten und deren Interpolation für HB (siehe Kapitel 3.2.5.2).  
 
Homogene, isotrope oder normalverteilte Kovarianzmodelle 
Um ein Ensemble mit gleichen statistischen Eigenschaften für die Schätzung der empi-
rischen Kovarianzwerte zu bilden, sind vereinfachende Annahmen notwendig. Der 
Standardfall für die Kovarianzmodellierung ist dabei die Annahme von Homogenität 
und Isotropie, so dass das Kovarianzmodell nur abstandsabhängig ist. Ist der betrachte-
te Prozess normalverteilt, so kann der Erwartungswert mit dem arithmetischen Mittel-
wert geschätzt werden. 
 
Terminbezogene oder klimatische Kovarianzmodelle  
Terminbezogene Kovarianzmodelle werden empirisch aus rein räumlichen Daten für 
einen Zeitpunkt geschätzt. Klimatische Kovarianzmodelle verwenden die Daten zu 
mehreren Terminen, um die räumliche Kovarianz zu schätzen (siehe Kapitel 2.4.2.1). 
Es wird dabei davon ausgegangen, dass die Felder zu verschiedenen Zeitpunkten unab-

                                                 
67 Diese Bezeichnung wurde vom Verfasser eingeführt, um beide Methoden begrifflich zu unterscheiden. 
Sehr häufig wird der Unterschied zwischen beiden Ansätzen nicht herausgearbeitet. Es kann jedoch zu 
Fehlern der geschätzten räumlichen Kovarianz führen, falls die zeitliche Korrelation nicht beachtet wird. 
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hängige Realisierungen eines räumlichen Zufallsprozesses sind. Um diese Annahme zu 
rechtfertigen, müssen die Zeitreihen gefiltert werden (siehe Kapitel 2.4.2. und 3.2.2).  
Die Abbildung 3.1 vergleicht schematisch die beiden Methoden. Im klimatischen Fall 
kann für jedes Paar von Beobachtungen ein Kovarianzwert angegeben werden. Damit 
ist eine differenzierte räumliche Struktur erfassbar. Die terminbezogenen68 Kovarianz-
modelle benötigen Toleranzgebiete zur Ensemblebildung und verlangen aufgrund des 
beschränkten Datenangebots meist die Annahme von Homogenität69 und Isotropie. 
Durch die Zusammenstellung von terminbezogenen Kovarianzmodellen zu verschiede-
nen Zeitpunkten kann jedoch die zeitliche Variabilität der Kovarianzfunktion wieder-
gegeben werden. Problematisch ist bei den klimatologischen Kovarianzmodellen die 
Erfassung des Erwartungsfeldes an den Punkten ohne Messinformation.  
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Abbildung 3.1 Schematische Übersicht der terminbezogenen und klimatischen Kovarianzmodelle 

 
Der häufigste und einfachste Ansatz für die Kovarianzmodellierung ist das empirische, 
nichtbayessche, Gaußsche, homogene, isotrope, parametrische Modell. Das Kovari-
anzmodell ist dann eine eindimensionale analytische Funktion, die die Abstandsabhän-
gigkeit der räumlichen Kovarianz beschreibt.  
                                                 
68 Terminbezogene Kovarianzmodelle beruhen allein auf dem Apparat der räumlichen Statistik.  
69 Die Toleranzgebiete vereinfachen sich dadurch zu Klassen gleichen räumlichen Abstands. 
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Für großskalige meteorologische Felder kann die Annahme von Homogenität und 
Isotropie häufig gerechtfertigt werden. Die Felder der Immissionswerte sind jedoch 
inhomogen (siehe Kapitel 2.1), so dass diese Annahmen fragwürdig erscheinen. Es gibt 
in der Praxis jedoch viele Beispiele für homogene Ansätze zur Interpolation von 
Messwerten. Seit Anfang der neunziger Jahre gibt es verstärkt Bemühungen, empiri-
sche inhomogene Kovarianzmodelle zu entwickeln (Sampson et al., 2001), die für die 
Analyse von Immissionsdaten Verwendung finden (siehe Kapitel 2.3). Um die Inho-
mogenität zu erfassen, muss ausreichendes Datenmaterial vorhanden sein. Aus diesem 
Grund ist der klimatische Ansatz, d. h. die Schätzung von Kovarianzmodellen unter 
Verwendung von Raum-Zeit-Daten, die Basis für die Beschreibung inhomogener räum-
licher Kovarianzen. Er kann jedoch die zeitliche Variabilität der Kovarianzfunktion nur 
ungenügend wiedergeben.  
Die meteorologischen Anwendungen der statistischen Analyse beruhen vorrangig auf 
klimatischen Kovarianzmodellen70 (z. B. Hollingsworth und Lönnberg, 1986 und Gan-
din, 1965). Im Kriging-Ansatz der Geostatistik wird das Kovarianzmodell bzw. das 
Variogramm (siehe Kapitel 2.4) aus den Daten des Termins71 geschätzt72. Reimer 
(1986) verwendet z. B. ein terminbezogenes Kovarianzmodell für die Analyse meteoro-
logischer Felder auf den zeitlich variablen isentropen Koordinaten. 
 

3.1.1 Besonderheiten der Kovarianzmodellierung von 
Immissionsdaten  

Will man die statistischen Eigenschaften aus einer Stichprobe schätzen, so sollten die 
Daten aus der gleichen statistischen Grundgesamtheit stammen. Eine wesentliche Be-
sonderheit der Immissionsmessung ist die Existenz von unterschiedlichen Regimes. Die 
Kenntnis des Regimes der Beobachtungen ist demzufolge eine Voraussetzung für eine 
sachgerechte Interpolation der Daten bzw. die Analyse. Durch den Einbezug der Mo-
dellrechnung in die Analyse wird eine weitere wichtige Informationsquelle, insbeson-
dere an Orten ohne Beobachtung, nutzbar gemacht. Genauso wie bei den Beobachtun-
gen kann die flächendeckende Kenntnis der Immissionsregimes der Modellfelder die 
statistische Analyse verbessern (Flemming, 2003).  
Die mangelnde Berücksichtigung der Besonderheiten der Immissionsdaten (siehe Kapi-
tel 2.1) kann die empirische Kovarianzmodellierung, insbesondere bei homogenen 
Ansätzen, beeinträchtigen. Im Folgenden werden die Auswirkungen mangelnder Be-
achtung der Besonderheiten und Ansätze zur Behandlung diskutiert. Die Lösungen 
beruhen auf einer Verwendung der Klassifikation der Immissionsregimes (Flemming, 
2003) und der Modellrechnung einschließlich der aus ihr abgeleiteten statistischen 
Information. In Kapitel 3.1.3 werden drei konkrete, für die Analyse verwendete Kova-
rianzmodelle vorgestellt. 
 
Inhomogenität der Immissionsfelder 
Die Inhomogenität der Immissionsfelder bezieht sich sowohl auf die Erwartungswerte 
als auch auf die Kovarianzfunktion. Durch den Ansatz der Datenassimilation, eine 

                                                 
70 ohne die Stationarität und Ergodizität der Zeitreihen zu überprüfen 
71 In geologischen Anwendungen sind die Daten meist überhaupt nicht zeitlich variabel.  
72 Die mangelnde Zeitabhängigkeit des Kovariogramms ist ein Unterschied zwischen Optimaler Interpo-
lation und einfachem Kriging. 
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Modellrechnung als Grundlage für die Schätzung des Erwartungswertes zu verwenden, 
kann bereits ein hohes Maß an Inhomogenität beschrieben werden. Dies gilt z. B. auch 
für die Grenzfläche von Land und Meer. Aufgrund der Unzulänglichkeiten der Re-
chenmodelle (siehe Kapitel 3.3.2) ist jedoch davon auszugehen, dass das Feld der 
Fehler weder einen homogenen Erwartungswert Null noch eine homogene und isotrope 
Kovarianzstruktur hat.  
Im Gegensatz zu anderen inhomogenen atmosphärischen Feldern wie z. B. dem Nie-
derschlag, sind die Inhomogenitäten der Immissionsfelder in hohem Maße ortsfest. 
Dieser Umstand wird genutzt, indem die aus langfristigen Modellrechnungen abgeleite-
te räumliche Verteilung der Immissionsregimes als Klassifikationsmerkmal bei der 
Kovarianzmodellierung verwendet wird. Weiterhin gestattet dieser Umstand die An-
wendung von klimatischen inhomogenen Kovarianzmodellen. 
 
Geometrische Anisotropie 
Das homogene Zufallsfeld ist anisotrop, wenn die Kovarianz von der Richtung abhängt. 
Diese Eigenschaft heißt geometrische Anisotropie, weil sie durch Skalierung und Dre-
hung der Raumkoordinaten aufgehoben werden kann. Geometrische Anisotropie wird 
in der Atmosphäre z. B. bei der Form der Tiefdruckgebiete beobachtet (Daley, 1991). 
Die Immissionsfelder können gleichfalls eine solche Anisotropie z. B. aufgrund der 
vorherrschenden westlichen Windrichtung besitzen.  
Die Richtungsabhängigkeit kann bei einer großen Stichprobe festgestellt werden, in-
dem homogene parametrische Kovarianzmodelle für verschiedene Richtungen ermittelt 
werden. In diesem Forschungsvorhaben werden unterschiedliche Kovarianzmodelle für 
vier Sektoren mit einer Breite von 45 ° geschätzt. Der gesuchte Kovarianzwert wird 
dann aus einer gewichteten linearen Kombination der Kovarianzmodelle der benach-
barten Sektoren gebildet. Auf den Nachweis der statistischen Verschiedenartigkeit der 
Kovarianzmodelle für verschiedene Sektoren wird verzichtet. Die festgestellte Ani-
sotropie wird in Kapitel 3.3.4.1 diskutiert. 
 
Abweichung von der Normalverteilung  
Immissionsdaten sind meist nicht normalverteilt. Das ist für die Schätzung der empiri-
schen Kovarianzwerte mit der Momentenmethode von Bedeutung. Immissionsdaten 
können durch Transformation mit dem Logarithmus (Hogrefe und Rao, 2001) oder der 
Quadratwurzel (Meiring et al., 1998) auf eine annähernd normalverteilte Form gebracht 
werden. Die Kovarianzmodellierung und die Analyse erfolgt in der transformierten 
Größe und anschließend wird in die eigentliche Größe zurücktransformiert. Diesem 
formal richtigen Vorgehen steht entgegen, dass die logarithmische Transformation die 
Unterschiede in den höheren Wertebereichen unterbewertet, was den Intensionen der 
Luftreinhaltung widerspricht.  
Führt man die Analyse eines Feldes Z mit der log-transformierten Größe Y=log(Z) 
durch, so muss bei der Rücktransformation des interpolierten Werts YA(rI) ein Bias73 
korrigiert werden. Er entspricht der Hälfte der Varianz des Analysefehlers (Cressie et 
al., 1999, S. 135) s 2

AY:  
 

                                                 
73 Der Bias entsteht durch den Umstand, dass der Erwartungswert der normalverteilten log-
transformierten Größe nicht dem log-transformierten Erwartungswert der nichttransformierten Größe 
entspricht. 
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Neben der Transformation besteht die Möglichkeit, die empirische Kovarianz mit Hilfe 
verteilungsunabhängiger und robuster Methoden zu schätzen. Die auf den Perzentilen 
basierenden Schätzformeln weisen eine geringe Anfälligkeit für Ausreißer auf, was 
besonders bei NO- und Staubmessungen (PM10) wichtig ist. Hiervon wird in dieser 
Arbeit Gebrauch gemacht (siehe Kapitel 3.2.1 und 3.2.2). 
 
Die Mehrzahl der Beobachtungen stammt aus urbanen und belasteten Regimes 
und die Stationsdichte ist heterogen 
Die Mehrzahl der städtischen und verkehrsbeeinflussten Messungen verleiht den ho-
mogenen Kovarianzmodellen einen „urbanen“ Charakter, der sich in der Analyse nie-
derschlägt. Es ist deshalb empfehlenswert, das Ensemble zur Schätzung nach dem 
Regimetyp zu unterscheiden.  
Die stärkere räumliche Konzentration der Beobachtungen in Ballungsräumen wird vom 
Analyseverfahren berücksichtigt (siehe Kapitel 2.5.5). Die heterogene Stationsdichte 
verfälscht jedoch die Kovarianzmodellierung, da Messungen mit geringen Abständen 
fast ausschließlich aus belasteten Gebieten stammen. Die Werte des Kovarianzmodells 
für kurze Abstände sind jedoch von besonderer Wichtigkeit: 1) Aufgrund der einge-
führten Stationsauswahl aus der Umgebung des Analysepunktes (siehe Kapitel 2.5.5) 
und der hohen Beobachtungsdichte werden vorrangig nahe Stationen berücksichtigt. 2) 
Die Abschätzung der Beobachtungsfehler beruht auf der mit dem Kovarianzmodell für 
den Abstand Null extrapolierten Varianz.  
 
Systematische Modell- und Beobachtungsfehler 
Die Analyse {0.31} verlangt eine Biasfreiheit zwischen Modell (xB) und Beobachtung 
(Hy) sowie einen unabhängigen und räumlich unkorrelierten Beobachtungsfehler (siehe 
Kapitel 2.5.4) mit dem Erwartungswert Null. Die mangelhafte Erfüllung dieser Forde-
rungen beruht auf der Fehlerhaftigkeit des Modells und einem systematischen Reprä-
sentativitätsfehler der Beobachtung in den Gebieten mit hoher Immission.  
Die Fehlerhaftigkeit der Eulerschen Ausbreitungsmodellierung ist vorrangig durch die 
ungenaue Kenntnis der Emission und im geringeren Maße von mangelhaften meteoro-
logischen Daten bestimmt. Man kann jedoch annehmen, dass trotz fehlerhafter Men-
genangaben die Lokalisierung der Emissionsschwerpunkte vertrauenswürdig ist.  
 
Korrektur des Bias 
Die sachkundige Quantifizierung und Korrektur des Bias zwischen Modell und Mes-
sung, d. h. die Abweichung der Erwartungswerte, ist problematisch. Wird der Erwar-
tungswert der Beobachtungen als homogener Mittelwert über alle vorliegenden Beo-
bachtungen ohne Berücksichtigung der Stationsdichte geschätzt, so bestimmen 
wiederum vorrangig die belasteten Beobachtungen den Wert. Das Problem wird noch 
verschärft, da häufig die hochbelasteten Beobachtungen eine vom Modell nicht auflös-
bare Skala wiedergeben. Versucht man einen räumlich variablen Bias im Kontext der 
klimatischen Kovarianzmodelle zu ermitteln, so steht man wiederum vor einem Inter-
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polationsproblem. Es stellt sich die Frage, wie aus den nur an den Beobachtungsorten 
bekannten Beobachtungsinkrementen eine Korrektur für das gesamte Feld zu finden ist. 
Der Kompromiss ist die Annahme eines homogenen Bias, der nur durch Stationen mit 
einem großen Repräsentationsbereich geschätzt wird. Aus diesem Grund wird nur der 
Bias hinsichtlich der Land-Stationen für die Korrektur verwendet. 
 
Systematischer Beobachtungsfehler 
Das übliche statistische Modell für den Beobachtungsfehler, d. h. von Repräsentativi-
täts- und Messfehler, geht von einem räumlich unkorrelierten Beobachtungsfehler 
(siehe Kapitel 2.5.4) mit Erwartungswert Null aus. Diesen Ansatz nützt die Beobach-
tungsmethode (siehe Kapitel 3.2.6). Im klimatischen Ansatz besteht die Möglichkeit, 
die Beobachtungsfehler stationsbezogen zu bestimmen. Dabei muss sinnvoll zwischen 
dem unkorrelierten und dem systematischen Beobachtungsfehler unterschieden werden. 
Letzteren könnte man mit dem Beobachtungsoperator korrigieren.  
 
Einfluss eines nichtkorrigierten Bias 
Bei der Kovarianzschätzung führt ein Bias zu einer starken Überschätzung, da es sich 
um einen quadratischen Term handelt. Die Linearität der Analysegleichung {0.31} 
bewirkt einen linearen Einfluss des Bias. Geht man von einem Bias des Modellzu-
standsvektors xB und geringen Beobachtungsfehlern aus, so wird der Bias der Analyse 
gleichwertig oder im Einflussgebiet der Beobachtungen geringer sein. Ist eine Beo-
bachtung aufgrund subskaliger Einflüsse biasbehaftet, so wird für sie eine große Beo-
bachtungsfehlervarianz (siehe 3.2.6) bestimmt. Damit wird der Einfluss der Beobach-
tung auf die Analyse reduziert (siehe Kapitel 2.5.5) Alternativ könnte solch ein Bias 
durch eine Korrektur mit dem Beobachtungsoperator H berücksichtigt werden. 
  
Zeitliche Periodizität 
Die Periodizität, bzw. die damit verbundene zeitliche Korrelation, ist ein Problem für 
die Schätzung der empirischen Kovarianzwerte der klimatischen Kovarianzmodelle 
(siehe Kapitel 2.4.2). Um die Zeitreihendaten als unabhängige Beobachtungen eines 
räumlichen Prozesses ansehen zu können, ist die Identifizierung der zeitlich korrelier-
ten Komponente („pre-whitening“) notwendig, damit die zeitliche Kovarianz nicht die 
Schätzung der räumlichen verfälscht. Hierfür sind die Klassenbildung und zeitliche 
Filterung74 geeignet. 
In Flemming (2003) werden die typische zeitliche Variabilität der hier betrachteten 
Stoffe diskutiert. Der Tagesgang ist meist die am stärksten ausgeprägte zeitliche Struk-
tur. Auch die räumliche Kovarianz kann starke Tagesschwankungen aufweisen. Elbern 
et al. (1998) zeigen dies z.B für die Beobachtungsinkremente der Ozonimmission. Der 
Tagesgang in der Raum-Zeit-Kovarianz lässt sich demzufolge nur unzureichend sepa-
rieren (siehe Kapitel 2.4.2). Aus diesem Grund ist es sinnvoll, den Tageszyklus nicht 
durch Filterung zu entfernen, sondern für jede Tagesstunde ein eigenes räumliches 
Kovarianzmodell zu bilden.  
Weitere wichtige Zyklen sind Jahresgang und Wochengang. Diese werden durch robus-
te Filterung entfernt. Damit wird von einer Separation der mittleren zeitlichen und 
räumlichen Komponente ausgegangen.  
Meiring et al. (1998) bilden gleichfalls tagesstundenbezogene Kovarianzmodelle und 
verwenden ein autoregressives Modell AR(2), um den restlichen Teil der zeitlichen 

                                                 
74 Die technische Durchführung der Filterung kann unter Artefakten des Verfahrens leiden.  



42             UBA F&E Vorhaben 298 41 252       Grundlagen von OI und Kalman Filter 
 

 
Korrelation zu beseitigen. Host und Follestad (1999) entfernen nur den Tages- und 
Jahresgang durch Filterung. 
 

3.1.2 Datenbasis für die empirischen Kovarianzmodelle 

Die Kovarianzmodelle können für verschiedene Zufallsfelder bestimmt werden. Die 
Wahl der Datenbasis hängt von der Aufgabenstellung ab.  
Für die Bestimmung der empirischen Kovarianzmodelle der Immissionsfelder stehen 
mehrjährige Zeitreihen von stündlichen Beobachtungen und die stündlichen Jahres-
rechnungen für die Gitterpunkte des Modells REM/Calgrid zur Verfügung. Die Schät-
zung der empirischen Kovarianzwerte kann auf folgender Datenbasis beruhen und den 
angegebenen Aufgabenstellungen dienen: 
 

1. Beobachtungsinkremente, d. h. die Abweichung zwischen Beobachtung und 
Modell ⇒ Analyse und Datenassimilation, Beobachtungsfehlerbestimmung 

2. Beobachtungsdaten ⇒ Messwertinterpolation, Beobachtungsfehlerbestimmung, 
Beobachtungsklimatologie, Modellevaluierung 

3. Modellrechnung ⇒ Modellklimatologie, Modellevaluierung 
 
1. Bei der Datenassimilation ist die Kovarianzstruktur des biasfreien Modellfehlerfel-
des und der Modellbias gesucht (siehe Kapitel 2.5.4). Die Kovarianzmodellierung 
erfolgt für die Beobachtungsinkremente. Gleichzeitig kann mit der Beobachtungsme-
thode aus Kapitel 3.2.6 der auflösungsabhängige Beobachtungsfehler mit Hilfe des 
Kovarianzmodells abgeschätzt werden.  
2. Von modellunabhängiger und damit allgemeinerer Aussagekraft ist die Kovari-
anzstruktur des Immissionsfeldes, wie es durch die Beobachtungen registriert wird. 
Problematisch ist dabei die Ermittlung des kontinuierlichen Erwartungswertfeldes µ(r) 
und der Kovarianz aufgrund der beschränkten Beobachtungsdichte. Der Beobachtungs-
fehler lässt sich in gleicher Weise wie bei den Beobachtungsinkrementen abschätzen. 
Betrachtet man das Modellfeld als eine biasfreie Schätzung des Erwartungswertes µ(r), 
so entspricht dies dem Vorgehen bei der Datenassimilation. 
3. Die Vorteile bei der Schätzung von Kovarianzmodellen aus Modelldaten sind, dass 
für alle Raumpunkte Informationen vorliegen und dass diese nicht mit dem Beobach-
tungsfehler kontaminiert sind. Im Idealfall einer Übereinstimmung der statistischen 
Eigenschaften (Erwartungswert und Kovarianzfunktion) des Modells mit denen des 
„wahren“ Feldes xtrue können die Modellwerte als empirische Datenbasis für die Kova-
rianzmodellierung verwendet werden. Die Kovarianzstruktur des Modells kann auch 
direkt mit der der reinen Beobachtungen in einer anspruchsvollen Modellevaluierung 
verglichen werden (siehe Kapitel 3.3.3.1). 
Die Kovarianzmodellierung für Modelldaten hat Tradition in der numerischen Wetter-
vorhersage. Die „NMC75-Methode“ vergleicht Modellprognosen für einen Termin aus 
einer 24- bzw. 48-stündigen Vorhersage (Parrish und Derber, 1992). Die Analysis-
Ensemble-Methode verwendet ein Ensemble von Prognosen mit leicht variierten An-
fangsbedingungen (Fisher und Courtier, 1995). Diese Methoden gehen schließlich im 
Kalman-Filter auf, bei dem die Kovarianz aus gestörten Modellzuständen gebildet wird 
(siehe Kapitel 2.5.7). 
                                                 
75 National Meteorological Center 
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3.1.3 Drei Kovarianzmodelle (A, B und C) für Immissionsdaten  

Im Rahmen des Forschungsvorhabens sind drei empirische Kovarianzmodelle A, B und 
C für die Analyse von stündlichen Immissionsdaten entwickelt und verglichen worden. 
Es handelt sich dabei um ein homogenes, terminbezogenes Kovarianzmodell A und 
zwei klimatische, inhomogene Kovarianzmodelle B und C, die jeweils für Ozon, NO2, 
NO SO2 und PM10 abgeleitet werden.  
Das terminbezogene homogene Modell A liefert einen räumlich homogenen Wert der 
gesuchten Größen für jeden Termin. Die klimatischen Kovarianzmodelle geben stati-
onsbezogene bzw. räumlich inhomogene Werte für jeweils eine Stunde des Tages an, 
die  für einen langen Zeitraum Gültigkeit haben (siehe Abbildung 3.1).  
Das klimatische Kovarianzmodell B beruht auf Kombination von mehreren parametri-
schen, homogenen Kovarianzmodellen, die für jeweils eine Kombination von Immissi-
onsregimes aufgestellt werden. Das klimatische Kovarianzmodell C ist nichtpara-
metrisch und wird durch die Eigenvektoraufspaltung der empirischen Kovarianzmatrix 
HBH gebildet. Die klimatischen Kovarianzmodelle B und C sind für jede Tagesstunde 
separat formuliert und berücksichtigen so die Variabilität der räumlichen Kovarianz im 
Tagesgang.  
Alle drei Kovarianzmodelle werden hinsichtlich der erzielten Analysegüte untersucht. 
Der Vergleich unterschiedlicher Kovarianzmodelle als Ansatz einer Modell- und Beo-
bachtungsklimatologie erfolgt in Kapitel 3.3. 
 
Terminbezogenes homogenes parametrisches Kovarianzmodell A 
Es stellt den klassischen Ansatz der Optimalen Interpolation für homogene Felder dar. 
Der Ausgangspunkt der Schätzung ist eine Stichprobe der Beobachtungsinkremente zu 
dem gegebenen Termin. Aus ihnen werden empirische Kovarianzwerte pro Abstands-
klasse und für 4 verschiedene Richtungssektoren geschätzt und mit Hilfe einer analyti-
schen Funktion approximiert (siehe 3.2.3). Es erfolgt eine Korrektur mit dem homoge-
nen Bias der Land-Stationen. Die durch die Beobachtungsmethode bestimmte Varianz 
des Beobachtungsfehlers gilt für alle Stationen. Dieses des Kovarianzmodells wurde in 
der ersten Anwendung der Optimalen Interpolation für das Jahr 1999 (Stern und Flem-
ming, 2001) verwendet.   
Der Vorteils dieses Kovarianzmodells ist seine einfache Schätzung aus vorliegenden 
Daten. Mit diesem Kovarianzmodell kann auch die Analyse von Jahresmittelwerten der 
Beobachtung direkt erfolgen. Im Rahmen der aktiven Datenassimilation mit OI wird 
auch dieses Kovarianzmodell verwendet, um während der Modellrechnung Beobach-
tungen zu assimilieren. Auch die Eigenvektoren für Kovarianzmodell C werden mit 
diesem Modell A ohne Biaskorrektur interpoliert.  
 
Klimatisches inhomogenes parametrisches Kovarianzmodell B auf Basis der Immissi-
onsregimes der Modellrechnung  
Der Ansatz, die Inhomogenität zu beschreiben, beruht auf einer Superposition ver-
schiedener homogener Kovarianzmodelle. Es wird dabei angenommen, dass innerhalb 
eines Regimes eine homogene Kovarianzstruktur zu finden ist. Die Verteilung der 
Regimes wird aus der Modellrechnung gewonnen. 
Die Basis für die Modellbildung sind die empirischen klimatischen stationspaarbezoge-
nen Kovarianzwerte. Sie werden aus den Zeitreihen der Werte zu einer Tagestunde für 
das ganze Jahr und getrennt für Sommer und Winter gebildet. Somit liegt für jede 
Tagesstunde und Saison ein homogenes Kovarianzmodell für jede Kombination von 
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Regimes vor. Die Auswahl des anzuwendenden Kovarianzmodells für die Analyse-
punkte, d. h. für HB, wird durch das Regime der Gitterbox aus der Modellrechnung 
und dem der verwendeten Beobachtung festgelegt.  
Die Varianzen des Beobachtungsfehlers werden, aufbauend auf diesem Kovarianzmo-
dell, für jede Kombination des Regimes des Backgrounds am Stationsort und dem 
Regime der Stationsmessung bestimmt.  
 
Klimatisches inhomogenes Kovarianzmodell C auf Basis der EOF der empirischen 
Kovarianzmatrix 
Anders als beim klimatischen Kovarianzmodell B wird bei diesem Kovarianzmodell 
die Struktur der räumlichen Inhomogenität aus der empirischen Kovarianzmatrix abge-
leitet. Mit Hilfe einer Eigenvektoraufspaltung der empirischen Kovarianzmatrix lassen 
sich die wichtigen Anteile der Kovarianz, d. h. die Eigenvektoren, an den Stationsorten 
bestimmen und in einem weiteren Schritt auf die Analysepunkte ohne Messinformation 
interpolieren. Aus den interpolierten Eigenvektoren wird dann die vollständige Kovari-
anzmatrix für alle geforderten Paare von Orten rekombiniert. Eine genauere Beschrei-
bung dieses Kovarianzmodells erfolgt in Kapitel 3.2.5.2. 
Das hier verwendete Kovarianzmodell auf Basis der EOF unterscheidet sich von ande-
ren Anwendungen (Holland et al., 1999, Obled und Creutin, 1986, und van Egmond 
und Onderdelinden, 1981) durch die vorherige Separation des Beobachtungsfehlers und 
die Anwendung der Optimalen Interpolation (Kovarianzmodell A) zur Interpolation der 
Eigenvektoren. Die anderen Autoren verwenden hierfür mathematische formale Ver-
fahren ohne statistische Komponente.  

3.2 Die Schätzung der empirischen Kovarianzmodelle  

3.2.1 Schätzung homogener terminbezogener Kovarianzwerte 

Das Ensemble zur Schätzung der empirischen Kovarianzwerte µ( )C r wird für den ho-
mogenen Prozess aus der Menge N(r) von Beobachtungen y(ri) am Ort ri im gleichen 
Abstandsintervall r+? r gewonnen:  
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Die Breite der Abstandsintervalle wird von der Datenlage und der räumlichen Auflö-
sung bestimmt. Cressie (1993) gibt an, dass mindesten 30 Paare von Daten für die 
Bildung eines empirischen Kovarianzwertes vorhanden sein sollten. 
Liegen keine anderen Informationen vor, so wird der homogene Erwartungswert aus 
dem Mittelwert der Beobachtungen geschätzt. In diesem Fall kann jedoch auf Bildung 



UBA F&E Vorhaben298 41 252     Grundlagen von OI und Kalman Filter                45 
 
 

des Erwartungswertes verzichtet werden, wenn auf das geschätzte empirische Vari-
ogramm $2 ( )rγ  zurückgegriffen wird:  
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Aus ihm kann mit Kenntnis der Varianz µ(0)C  der Kovarianzwert mit Hilfe von Formel 
{0.10} bestimmt werden. Die Verwendung von Variogrammen hat den Vorteil, dass sie 
robuster gegenüber einem unbeseitigten Trend in den Daten, d. h. gegenüber einer 
Abweichung von der Annahme der Homogenität, sind (Cressie, 1993, S. 72).  
Neben den klassischen76 Schätzungen gibt es robuste Ansätze, die weniger fehlerhaft 
auf Ausreißer und Abweichungen von der Normalverteilung reagieren. Robuste Schät-
zungen der Kovarianz sind mit der folgenden Gleichung möglich:  
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Sie beruhen auf dem Zusammenhang zwischen Kovarianz und Varianz und deren 
robuster Schätzung mit der absoluten Medianabweichung (MAD):  
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Variogrammwerte können in gleicher Weise mit Hilfe des Medians robust geschätzt 
werden:  
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Der Vorfaktor ist die Korrektur des Bias, der durch das Ersetzen des Mittelwertes durch 
den Median entsteht77 (Smith, 2001). Die folgende, häufig verwendete robuste Schät-
zung ist auf weiteren theoretischen Argumenten aufgebaut (Cressie, 1993): 
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76 auch Momentenmethode 
77 Der Bias ist damit zu erklären, dass für eine annähernd symmetrisch-verteilte Größe x die Größe x2 

nicht symmetrisch ist. Der Median von x2 bedarf damit einer Korrektur, wenn er als Schätzung für den 
Erwartungswert herangezogen wird. 
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3.2.2 Schätzung klimatischer Kovarianzwerte  

3.2.2.1 Filterung der zeitlichen Periodizität und Persistenz 

Die klimatischen Kovarianzmodelle werden separat für jede Tagesstunde gewonnen. 
Um die notwendige zeitliche Unabhängigkeit des Ensembles zu erreichen, muß nun 
noch die Filterung von Jahres- und Wochengang und „synoptischer Persistenz“ erfol-
gen (siehe Kapitel 2.4.2). 
Der Jahresgang wird mit einem Tiefpass geschätzt, der durch einen gleitenden Median-
filter (Wilks, 1995) von 21 Tagen realisiert wird. Die Abweichung des Jahresganges 

vom Median der gesamten Zeitreihe ist die Korrekturgröße der Zeitreihe ( )yh
dy für jede 

Tagesstunde h, die dann keinen Jahresgang mehr aufweist: 
 

 ( ) { }( ) { }( )' '' 10, 10 ' 1,365

yh h h h
d d d dd d d d

y y med y med y
= − + =

= − +  {1.9}  

 
Der Wochengang als eine typische Eigenschaft von Immissionsdaten stellt eine perio-
dische aber keine harmonische Schwingung dar. Die üblichen, auf der spektralen Be-
trachtungsweise aufgebauten Filter sind demzufolge nicht ohne weiteres anwendbar. 
Die Beseitigung des Wochengangs erfolgt jedoch prinzipiell nach dem gleichen Vorge-
hen wie beim Jahresgang. Der Wochengang wird ermittelt, in dem für jeden Wochen-
tag der Median der jahresganggefilterten Zeitreihe der Tagesstundenwerte bestimmt 
wird. Die Differenz zum Median der gesamten Zeitreihe bildet die Korrekturgröße:  
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Neben Jahres- und Wochengang hat die Dauer der Wettersituationen eine zeitliche 
Korrelation zur Folge. Im Gegensatz zu den durch externe Faktoren bestimmten syste-
matischen Schwankungen ist die Ausprägung dieser Erhaltungsneigung variabel. Um 
diesen Anteil aus den Daten zu entfernen, wird auf ein autoregressives Modell zurück-
gegriffen. Autoregressive Modelle bilden die Zeitreihe aus einer Regression zurücklie-
gender Werte. Aufbauend auf die Erfahrung von Meiring et al. (1998) wurde ein AR-
Modell zweiter Ordnung gewählt. Die mit diesem AR(2) Modell konstruierte Zeitreihe 
wird biaskorrigiert von der ursprünglichen, d. h. der jahres- und wochenganggefilterten 
Reihe abgezogen. Somit realisiert sich der Hochpass wiederum durch die Subtraktion 
einer tiefpassgefilterten Zeitreihe. 
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3.2.2.2 Diskussion der Filterung am Beispiel 

 Die Abbildung 3.2 zeigt die tägliche Zeitreihe der NO2-Konzentration um 7 Uhr für 
die Vorstadt-Station Burg (BB001, U1) und die zugehörige Autokorrelationsfunktion. 
Deutlich sichtbar ist die hohe Persistenz und eine 7-tägige Schwingung, die durch den 
Wochengang bedingt ist.  

Abbildung 3.3, Abbildung 3.4 und Abbildung 3.5 zeigen die Anwendung des Jahres-
gangs-, Wochengangs- und AR(2)-Filters auf die Messreihe und die entsprechenden 
zeitliche Autokorrelationsfunktionen. Die nacheinanderfolgende Anwendung der drei 
Filter führt zu der Zeitreihe in Abbildung 3.6. Die entsprechend dargestellte Autokorre-
lationsfunktion weist fast keine signifikanten zeitlichen Autokorrelationen mehr auf.  
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Abbildung 3.2 Tägliche Zeitreihe der NO2-Konzentration um 7 Uhr (MEZ) an der Station Burg 
(BB001) und Autokorrelationsfunktion (Lag = Anzahl der verschobenen Tage). 
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Abbildung 3.3 Tägliche Zeitreihe der NO2-Konzentration um 7 Uhr (MEZ) an der Station Burg 
(BB001), jahresganggefiltert, und deren Autokorrelationsfunktion (Lag = Anzahl der verschobe-
nen Tage). 
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Abbildung 3.4 Tägliche Zeitreihe der NO2-Konzentration 7 Uhr (MEZ) an der Station Burg 
(BB001), wochenganggefiltert, und deren Autokorrelationsfunktion (Lag = Anzahl der verschobe-
nen Tage). 

BB001 NO2 6.00 UTC AR(2)-FILTER

0 73 146 219 292 365
day of year 1997

0

10

20

30

pp
b

Autocorrelation Plot

0 5 10 15 20 25
Lag

-1.0

-0.5

0.0

0.5

1.0

C
or

re
la

tio
n

 
Abbildung 3.5 Tägliche Zeitreihe der NO2-Konzentration um 7 Uhr (MEZ) an der Station Burg 
(BB001), AR(2)-gefiltert, und deren Autokorrelationsfunktion (Lag = Anzahl der verschobenen 
Tage). 
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Abbildung 3.6 Tägliche Zeitreihe der NO2-Konzentration um 7 Uhr (MEZ) an der Station Burg 
(BB001), Jahresgang-, Wochengang- und AR(2)-gefiltert, und deren Autokorrelation (Lag = 
Anzahl der verschobenen Tage) . 
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3.2.2.3 Schätzung stationspaarbezogener Kovarianzwerte 

Die gefilterten Zeitreihen ( )*h
dx  bilden das Ensemble, um für jede Tagesstunde  

h = 1...24 und jedes Stationspaar (ri, rj) einen empirischen Kovarianzwert µ ( , )
h

i jC r r zu 
schätzen: 
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 {1.12} 

 

Analog zur Schätzformel {1.5} kann eine robuste Schätzung ( , )
h

i jC r rÁÂ  des stationsbe-
zogenen Kovarianzwerts erfolgen. Die Bildung der empirischen Variogrammwerte 2? 
ist nur sinnvoll unter der Annahme intrinsischer Homogenität (siehe Gleichung {0.9}). 
Aus diesen Werten kann ein Variogrammmodell und daraus mit Gleichung {0.10} das 
Kovarianzmodell gebildet werden. 
  

3.2.3 Analytische Form des parametrischen Kovarianzmodells  

Die Aussage der empirischen Kovarianzwerte µ µ( ) bzw. ( )C R C i jr ,r  lässt sich durch die 
Approximation mit einer analytischen Funktion erweitern. Die Parameter einer vorge-
gebenen Funktion werden dabei aufgrund der vorliegenden Datenpunkte bestimmt.  
Die analytische Form der Funktion stellt sicher, dass das Kovarianzmodell den theore-
tischen Eigenschaften (siehe Kapitel 2.4), d. h. positive Definität und Konvergenz 
gegen Null für große Abstände, genügt. Weiterhin sind durch die Wahl der Funktion 
die spektralen Eigenschaften des Feldes bestimmt, falls es sich um einen homogenen 
Prozess 2. Ordnung handelt78.  
Für eine umfassende Zusammenstellung von Funktionsklassen, die als Kovarianzmo-
dell für räumliche Zufallsfunktionen dienen können, sei auf Cressie Cressie (1993) 
verwiesen. Verschiedene Kovarianzmodelle für meteorologische Anwendungen und 
deren Abhängigkeit von der Art des Backgrounds (Modell oder klimatisches Feld aus 
Beobachtungen) werden in Thiebaux (1985) und Daley (1991) vorgestellt. Die vorge-

                                                 
78 Mit Hilfe des Wiener-Chinchin-Theorems lässt sich das Energiespektrum eines stationären Prozesses 
zweiter Ordnung aus der Fouriertransformierten der Kovarianzfunktion gewinnen. Für die Anwendung 
der spektralen Betrachtungsweise wird aus Gründen der Vereinfachung Homogenität und Isotropie für 
den Erwartungswert und den stochastischen Anteil vorrausgesetzt.  
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schlagenen Kovarianzmodelle bestehen meist aus der Kombination einer linear79 oder 
quadratisch abfallenden Exponentialfunktion und Kosinustermen80. Der Exponential-
term impliziert ein abfallendes Energiespektrum („rotes Rauschen“), das aufgrund des 
Kosinusterms einen hervortretenden Wellenlängenbereich („farbiges Rauschen“) be-
sitzt (Schweschnikow, 1965). In den Anwendungen zur Interpolation von Immissions-
beobachtungen ist meist kein Nulldurchgang der empirischen Kurve und somit auch 
kein hervortretender Frequenzbereich feststellbar. In vielen Kriging-Anwendungen 
werden neben exponentiellen und Gaußschen Funktionen, Kombinationen von Bessel-
funktionen oder sphärische Variogramme verwendet (Smith, 2001).  
Für die Auswahl einer theoretisch möglichen Funktion ist die Güte der Approximation 
der empirischen Werte das entscheidende Merkmal. Im Fall der Immissionsdaten gilt 
dies besonders für geringe Abstände, da meist keine weit entfernten Beobachtungen für 
die Analyse verwendet werden81. Von besonderem Interesse ist das Verhalten der 
Funktion beim Abstand Null für die Robustheit der Schätzung der Varianz des Beo-
bachtungsfehlers (Beobachtungsmethode, siehe Kapitel 3.2.6). Denn für die Beobach-
tungsmethode wird die Varianz des Backgroundfehlers durch die Extrapolation mit 
Hilfe des Kovarianzmodells für den Abstand Null gewonnen.  
Getestet wurden das exponentielle, Gaußsche und sphärische Kovarianzmodell ({1.13}, 
{1.14} und {1.15}), da sie augenscheinlich gut der Abstandsabhängigkeit der ermittel-
ten empirischen Kovarianzwerte des Modellfehlers (Background) entsprechen.  
Die genannten Funktionen hängen von zwei Parametern ab; es sind dies die geschätzte 
Varianz s 2

B und der räumliche Sklalenparameter (Range) L (Abbildung 3.7). Letzterer 
ist ein Maß für die Größe des Gebiets, in dem eine räumliche Beziehung in Form einer 
Kovarianz besteht:  
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79 Der Funktion f1 ist aufgrund des linearen Exponentialterms an der Stelle r = 0 nicht stetig differenzier-
bar. In der Praxis liegen nur diskrete Beobachtungen des Prozesses vor, so dass die Annahme mangeln-
der Differenzierbarkeit kein Hindernis für die Anwendung dieser Kovarianzfunktion ist. Eine detaillierte 
Diskussion ist bei Taubenheim (1969) zu finden. 
80 Die Lage der Nullstelle der Kovarianzfunktion, bedingt durch den Kosinusterm, korrespondiert mit der 
Wellenlänge mit maximaler Spektralenergie. 
81 In meteorologischen Anwendungen gilt das nicht, wenn z. B. über dem Meer nur wenige Beobachtun-
gen vorliegen.  
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Abbildung 3.7 Exponentielles, Gaußsches und sphärisches Kovarianzmodell (Gleichung {1.13}, 
{1.14} und {1.15}), s B

2=1.0, L=100 

 

3.2.4 Approximation des parametrischen Kovarianzmodells 

Bei der Approximation des terminbezogenen homogenen Kovarianzmodells existiert 
für jede Abstandsklasse ein Wert. Im Fall der klimatischen Kovarianzmodelle ist die 
Punktwolke der paarweisen Kovarianzwerte zu approximieren. Das parametrische 
Kovarianzmodell stellt eine Kurve durch die Punktwolke dar. Für jede Abstandsklasse 
existieren damit mehrere Werte, deren Streuung die Bandbreite möglicher Kovarianzen 
angibt und auf die Unzulänglichkeit der Annahme von Homogenität und Isotropie 
verweist. Für die größere Robustheit und um die Anzahl der Normalgleichungen zu 
verringern, wird in diesem Fall der Median der Kovarianzwerte als Maß für die Kova-
rianz in dieser Abstandsklasse gebildet.  
Nach der Methode der gewichteten kleinsten Quadrate (w.l.s.82) werden die nichtlinea-
ren Parameter ?i (i=1, k) der Funktion fc durch die Minimierung der folgenden Kosten-
funktion gebildet: 
 

 ( ) { }
2

1...
1

( ) ( , ) min,
n

i i C i K
i

w C R f R θ
=

− → =∑ ? ?ÁÂ  {1.16} 

 
Die Gewichte wi bestimmen den Einfluss, den der einzelne empirische Kovarianzwert 
bei der Approximation erhält. Eine statistisch motivierte Wahl der wi ist ein Maß für 
die Sicherheit von ( )C RÁÂ . Bei den klimatischen Kovarianzmodellen wird hierfür der 
Quartilabstand IQR83 der Kovarianzwerte der Abstandsklasse herangezogen. Die 
Streuung der terminbezogenen Kovarianzwerte wird mit einem Ansatz für Streuung 
von Korrelations- bzw. Kovarianzwerten (Taubenheim, 1969) gewonnen. Die geforder-
te Unabhängigkeit der Daten wird vernachlässigt. Diese Vertrauensbereiche verringern 
sich mit zunehmender Stichprobenanzahl und zunehmender relativer Größe der Kova-
rianzwerte. Von besonderer praktischer Bedeutung ist das Kovarianzmodell für kurze 

                                                 
82 weighted least squares 
83 Differenz zwischen 75%-Perzentil und 25%-Perzentil 
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Abstände r (siehe Kapitel 3.2.3). Eine bessere Übereinstimmung in diesem Bereich 
wird mit einer höheren Wichtung erzwungen: 
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Im Falle einer linearen Abhängigkeit der Parameter ?i führt Gleichung {1.16} zu den 
Gaußschen Normalgleichungen. Für die nichtlineare Abhängigkeit der verwendeten 
Kovarianzmodelle {1.13}, {1.14} und {1.15} wird eine Taylorentwicklung der Funkti-
on fc hinsichtlich ?i, d. h. s 2

B und L, gebildet, die eine lineare Funktion für d?i darstellt:  
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Mit dem iterativen Verfahren nach Levenberg-Marquard (Press, 1992) wird das Mini-
mum des Ausdrucks {1.16} gesucht. Für die praktische Durchführung der Approxima-
tion müssen initiale Werte der Parameter s 2

B und L vorgegeben werden. Die Größe der 
beiden Parameter wird durch die Schnittpunkte mit der y- und x-Achse einer linearen 
Regression der Daten gewonnen.  

3.2.5 Nichtparametrisches inhomogenes Kovarianzmodell aus 
EOFs 

Neben der Methode, die empirischen stationsbezogenen klimatischen Kovarianzwerte 
durch eine analytische Funktion zu approximieren, können auch Ansätze aus dem 
Umfeld der Hauptkomponentenanalyse (PCA84) verwendet werden, um die Kovarianz-
funktion zu modellieren. Die PCA beruht auf einer reduzierten Darstellung eines Da-
tensatzes von Zeitreihen an verschiedenen Orten, und zwar mit Hilfe einer Auswahl 
von Eigenvektoren (EOF) der empirischen Kovarianzmatrix und zeitlich variierenden 
Koeffizienten (Hauptkomponenten, Zwiers und von Storch, 2000).  
Der Gedanke, durch eine Eigenwertaufspaltung die bedeutsamen Anteile der empiri-
schen Kovarianzmatrix zu separieren, findet auch bei der räumlichen Kovarianzmodel-
lierung Anwendung (siehe Kapitel 3.2.5.2). Ausgangspunkt ist der klimatische Ansatz, 
der auf die stationsbezogene Kovarianzmatrix zurückgreifen kann. Sie wird durch die 
Eigenvektorzerlegung komprimiert dargestellt. Neben der Erfassung von inhomogenen 
Strukturen sind numerische Aspekte eine wichtige Motivation für die reduzierende 
Eigenvektorzerlegung (SVD85) der empirischen Kovarianzmatrix (siehe Kapitel 
3.2.5.3).  

                                                 
84 Principal Component Analysis 
85 Singular Value Decomposition 
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3.2.5.1 Matrixapproximation durch SVD  

Durch eine Hauptachsentransformation mit der orthogonalen Matrix V kann eine belie-
bige symmetrische Matrix A, wie es alle Kovarianzmatrizen sind, in eine Diagonalmat-
rix ?  transformiert werden, deren Diagonalelemente die Eigenwerte ?i von A sind:  
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Die Spalten der Matrix V sind dabei die zugehörigen Eigenvektoren xei. Gilt für gewis-
se Eigenwerte ?i=0, so ist A singulär. Die Aufteilung der singulären Anteile einer Mat-
rix mit Hilfe der Eigenwerte wird als singular value decomposition (SVD) bezeichnet. 
In umgekehrter Reihenfolge kann A aus V und ?  gebildet werden. Die SVD kann man 
benutzen, um die Matrix A zu approximieren86 (Press, 1992). Dazu werden kleine 
Eigenwerte in ?  gleich Null gesetzt (? ’) und die entsprechenden Spalten, d. h. die 
zugehörigen Eigenvektoren, in der Matrix V entfernt (V’). Die approximierte Matrix A’ 
ergibt sich dann aus: 
 ' ' 'T=A' V ? V  {1.20} 
 
Der Rang der Matrix A’ ist geringer als der von A, da dies für ? ’ und V’ gilt. Basiert 
man die rechentechnische Speicherung von A’ auf V’ und ? , so verringert sich der 
Aufwand zur Speicherung der originalen Matrix A. Dies wird bei der RRSQRT-
Approximation der Kovarianzmatrix ausgenutzt (siehe Kapitel 2.5.8). Hierbei wird die 
räumliche Kovarianzmatrix P durch ihre Wurzel dargestellt: P=SST. Die Matrix S wird 
durch S = V’? 1/2 approximiert. 
 

3.2.5.2 Auf SVD basierendes inhomogenes Kovarianzmodell C 

Das Kovarianzmodell C ist durch die Implementierung des Kalman-Filters in der 
RRSQR-Form motiviert (Kapitel 2.5.8). Ausgangspunkt ist die Eigenvektorzerlegung 
der empirischen Kovarianzmatrix. 
Die empirische Kovarianzmatrix C der Beobachtungsinkremente entspricht der Matrix 
HBHT + R. Durch sie ist bereits ein wichtiger Teil der für die Gewinnung der Analyse-
gewichte K notwendigen Kovarianzinformation gegeben (siehe Gleichung {0.35}). 
Unbekannt bleibt noch HB, d. h. die Kovarianz zwischen den Beobachtungsorten und 
den Analysepunkten ohne Beobachtung. Grundgedanke des Kovarianzmodells C ist es, 
die wichtigen Eigenvektoren der gesamten Kovarianzmatrix B an den Stationsorten, d. 
h. für die Matrix HBHT zu bestimmen und diese dann auf die anderen Analyseorte zu 
extrapolieren. Die Elemente eines Eigenvektors der Matrix HBHT sind einem Station-
sort zugeordnet. So kann der Eigenvektor als ein an den Beobachtungsorten vorgege-
benes skalares Feld aufgefasst werden. Mit einer räumlichen Interpolation mit dem 
homogenen terminbezogenen Kovarianzmodell A können sie für alle Analysepunkte 
bestimmt werden. Damit wird die Kovarianzmodellierung für die Interpolation der 

                                                 
86 z. B. für eine effektive Speicherung von großen Matrizen beim reduced rank square root (RRSR) 
Kalman-Filter bzw. für die eindeutige Singularisierung bei linearen Gleichungssystemen. 
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Immissionsbeobachtung auf eine weitere Interpolationsaufgabe zurückgeführt. Im 
Gegensatz zu den originalen Größen kann jedoch bei den Elementen der bedeutsamen 
Eigenvektoren von einer größeren Glattheit und damit einer einfacheren Interpolation 
ausgegangen werden (Smith, 2001). Die Eigenvektoren, mulitipliziert mit den entspre-
chenden Eigenwerten, werden dann zu einer Kovarianzmatrix µB  für alle Ortspaare 
rekombiniert:  
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Die Bestimmung der Eigenvektoren und Eigenwerte der gesuchten Backgroundkovari-
anzmatrix kann nicht direkt auf der Kovarianzmatrix der Beobachtungsinkremente 
beruhen, da diese die Beobachtungsfehlervarianz enthält. Um HBHT zu schätzen, ist 
folglich R von der empirischen Kovarianzmatrix zu subtrahieren, d. h. die Hauptdiago-
nalelemente müssen um die Werte der Beobachtungsfehlervarianz (siehe Kapitel 3.2.6) 
verringert werden. Nach der Bestimmung der Eigenwerte (Press, 1992) stellt sich die 
Frage, ab welchem Eigenwert ?i die zugehörigen Eigenvektoren vernachlässigbar sind. 
Hierzu kann der zugehörige Anteil an der Gesamtvarianz, der sich durch die Summe 
aller Eigenwerte ergibt, verwendet werden. Ist der Anteil größer als 5%, so wird der 
zugehörige Eigenwert als relevant betrachtet: 
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Van Egmond und Onderdelinden (1981) verwenden Eigenwerte bis zur Größe des 
geschätzten Messinstrumentenfehlers. Hier wird die SVD auf die „kontaminierte“ 
Kovarianz, d. h. die Schätzung von HBHT+R, angewandt. Die Frage, ob der Beobach-
tungsfehler von den Eigenvektoren mit Eigenwerten in dieser Größe erfasst und durch 
dieses Vorgehen entfernt wird, bleibt unbeantwortet.  
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3.2.5.3 SVD für numerische Stabilität  

Wendet man eine Hauptachsentransformation auf die Matrix HBHT an, so werden die 
Kovarianzwerte an den Beobachtungsorten linear kombiniert. Diese „neuen Beobach-
tungsorte“ weisen nun keine Korrelation hinsichtlich der Backgroundfehler auf. Da-
durch vereinfacht sich das Gleichungssystem und seine Lösung. Gleichzeitig lässt sich 
anhand der Eigenwerte überprüfen, ob die Kovarianzmatrix positiv definit oder 
schlecht konditioniert87 ist. 
Ein lineares Gleichungssystem Ax=b kann hinsichtlich der Eigenvektorbasis V umge-
formt werden, wobei die Matrix A durch ?  ersetzt wird:  
 

 
* *

* undT T

= → Λ =
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Ax b x b

x V x b V b
 {1.23} 

 
Befinden sich unter den ausgewählten Stationen zwei eng benachbarte und haben sie 
einen geringen Beobachtungsfehler88, so hat die Matrix des Gleichungssystems zwei 
ähnliche Spalten und Zeilen. Dadurch ist das Gleichungssystem schlecht konditioniert, 
was zu numerischen Problemen bei seiner Lösung führt. Die Konditionierung einer 
reellen, symmetrischen und positiv definiten Matrix lässt sich aus dem Verhältnis des 
größten zum kleinsten Eigenwert ableiten (Kiesewetter und Maess, 1974). In der nume-
rischen Praxis empfiehlt es sich, die Eigenvektoren mit sehr kleinen Eigenwerten zu 
vernachlässigen und nur die approximierte Matrix A’ bzw. ? ’ zu verwenden89. Im 
Gegensatz zur SVD bei dem Kovarianzmodell C steht hierbei nicht der Aspekt der 
Handhabbarkeit sondern jener der numerischen Stabilität im Vordergrund. Deswegen 
werden hierbei erst Eigenwerte, die das um 10-fache kleiner als die in {1.22} sind, 
vernachlässigt. 

3.2.6 Schätzung der Beobachtungsfehlervarianz  

Der Beobachtungsfehler wird als eine räumlich nicht korrelierte Komponente der Beo-
bachtung mit verschwindendem Erwartungswert angesehen (siehe Kapitel 2.5.2). Die 
Beobachtungsmethode nach Hollingsworth und Lönnberg (1986) benutzt die Beobach-
tungsinkremente90, d. h. die Differenz zwischen Beobachtung und Background (y – 
HxB) zur Schätzung seiner Varianz.  
Bildet man die Kovarianzmatrix der Beobachtungsinkremente unter der Annahme, dass 
die Fehler des Backgrounds und der Beobachtung nicht korreliert sind, so ergibt sie 
sich aus der Kovarianzmatrix der Beobachtungen R und der mit dem linearisierten 
Beobachtungsoperator H auf die Variable der Beobachtungen transformierten Matrix 
des Backgroundfehlers B (vergleiche Gleichung {0.23} und {0.24} ): 
  

 ( ) ( )( )B BE H H− − = +T Ty x y x R HBH  {1.24} 

 

                                                 
87 Die Matrix ist „fast“ singulär. 
88 Die Varianz des Beobachtungsfehlers trägt zur numerischen Stabilität bei. 
89 d. h. die Eigenwerte und ihre reziproken Werte gleich Null zu setzen 
90 die durch die „nahrhafte“ Null (Hxtrue – Hxtrue) erweitert werden 
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Mit der weiteren Annahme, dass die Beobachtungsfehler nicht korreliert sind91 und der 
Beobachtungsoperator H eine Verschiebung auf den Ort der Beobachtung ist, folgt für 
einen Kovarianzwert Cij der Beobachtungsinkremente an den Orten i und j:  
 

 ( )
2

( )( )
b

B
Bi Oi

ij i I j J
i j

i j
C E y Hx y Hx

i j

σ σ + == − − =  ≠
 {1.25} 

 
Für verschiedene Orte i und j gleicht der Kovarianzwert der Beobachtungsinkremente 
dem der Backgroundfehler, d. h. dem entsprechenden Element aus HBHT; für gleiche 
Orte entspricht der Wert der Summe der Varianzen des Beobachtungsfehlers sOi

2 und 
des Backgrounds sBi

2. 
Der extrapolierte Wert eines Kovarianzmodells für den Abstand Null wird nun als 
Schätzung der Varianz des Backgroundfehlers verwendet. Die Güte der Schätzung wird 
sowohl durch die Gültigkeit der statistischen Schätzung der Kovarianzen als auch durch 
die Wahl des Kovarianzmodells bestimmt92 (siehe Kapitel 3.2.3). Von Bedeutung ist 
dabei analytischen Form des parametrischen Kovarianzmodells.  
Die Differenz zur Varianz der Inkremente liefert dann die gesuchte Varianz des Beo-
bachtungsfehlers sOi

2. Das Prinzip der Schätzung der Varianz des Beobachtungsfehler 
mit Hilfe eines Kovarianzmodells ist in Abbildung 3.8 dargestellt. 
Für den homogenen terminbezogenen Ansatz ergibt die Beobachtungsmethode einen 
Wert für die Varianz des Beobachtungsfehlers aller Stationen. Mit dem klimatischen 
Ansatz können stationsspezifische Fehler ermittelt werden. Für jede Station ist aus der 
Zeitreihenauswertung der Beobachtungsinkremente die Gesamtvarianz bekannt. Die 
Aufgabe besteht nun in einer möglichst guten Schätzung der Varianz des Backgrounds 
bzw. des glatten Feldes am Stationsort. Hierzu wird ein lokales homogenes und isotro-
pes Kovarianzmodell auf Basis der empirischen Kovarianzwerte mit der betrachteten 
Station in einem Radius von 100 km herangezogen. 
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Abbildung 3.8 Schätzung der Varianz des klimatischen Beobachtungsfehlers (observation error 
variance) der Station S mit Hilfe eines Kovarianzmodells nach der Beobachtungsmethode. 

                                                 
91 R ist damit eine Diagonalmatrix 
92 Von besonderer Bedeutung ist die Steigung des Kovarianzmodells in der Nähe des Abstandes Null.  
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3.3 Diskussion der Ergebnisse der Kovarianzmodellierung  

Dieses Kapitel beinhaltet die Darstellung der Ergebnisse der Kovarianzmodellierung 
nach Kapitel 3.2. Es werden im folgenden die Schätzungen der Beobachtungsfehlerva-
rianz, des Modelbias und der räumlichen Kovarianz, einschließlich der Varianz93 des 
„glatten“ Feldes, diskutiert.  
Die räumliche Kovarianz wird für drei Datenquellen aus Kapitel 3.1.2 geschätzt, d. h. 
für die Beobachtungsinkremente, die Beobachtungen und die reinen Modelldaten. Die 
Kovarianz der Beobachtungsinkremente dient der Analyse, die Kovarianz der Beobach-
tung und Modelldaten wird für die klimatologische Darstellung und die Modellevaluie-
rung benötigt. Der Erwartungswert der Beobachtungsinkremente, d. h. der Modellbias, 
gibt den systematischen Modellfehler an. Er muss für die Analyse beseitigt werden. 
Häufig wird die Kovarianzmodellierung nur als Zwischenschritt zur Analyse betrachtet 
und ihren Ergebnissen keine große Aufmerksamkeit geschenkt. Hier schließt sich nun 
eine genauere Diskussion der Ergebnisse der Kovarianzmodellierung aus folgenden 
Gründen an: 
 

• Die Größe des Beobachtungsfehlers, der hauptsächlich ein Maß für mangelnde 
Repräsentativität ist, soll veranschaulicht werden 

• Der Vergleich von Bias und der räumlichen Kovarianz von Modellrechnung 
und Beobachtung ist eine Modellevaluierung, die 1. und 2. statistische Momen-
te berücksichtigt. 

• Bewertung des Vermögens der Kovarianzmodelle A, B und C aus Kapitel 3.1.3 
die Struktur der räumlichen Kovarianz und deren zeitliche Veränderung wider-
zugeben  

• Abschätzung der Stärke der Veränderung des Modellfeldes (Background) 
durch die Beobachtung bei der Analyse. 

• Vergleich der Kovarianzmodellierung von passiven und aktiven Verfahren 
(Kalman-Filter, aktive Assimilation mit OI) 

 
Die Frage des Erfolgs der Kovarianzmodelle der Beobachtungsinkremente für die 
Analyse ist in dem Bericht der Inhalt des nächsten Kapitels 4. Die direkte Interpretation 
der Beobachtungsinkremente hat aufgrund des Differenzcharakters und der spezifi-
schen Konfiguration des Chemie-Transport-Modells eine geringere Aussagekraft. 
Deshalb wird in diesem Kapitel die räumliche Struktur der Kovarianzen der „reinen“ 
Beobachtungen und der Modellwerte präsentiert und verglichen94 (siehe Kapitel 3.1.2). 
Die präsentierten Ergebnisse hängen von dem verwendeten Kovarianzmodell und 
seinen Annahmen ab. So erzeugt das homogene Modell A einen räumlich homogenen 
Wert der betrachteten Größen für jeden Termin. Die klimatischen Kovarianzmodelle 
liefern stationsbezogene bzw. räumlich inhomogene Werte für jeweils eine Stunde des 
Tages über einen langen Zeitraum. Sie beruhen auf der empirischen klimatischen Ko-
varianzmatrix der Beobachtungsorte. Die separate Bildung der klimatischen Kovari-
anzmodelle für jede Tagesstunde erfasst nur die tagesgangabhängige Variabilität. 

                                                 
93 Die Varianzen werden dabei meist durch ihre Wurzel, d. h. die Standardabweichung, dargestellt.  
94 Für eine Modellevaluierung hinsichtlich der zweiten räumlichen Momente, d. h. der Kovarianzfunkti-
on, ist es zunächst empfehlenswerter, die beiden abgeleiteten Kovarianzmodelle zu vergleichen und nicht 
das Kovarianzmodell der Abweichungen zu untersuchen.  
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Die betrachtete räumliche Variabilität bezieht sich innerhalb der gewählten Modellvor-
stellung des Zufallsfeldes (siehe Kapitel 2.4.1) auf die Abweichungen vom Erwar-
tungswert. Hier wird zusätzlich auf den Erwartungswert der Beobachtungsinkremente 
eingegangen, da er der Bias zwischen Modell und Beobachtung ist. 
Von besonderer praktischer Bedeutung ist der ermittelte Beobachtungsfehler, da er für 
alle Arbeiten zur statistischen Analyse und Datenassimilation sowie für die Modelleva-
luierung95 von grundlegender Bedeutung ist.  
Die Auswertung der terminbezogenen homogenen Kovarianzmodelle (A) für verschie-
dene Termine eignet sich zur Untersuchung der zeitlichen Variabilität der Kovarianz 
und der Stärke der Anisotropie. Die Darstellung der inhomogenen klimatischen Kova-
rianzmodelle (B, C) liefert einen Eindruck von der Ausprägung der Inhomogenität der 
zweiten Momente der Felder bzw. von der Möglichkeit, sie zu erfassen (siehe 
Abbildung 3.1). Die Gegenüberstellung beider Ansätze kann die Rechtfertigung der 
Grundannahmen zur Stichprobenbildung, d. h. Homogenität oder Stationarität, des 
jeweils anderen Ansatzes überprüfen.  
Die Kovarianzmodellierung erfolgte empirisch unter der Verwendung von Beobach-
tungsdaten. Eine dynamische Form der Kovarianzmodellierung beinhaltet der Kalman-
Filters (siehe Kapitel 2.5.7) für das Chemie–Transport-Modell REM/Calgrid (Stern, 
1994). Ein Vergleich der empirischen Kovarianzmodellierung mit den Kovarianzen des 
Kalman-Filters wird in Kapitel 3.3.5 gegeben.  
 

3.3.1 Der Beobachtungsfehler  

Nach der Definition in Kapitel 2.5.2 ist der Beobachtungsfehler eine räumlich nicht 
korrelierte Komponente der Messung. Seine Varianz wird mit der Beobachtungsme-
thode aus Kapitel 3.2.6 geschätzt. Der Umstand der Unkorreliertheit wird von den hier 
gewonnenen Ergebnissen bestätigt: Unabhängig davon, ob Beobachtungen oder Beo-
bachtungsinkremente verwendet werden, sind die ermittelten Fehlergrößen sehr ähn-
lich. Weiterhin hat die Wahl der analytischen Kovarianzfunktion (siehe Kapitel 3.2.3) 
keinen erkennbaren Einfluss auf die geschätzten Beobachtungsfehlervarianzen.  
In der Literatur wird der Beobachtungsfehler häufig ad hoc als Prozentsatz des Mess-
wertes angenommen oder mit statistischen Methoden geschätzt (Tilmes und Zimmer-
man, 1998). Die in diesem Forschungsvorhaben gewonnenen Ergebnisse sprechen 
insbesondere bei Ozon gegen dieses Vorgehen, da für alle Regimes ein gleich großer 
Beobachtungsfehler ermittelt wurde und weil der absolute Beobachtungsfehler am 
Nachmittag geringer als in den Nachstunden96 ist.  
 

3.3.1.1 Der stationsbezogene Beobachtungsfehler 

Die Gesamtheit der stationsbezogen bestimmten Standardabweichungen, d. h. die 
Wurzel der Varianz, der Beobachtungsfehler aller betrachteten Spurenstoffe, ist in 
Abbildung 3.9 zu finden. Abbildung 3.12 gibt einen Überblick über die räumliche 
Verteilung der Beobachtungsfehler für Ozon und PM10. 

                                                 
95 Die „perfekte“ Modellsimulation muss demzufolge nur im Rahmen der Standardabweichung des 
Beobachtungsfehlers mit der Messung übereinstimmen.  
96 Die Ozonwerte sind nachmittags höher als in der Nacht 
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Für NO und PM10 sind die geschätzten stationsbezogenen Beobachtungsfehler deutlich 
größer als für NO2, Ozon und SO2 an allen Tagesstunden. Dies entspricht der Erwar-
tung, dass Messungen für das kurzlebige NO in der Nähe der Quellen von nur geringer 
räumlicher Repräsentativität sind. Die stündliche Variabilität von PM10 ist sehr hoch 
und dementsprechend werden große Fehler geschätzt. Da PM10 keinen ausgeprägten 
Tagesgang aber eine große Tagesschwankung besitzt (Flemming, 2003), ist es im Sinne 
der räumlichen Repräsentativität empfehlenswert, die stündlichen Werte durch das 
Tagesmittel zu ersetzen. Die zugehörigen Beobachtungsfehler sind dann deutlich ge-
ringer.  
Der Zusammenhang zwischen Beobachtungsfehler und dem Immissionsregime, d. h. 
der typischen Belastung, ist in Abbildung 3.10 und Tabelle 1 dargestellt. Für die primär 
emittierten Spurenstoffe, d. h. mit Ausnahme von Ozon, steigt der Beobachtungsfehler 
mit zunehmender mittlerer Immission an. Bei PM10, SO2 und NO bleibt der relative, d. 
h. auf die mittlere Belastung bezogene Fehler, nahezu konstant in allen Regimes; bei 
NO2 sinkt der relative Fehler leicht mit zunehmender Belastung.  
 
Stoff\Regime: B R / 1 U1 / 2 U2 / 3 U3 /4 S / 5 S2 Tagesgang 
O3 (ppb) 8 6 6 6 6 6  schwach 
NO2 (ppb)  3 4 5 6 7 8 schwach 
NO (ppb)  3 7 10 15 20 30 8 Uhr-Max 
PM10(µg/m3)  8 8 10 12 15  schwach 
SO2 (µg/m3)  2 3 4 6 18  schwach 

Tabelle 1 Geschätzte Standardabweichung des klimatischen Beobachtungsfehlers der stündlichen 
Messung, dargestellt als Median aller Stationen innerhalb der Immissionsregimes nach Flemming 
(2003) (B = Berg, R = Land, U1 = Vorstadt, U2 = Stadt, U3 = belastetet Stadt, S = Straße, S2 = 
Straße extrem)  

 
Bei Ozon ist die Standardabweichung des Beobachtungsfehlers für alle Regimes mit 
Ausnahme der Berg-Stationen nahezu konstant. Die scheinbar geringe räumliche Re-
präsentativität der Berg-Stationen erklärt sich aus dem hier gewählten Vorgehen, den 
Beobachtungsfehler mit Hilfe der umgebenden Stationen abzuschätzen. In der Tat sind 
die Berg-Stationen aufgrund der geringen Deposition in der Nacht nicht repräsentativ 
für die Verhältnisse in der Bodenschicht über Land. Sie entsprechen eher den Verhält-
nissen in der zweiten Modellschicht. Der relative Beobachtungsfehler der Berg-
Stationen ist ungefähr von gleicher Größe wie der der Land-Stationen. Mit zunehmen-
der Urbanisierung und Verkehrseinfluss steigt der relative Beobachtungsfehler.  
Der Ausgangspunkt für die klimatische Kovarianzmodellierung sind separate Kovari-
anzmodelle für jede Tagesstunde. Betrachtet man die geschätzten Standardabweichun-
gen des Beobachtungsfehlers für jede Tagesstunde, so stellt man nur einen geringen 
Tagesgang fest (siehe Abbildung 3.11). Bei NO gibt es während des morgendlichen 
Immissionsmaximums einen Anstieg des Fehlers. Interessant ist, dass für Ozon in der 
Zeit der höchsten Konzentrationen eine leichte Abnahme des absoluten und eine große 
des relativen klimatischen Beobachtungsfehlers festzustellen ist. Offensichtlich ist bei 
der nachmittäglichen Ozonbildung und guter Durchmischung die räumliche Repräsen-
tativität größer als in den nächtlichen Stunden, wo lokale NO-Immission und Depositi-
onsvorgänge die Ozonkonzentration steuern. 
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Abbildung 3.9 Histogramme der Standardabweichung des klimatischen Beobachtungsfehlers 
(SDOBS) für alle Stationen und alle Tagesstunden (oben in ppb, unten in µg/m3) 
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Abbildung 3.10 Standardabweichung97 des klimatischen Beobachtungsfehlers für alle Stationen 
und alle Tagesstunden, geordnet nach dem Immissionsregime (obere Reihe in ppb, 0=Berg/Küste, 
1=ländlich, 2=Vorstadt, 3=Stadt, 4=belastete Stadt, 5=Verkehr, 6=Verkehr extrem, untere Reihe in 
µg/m3, Belastungsstufen 1 – 5) 

                                                 
97 Die grafische Darstellung beschränkt sich auf Werte kleiner als 20 ppb bzw. µg/m3 
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Abbildung 3.11 Tagesgang der Standardabweichung des klimatischen Beobachtungsfehlers für alle 
Stationen (O3, NO2 und NO in ppb, SO2 und PM10 in µg/m3) 

 
Abbildung 3.12 Karte der stationsbezogenen Standardabweichung des Beobachtungsfehlers für 
Ozon um 13 Uhr (links) und der Tagesmittelwerte von PM10 (rechts) 

 

3.3.1.2 Der homogene terminbezogene Beobachtungsfehler 

Im Gegensatz zum stationsbezogenen Beobachtungsfehler liegt der terminbezogene 
Beobachtungsfehler als Zeitreihe für alle Stunden des Jahres vor. Pro Termin fasst ein 
Wert den typischen Beobachtungsfehler aller Stationen zusammen, mit Ausnahme der 
Stationen der Verkehrs-Regimes (S, S2 bzw. 5, Flemming, 2003). Die Charakteristik 
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dieses Wertes ist durch die urbanen Stationen geprägt, da sie den größten Anteil der 
verwendeten Stationen stellen. 
Der terminbezogene Beobachtungsfehler ist auf Basis des terminbezogenen Kovari-
anzmodells A ermittelt worden (siehe Kapitel 3.1.3). Durch die Zusammenschau der 
terminbezogenen Kovarianzmodelle für alle Zeitpunkte kann die zeitliche Variabilität 
der Kovarianzstruktur untersucht werden. 
Abbildung 3.13 zeigt analog zu Abbildung 3.9 die Häufigkeitsverteilung der Standard-
abweichung des homogenen Beobachtungsfehlers für alle Termine. Die Wertebereiche 
sind von ähnlicher Größenordnung wie die der individuellen klimatischen Fehler. Für 
NO und PM10 sind die individuellen Unterschiede größer als die Unterschiede zwi-
schen den homogenen Werten zu verschiedenen Zeitpunkten. Die Darstellung der 
Beobachtungsfehler, geordnet nach Tagesstunden, liefert ein ähnliches Bild wie im 
klimatischen Fall (siehe Abbildung 3.14 und Abbildung 3.11).  
Der Jahresgang, ermittelt durch die monatliche Zusammenfassung des homogenen 
Beobachtungsfehlers, enthält Abbildung 3.15. Für NO2 und PM10 ergibt sich keine 
erkennbare Jahresgangabhängigkeit, NO und SO2 zeigen ein Sommerminimum, wäh-
rend Ozon ein leichtes Maximum im Sommer aufweist.  
Insgesamt kann festgestellt werden, dass der homogene Beobachtungsfehler keinen 
sehr ausgeprägten Jahresgang liefert. Dies rechtfertigt das Konzept des klimatischen 
Beobachtungsfehlers, da die individuellen Unterschiede größer erscheinen als die zeit-
liche Variabilität. 
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Abbildung 3.13 Histogramme der Standardabweichung des terminbezogenen homogenen Beo-
bachtungsfehlers (SDOBS) für alle Termine im Jahr 2001 (obere Reihe in ppb, untere in µg/m3) 
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Abbildung 3.14 Tagesgang der Standardabweichung des homogenen terminbezogenen Beobach-
tungsfehlers für alle Stunden des Jahres (O3, NO2 und NO in ppb, SO2 und PM10 in µg/m3) 
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Abbildung 3.15 Jahresgang der Standardabweichung des homogenen Beobachtungsfehlers für alle 
Termine (für O3, NO und NO2 in ppb, für SO2 und PM10 in µg/m3) 

 

3.3.2 Der Bias 

Der Bias beschreibt die Abweichung der Erwartungswerte von Modell und Beobach-
tung und ist demzufolge von grundlegender Bedeutung für die Modellevaluierung. Ein 
positiver Bias ist Anzeichen für eine Unterschätzung der Beobachtung durch das Che-
mie-Transport-Modell. Für die Analyse stellt sich zusätzlich die Frage, inwieweit die 
Hypothese vom Erwartungswert Null der Beobachtungsinkremente {0.33} Gültigkeit 
hat bzw. durch welche Korrektur eine Biasfreiheit erreicht werden kann. Die Gegen-
überstellung der zeitlichen Variabilität innerhalb der Immissionsregimes in Flemming 
(2003) gibt einen Einblick in die zeitliche Variabilität des Bias. Eine Diskussion des 
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Bias-Tagesgangs für verschiedene chemisch gekoppelte Stoffe liefert weitere Hinweise 
zum Modellverständnis. 
Die Histogramme des terminbezogenen und des stationsbezogenen Bias sind in 
Abbildung 3.16 und Abbildung 3.17 dargestellt. Die Maximalwerte des Bias liegen in 
beiden Fällen in der Größe der Erwartungswerte selbst. Die individuellen Unterschiede 
oder die Unterschiede zu verschiedenen Zeiten haben eine ähnlich große Spannweite. 
Wie schon in Kapitel 3.1.1 ausgeführt, ist die Bewertung des terminbezogenen Bias 
zwischen Modell und Beobachtung nicht ohne eine Berücksichtigung der Zusammen-
setzung der Beobachtungen hinsichtlich ihrer Regimezugehörigkeit beantwortbar. Der 
stationsbezogene Bias im klimatischen Fall ist in Abbildung 3.18 für die verschiedenen 
Regimetypen der Beobachtung dargestellt. Bei NOx weisen die ländlichen Regimes fast 
keinen Bias auf; mit zunehmender Belastung steigt der Bias an. Dieses Verhalten ist 
konsistent mit der Annahme, dass diese Regimes nicht die räumliche Ausdehnung einer 
Modellgitterbox haben und damit nicht vom Modell erfasst werden können98. Trotz 
einer gewissen Streuung ist die Simulation von SO2 in allen Regimes nahezu biasfrei, 
d. h. auch die belasteteren Regimes werden vom Modell richtig erfasst. Bei Ozon und 
PM10 sind die suburbanen bzw. die Stationen der Belastungsstufe 2 biasfrei. Die Werte 
der Land-Stationen der Ozonbeobachtung werden im Mittel unterschätzt bzw. bei 
PM10 vom Modell überschätzt.  
Der bisher betrachtete Bias setzt sich gleichmäßig aus allen Stunden zusammen. Eine 
genauere Beurteilung der Ursachen des Bias kann eine Betrachtung seines Tagesganges 
ergeben. Der Tagesgang des Bias für alle Stationen bzw. nur für die Land-Stationen ist 
in Abbildung 3.19 und Abbildung 3.20 dargestellt. Es zeigt sich dabei eine deutliche 
Tagszeitabhängigkeit, die vom terminbezogenen und stationsspezifischen Ansatz quali-
tativ gleichwertig wiedergegeben wird.  
Am auffälligsten ist der gegenläufige Tagesgang des Bias für Ozon und PM10. Die 
Ozonsimulation ist nachts deutlich zu gering und tagsüber für die Gesamtheit der Stati-
onen zu hoch. Letzteres gilt für die Land-Stationen nur in geringem Umfang. Für PM10 
gilt der umgekehrte Verlauf mit einer nächtlichen Überschätzung und einer Unterschät-
zung am Tage. Da beide Stoffe nicht unmittelbar chemisch miteinander gekoppelt sind, 
ist die mögliche Ursache dieses Verhaltens vorrangig in den vertikalen Austauschpro-
zessen zu vermuten: Stabile Verhältnisse sind zu stabil und labile zu labil. Der zu ge-
ringe nächtliche Austausch führt zu erhöhten PM10-Werten und zu überschätztem 
Ozonabbau durch Deposition und Titration mit NO ohne eine Kompensation durch 
vertikale Ozoneinmischung in die Bodenschicht. Tagsüber führt der überschätzte Aus-
tausch zur Verringerung der PM10-Konzentration und zu Ozoneinmischung von oben 
bzw. zu einer sehr starken Verdünnung des NO.  
Ozon, NO und NO2 sind durch das sich in wenigen Minuten einstellende fotochemische 
Gleichgewicht gekoppelt. Die nachmittägliche Überschätzung von Ozon ist mit unter-
schätzten NO2-Werten verbunden, was für richtige OX

99-Verhältnisse sprechen könnte. 
Nachts gilt das nur bei den Land-Stationen, da für diese eine leichte Unterschätzung 
durch das Modell im klimatologischen Fall zu verzeichnen ist.  

                                                 
98 Dieser Umstand widerspricht nicht der Tatsache, dass einige Gitterboxen z. B. im Ruhrgebiet als 
Gebiete höchster NOx–Belastung simuliert werden.  
99 Ox ist die Summe aus NO2 und O3. Die Untersuchung von Ox ist sinnvoll, da dadurch die Bilanz über 
das zwischen beiden Stoffen ausgetauschte O-Radikal gebildet wird. Bei unveränderter Einstrahlung und 
konstantem NOx wird das Verhältnis der beiden Stoffe nur von der meist sehr variablen NO-
Konzentration gesteuert. 
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Der Jahresgang des homogenen terminbezogenen Bias für 2001 auf der Basis von 
Monatswerten zeigt große Schwankungen zwischen den verschiedenen Monaten (alle 
Stationen in Abbildung 3.21, Land-Stationen in Abbildung 3.22). Frühjahr und Winter 
sind Zeiten mit der stärksten Unterschätzung von Ozon und mit der stärksten Über-
schätzung von PM10. Insbesondere die starke Schwankung von Monat zu Monat in-
nerhalb einer Jahreszeit unterstützt die These, dass die Wettersituation sehr wichtig für 
die Entstehung des Bias von Ozon und PM10 ist. Auch hier ergibt sich das beim Ta-
gesgang gefundene gegenläufige Verhalten der jeweiligen Bias.  
NO und NO2 zeigen einen geordneteren Jahresgang mit einer Unterschätzung der Ge-
samtheit der NO-Beobachtungen im Winter und einer Überschätzung von NO2 im 
Sommer. Betrachtet man lediglich die Land-Stationen, so ist nur für NO2 eine leichte 
sommerliche Unterschätzung und eine winterliche Überschätzung zu erkennen. Für das 
ländliche Ozon und PM10 ist die winterliche Unterschätzung bzw. Überschätzung 
besonders ausgeprägt.  
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Abbildung 3.16 Histogramme des stationsbezogenen Bias zwischen Modell und Beobachtung für 
alle Stationen (obere Reihe in ppb, unten in µg/m3) 
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Bias of homogeneous Model error 2001 all hours
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Abbildung 3.17 Histogramme des terminbezogenen homogenen Bias zwischen Modell und Beo-
bachtung für alle Termine 2001 (obere Reihe in ppb, unten in µg/m3. 
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Abbildung 3.18 Bias zwischen Beobachtung und Modellrechnung für alle Stationen, geordnet nach 
dem Regime (AQ regime) der Beobachtung (obere Reihe in ppb, 0=Berg/Küste, 1=ländlich, 
2=Vorstadt, 3=Stadt, 4=belastete Stadt, 5=Verkehr, 6=Verkehr extrem, untere Reihe in µg/m3, 
Belastungsstufen 1– 5). 
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Abbildung 3.19 Tagesgang des klimatischen Bias für alle Stationen (links) und des homogenen 
terminbezogenen Bias für alle Stunden des Jahres 2001 (rechts) (O3, NO2 und NO in ppb, SO2 
und PM10 in µg/m3) 
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Abbildung 3.20 Tagesgang des klimatischen Bias für alle Land-Stationen (links) und des homoge-
nen terminbezogenen Bias der Land-Stationen für alle Stunden des Jahres (rechts) (O3, NO2 und 
NO in ppb, SO2 und PM10 in µg/m3) 
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Abbildung 3.21 Jahresgang des homogenen terminbezogenen Bias aller Stationen für alle Termine 
2001 (O3, NO und NO2 in ppb, für SO2 und PM10 in µg/m3) 
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Abbildung 3.22 Jahresgang des homogenen terminbezogenen Bias der Land-Stationen für alle 
Termine 2001 (O3, NO und NO2 in ppb, für SO2 und PM10 in µg/m3) 

 

3.3.3 Die Varianz des „glatten“ Feldes  

Während der Beobachtungsfehler eine singuläre Eigenschaft der Messorte ist und der 
Bias die Differenz von Erwartungswerten beschreibt, werden nun die Variationen des 
glatten, d. h. des räumlich korrelierten Immissionsfeldes untersucht (siehe Kapitel 
2.4.1.1) Die hier untersuchte Varianz ist die Kovarianz für den Abstand Null, die nicht 
durch den Beobachtungsfehler beeinflusst ist. 
Die folgende Diskussion der Varianz soll zwei Aufgaben erfüllen:  
 

• Vergleich der räumlichen Variabilität von Modellrechnung und Beobachtung 
• Abschätzen der Stärke des Einflusses der Beobachtungsinkremente auf die Ver-

änderung des Modellfeldes bei der Analyse 

3.3.3.1 Varianz von Modell, Beobachtung und Beobachtungsinkrement 

Der Vergleich der Varianz des glatten Feldes von Modellrechnung und Beobachtungen 
soll überprüfen, ob die Variabilität der beiden Quellen übereinstimmt. Der Vergleich 
der Varianz und Kovarianz gibt erste Hinweise, ob das Modell in der Lage sein könnte, 
die Variabilität100 des gesuchten „glatten“ Immissionsfeldes zu erfassen.  
Das generelle Ziel der Modellierung ist es jedoch, nur das „glatte“ Beobachtungsfeld 
ohne das „Rauschen“ der Beobachtungsfehler zu simulieren. Für den Vergleich der 
Variabilität ist es demzufolge notwendig, den Varianzanteil des Beobachtungsfehlers 
zu entfernen und nur den räumlich korrelierten Teil der Beobachtungen zu betrachten.  
Die Schätzung der Varianz des glatten Feldes erfolgt mit einem Kovarianzmodell, da 
Beobachtungsdaten und Beobachtungsinkremente durch den räumlich unkorrelierten 
Beobachtungsfehler „kontaminiert“ sind.  

                                                 
100 z. B. kann die abgebildete Variabilität des Modells durch eine Erhöhung der Auflösung verbessert 
werden. 
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Würde die Modellrechnung genau dem Erwartungswertfeld der Beobachtungen ent-
sprechen (siehe Kapitel 2.4.1), dann wäre die Varianz des glatten Feldes von Beobach-
tungsinkrementen und Beobachtungsdaten die gleiche. Eine verringerte Varianz der 
Beobachtungsinkremente ist demzufolge ein Hinweis darauf, dass das Modell bereits 
einen Teil der Variabilität wiedergegeben hat. Dies ist für die meisten der hier behan-
delten Stoffe der Fall. Folglich ist die Varianz des glatten Feldes der Beobachtungsin-
kremente kleiner als die der reinen Beobachtungsdaten. 
Die Varianz ist ein Maß für die Variabilität des Feldes jenseits der des Erwartungswer-
tes. Die Stärke der Varianz hängt von der Methode zur Schätzung des Erwartungswer-
tes sowie von der Korrektur des Bias ab. Aus Gründen der Vereinfachung werden hier 
nur die klimatischen Varianzen an den Beobachtungsorten untersucht. Der Erwar-
tungswert wird dabei durch den zeitlichen Mittelwert geschätzt. 
Abbildung 3.23 zeigt die geschätzten Standardabweichungen, d. h. die Wurzel der 
Varianz, für das glatte Feld der Modellrechnung, der Beobachtung und der Beobach-
tungsinkremente im Tagesgang. Mit Ausnahme der nachmittäglichen Ozonimmission 
ist die räumliche Variabilität der Modellrechnung deutlich geringer als die des unkon-
taminierten glatten Immissionsfeldes aus den Beobachtungen. Dieser Unterschied ist 
bei der NO-Immission am größten. Durch den Einbezug der Modellrechnung wird 
nachmittags bei Ozon, PM10 und SO2 die Variabilität verringert, da hier die Beobach-
tungsinkremente eine geringere Varianz als die Beobachtung aufweisen. Dieser Um-
stand ist Ausdruck einer sinnvollen Prognoseleistung durch das Modell. 
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Abbildung 3.23 Tagesgang der klimatischen Varianz des „glatten“ rauschfreien Feldes für die 
Modelldaten (RCG), die Beobachtungsdaten (OBS) und die Beobachtungsinkremente (INC), 
dargestellt als Standardabweichung. Der dargestellte Wert ist der Median über alle Stationen.  

3.3.3.2 Rausch-Signal-Verhältnis 

Die Stärke des lokalen Einflusses der Beobachtung auf die Analyse hängt von dem 
Verhältnis der Varianzen der zugehörigen Fehler ab. Große Beobachtungsfehlervarian-
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zen s O

2 im Vergleich zu der des Backgrounds bzw. Modells s B
2 führen zu einer nur 

geringen Änderung des Backgrounds bzw. Modellfeldes am Stationsort nach der Glei-
chung {0.31}. Als Maß dafür dient das sogenannte Rausch-Signal-Verhältnis ?, dass 
als das Verhältnis der Beobachtungsfehlervarianz zur Gesamtvarianz der Beobach-
tungsinkremente definiert ist (Gandin, 1965):  
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Für Geopotentialfelder liegt der Wert des Rausch-Signal-Verhältnisses im Bereich von 
10-15% (Daley, 1991). Nur die nachmittäglichen Ozonbeobachtungen liegen im klima-
tischen Fall in einem ähnlichen Größenbereich. Die Werte ? für den Rest der hier be-
trachteten bodennahen Immissionsfelder sind deutlich größer (über 50%). Damit ist im 
Allgemeinen nicht zu erwarten, dass die analysierten Felder am Messort sehr genau mit 
der Beobachtung übereinstimmen. Der hohe Rauschanteil tritt sowohl bei den klimati-
schen (Abbildung 3.24) als auch mit den terminbezogenen Kovarianzmodellen auf.  
In der Praxis der Analyse kann der Bias häufig nicht feldübergreifend bestimmt und 
korrigiert werden. Dadurch werden erhöhte Varianzen des Backgroundfeldes s B

2 ge-
schätzt, woraus sich ein verringertes Rausch-Signal-Verhältnis ergibt (siehe auch Kapi-
tel 3.1.1).  
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Abbildung 3.24 Verhältnis der Beobachtungsfehlervarianz zur Gesamtvarianz des klimatischen 
Kovarianzmodells für die Stunden des Tages (hour) 
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3.3.4 Räumliche Strukturen der Kovarianzmodelle A, B und C  

Die Heterogenität der Immissionsfelder ist in diesem Bericht häufig hervorgehoben 
worden. Sie betrifft die Erwartungswerte und die davon abweichende räumlich korre-
lierte stochastische Komponente.  
Im Fall der terminbezogenen homogenen Kovarianzmodelle wird die Abweichung von 
einem konstanten Erwartungswert betrachtet. Im klimatischen Fall wird die Beziehung 
der Abweichungen vom stationsbezogenen Erwartungswert betrachtet. Die räumliche 
Heterogenität dieser Erwartungswerte, d. h. der mittleren Verhältnisse der Beobachtun-
gen, wird aus den Betrachtungen zur Regimeklassifikation (Flemming, 2003) deutlich.  
In diesem Kapitel wird nun versucht, die Inhomogenität und Anisotropie der räumli-
chen Beziehung der Abweichungen, d. h. der Kovarianzfunktion, darzustellen. Die 
Darstellung der Inhomogenität der Kovarianzfunktion ist aufgrund der im Vergleich 
zum Feld verdoppelten Dimension keine leichte Aufgabe. Dies gilt sowohl für die 
geschätzte empirische Kovarianzmatrix an den Stationsorten als auch für die gesamte 
Kovarianzfunktion, so wie sie für die Analyse benötigt wird. Eine Möglichkeit wäre die 
Darstellung des Feldes der Varianzen. Eine Veranschaulichung der räumlichen Bezie-
hungen könnte für einen festgelegten Punkt erfolgen, indem man das zughörige Feld 
der Kovarianzen abbildet. Eine indirekte Veranschaulichungen des Feldes der Varian-
zen findet sich in Kapitel 0. Eine beispielhafte Darstellung der empirischen Kovarian-
zen hinsichtlich einer Station ist Abbildung 3.36. 
Im Gegensatz zu diesen Darstellungsformen wird in diesem Kapitel das Vermögen der 
Kovarianzmodelle A, B und C (siehe Kapitel 3.1.3), räumliche Strukturen wieder-
zugeben, dargelegt. Für das homogene terminbezogene Kovarianzmodell A beschränkt 
sich die Untersuchung der räumlichen Struktur auf die Untersuchung der geometri-
schen Anisotropie in Kapitel 3.3.4.1. Das klimatische Kovarianzmodell B beruht auf 
homogenen Kovarianzmodellen für verschiedene Kombinationen von Regimes (siehe 
Kapitel 3.3.4.2). Eine allgemeinere Möglichkeit zur Wiedergabe der Inhomogenität 
liegt in der Darstellung der Eigenvektoren der Kovarianzmatrix in Kapitel 3.3.4.3, was 
dem Grundgedanken des Kovarianzmodells C entspricht. 

3.3.4.1 Homogene Anisotropie (KM A) 

In dem homogenen Ansatz ist die Anisotropie feldübergreifend. Sie äußert sich in 
ellipsenförmigen Strukturen der Kovarianzfunktion. Durch eine lineare Koordinaten-
transformation101 kann die Isotropie und damit eine reine Abstandsabhängigkeit der 
Kovarianzfunktion hergestellt werden (siehe Kapitel 2.4.1.2) Dieses anisotrope Verhal-
ten wird in den meteorologischen Strömungsmustern häufig festgestellt102 und mit 
anisotropen Kovarianzmodellen erfasst (Thiebaux, 1976).  
Mögliche Ursachen für eine geometrische Anisotropie der Immissionsfelder sind zum 
einen in geografischen Faktoren, wie der Lage der Messstationen, der Form des Unter-
suchungsgebiets und der räumlichen Verteilung der Ballungsgebiete in Deutschland zu 
suchen. Dem gegenüber stehen meteorologische Einflüsse, wie die mittlere Windrich-
tung und -stärke oder die Temperaturverteilung. Die mit den terminbezogenen Kovari-

                                                 
101In den modernen Formen der Deformationsansätze erfolgt eine nichtlineare Verzerrung des Koordina-
tensystems (siehe Kapitel 2.3.2.3). 
102 Die horizontale Neigung der Achsen der Rossby-Wellen ist z. B. Vorrausetzung für den meridionalen 
Impulstransport. 

- 
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anzmodellen ermittelbare Zeitabhängigkeit der Prozesse kann den Zusammenhang 
zwischen der veränderlichen Wettersituation erklären und damit eine Trennung der 
beiden Ursachengruppen ermöglichen.  
Windstärke und -richtung scheinen die aussichtsreichsten Kandidaten für die Erklärung 
der witterungsbedingten Anisotropie zu sein. Der zunächst naheliegenden Erklärung 
der Anisotropie als Wirkung des Transportes durch den Wind in eine Richtung steht 
jedoch der Umstand gegenüber, dass mit Zunahme der Windstärke die Verdünnung 
vergrößert und somit die „Störung“ abgeschwächt wird.  

Die Überprüfung der Anisotropie erfolgte nur für die Beo-
bachtungsdaten und die Modellrechnung. Dafür wurden 
terminbezogene Kovarianzmodelle hinsichtlich eines ho-
mogenen Erwartungswertfeldes für vier Richtungssektoren 
(Nord/Süd, Ost/West, Nordwest/Südost und Süd-
west/Nordost) mit einem Winkel von 45° gebildet103. Der 
für die sphärische Kovarianzfunktion ermittelte räumliche 
Skalierungsparameter L (siehe Kapitel 3.2.3) wurde dann 
für verschiedene Richtungen verglichen. Als Maß für die 
Anisotropie wurde die relative Differenz des Rangeparame-
ters zu dem um 90° gedrehten Sektor gewählt. Die deutli-
chere Anisotropie ergab sich für Modellrechnung und 

Beobachtung hinsichtlich des Sektorenpaars Nord/Süd und Ost/West104 am Mittag.  
Abbildung 3.25 und Abbildung 3.26 zeigen Histogramme dieser relativen Differenz für 
die Nord/Süd und Ost/West Sektoren um 13 Uhr für Beobachtung und Modelldaten. 
Auffällig ist die deutliche Anisotropie der Modelldaten mit längeren Kovarianzen in 
Ost-West-Richtung für NO, NO2 und SO2. Diese Struktur lässt sich so in den Beobach-
tungsdaten nicht feststellen. Für NO existiert sogar die stärkere Anisotropie in Nord-
Süd-Richtung.  
Nach der Betrachtung der mittleren Anisotropie stellt sich die Frage nach einem Zu-
sammenhang zwischen Anisotropie und meteorologischer Situation. Dafür wurden die 
Wettersituationen mit Hilfe der Großwetterlagen nach Hess und Brezowsky H. (1977) 
klassifiziert. Die über 30 Wetterlagen sind weiterhin nach Gerstengarbe und Werner 
(1999) in den drei Grundströmungsmustern „Zonal“, „Meridional“ und „Übergang“ 
zusammengefasst worden. Mit dieser Einteilung konnte kein Zusammenhang zwischen 
der Ausprägung der Isotropie und der Wetterlage festgestellt werden. Mögliche Ursa-
chen für die systematische Anisotropie sind demzufolge eher in der Form des Untersu-
chungsgebietes und in den unterschiedlichen realen und modellierten räumlichen Emis-
sionsverteilungen zu vermuten. 
 

                                                 
103 Problematisch erschien dabei der Umstand, dass die für verschiedene Sektoren geschätzte Varianz 
leichte Unterschiede aufwies. Die Frage, ob es sich dabei um Zufälligkeiten oder zu berücksichtigende 
Abweichungen handelt, konnte nicht beantwortet werden. 
104 Für die Beobachtungsinkremente tritt die größere Anisotropie im Sektorenpaar Nordwest/Südost und 
Südwest/Nordost auf, d. h. in einem um 45° gegen das geografische gedrehten Koordinatensystem. 
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Abbildung 3.25 Relative Differenz (aniso) zwischen dem terminbezogenen homogenen Range-
Parameter L in Ost-West- und in Nord-Süd-Richtung für die Beobachtungswerte um 13 Uhr. 
Positive Differenzen stehen für einen größeren Kovarianz-Range L in Nord-Süd Richtung 
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Abbildung 3.26 Relative Differenz(aniso) zwischen dem terminbezogenen homogenen Range-
Parameter L in Ost-West- und in Nord-Süd-Richtung für die Modellwerte um 13 Uhr. Positive 
Differenzen stehen für einen größeren Kovarianz-Range L in Nord-Süd Richtung 
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3.3.4.2 Kovarianz für verschiedene Immissionsregimes (KM B) 

Die unabhängigen Variablen für das Kovarianzmodell B sind neben dem Abstand die 
Regimes der beiden Orte der Kovarianz (siehe Kapitel 3.1.3). Die Regimes sind die der 
Stationen für HBHT bzw. die des Analysepunkts und der Station für HB. Das Regime 
des Analysepunkts wird aus der Modellrechnung abgeleitet. Folgerichtig wird die durch 
das Kovarianzmodell B wiedergegebene Struktur durch die Verteilung der beobachte-
ten Regimes und die Modellrechnung bestimmt. Die Regimeverteilung der Stationen 
wurde bereits in Flemming (2003) beschrieben.  
Im Folgenden werden nun die Kovarianzen für verschiedene Regimes am Beispiel für 
die Beobachtungsinkremente, Beobachtung und Modellrechung diskutiert. Dazu wird 
die entsprechende abstandabhängige empirische Kovarianzfunktion innerhalb des 
ländlichen und des urbanen Regimes für Ozon (16 Uhr) und NO2 (7 Uhr) präsentiert.  
Auffälligstes Merkmal der Kurven ist die Abhängigkeit von der Varianz und damit 
gewissermaßen die Skalierung der Kurven. Für das nachmittägliche Ozon ergeben sich 
keine großen Unterschiede in der Kovarianzstruktur innerhalb des ländlichen und des 
urbanen Regimes (Abbildung 3.27). In beiden Fällen ist die Kovarianzfunktion für 
Modellrechnung und Beobachtung von ähnlichem Verlauf. Bei den Beobachtungsin-
krementen ist die Varianz deutlich kleiner (siehe Kapitel 3.3.3). Die Stärke des relati-
ven Abfalls ist geringer, was auf einen im Vergleich zu Messung und Beobachtung 
größeren räumlichen Skalierungsparameter L (Range) schließen lässt. 
Bei NO2 um 7 Uhr sind die Varianzen der Abweichung vom Erwartungswert erwar-
tungsgemäß in urbanen Regimes deutlich höher als in den ländlichen (Abbildung 3.28). 
Im urbanen Regime ist die Form des Abfalls für Modelldaten, Beobachtungsinkremente 
und Beobachtung etwa gleichartig; die Varianz der Beobachtung und der Inkremente ist 
jedoch deutlich höher als die der Modellrechnung. Die Existenz einer beachtlichen 
Kovarianz innerhalb des urbanen Regimes für große Abstände erklärt sich durch den 
Umstand, dass durch die Regimeunterscheidung bei der Approximation gewissermaßen 
von einem deutschlandweiten Gebiet mit urbaner Charakteristik ausgegangen wird.  
Innerhalb der ländlichen Regimes ist die Kovarianz deutlich geringer als in den urba-
nen; der Skalierungsparameter ist aufgrund des geringen Abfalls jedoch höher.  
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Abbildung 3.27 Klimatische Kovarianz (Kovarianzmodell B) für Ozon um 16 Uhr zwischen den 
ländlichen (links) und den urbanen Regimes (rechts) der Beobachtung (OBS), der Modellrechnung 
(RCG) und der Beobachtungsinkremente (INC). Dargestellt ist der Median aller empirischen 
Kovarianzwerte innerhalb einer Abstandsklasse. 
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Abbildung 3.28 Klimatische Kovarianz (Kovarianzmodell B) für NO2 um 7 Uhr zwischen den 
ländlichen Regimes der Beobachtung (OBS), der Modellrechnung (RCG) und der Beobachtungs-
inkremente (INC). Dargestellt ist der Median aller empirischen Kovarianzwerte innerhalb einer 
Abstandsklasse. 

 

3.3.4.3 Die Eigenvektoren der Kovarianzmatrix (KM C) 

Die Eigenvektoren, multipliziert mit der Wurzel des zugehörigen Eigenwertes, können 
als die die Kovarianzmatrix aufbauenden Felder aufgefasst werden (siehe Kapitel 2.5.8 
und 3.2.5.2). Diese Felder besitzen eine „voneinander unabhängige“105 räumliche Vari-
ation. Das Quadrat der Elemente an einem Ort ergibt den Anteil an der Varianz; das 
Produkt zwischen zwei Orten ergibt deren Kovarianzanteil. Die separat geschätzte 
Beobachtungsfehlervarianz wird vor der Eigenvektoraufspaltung von der empirischen 
Kovarianzmatrix abgezogen, wenn es die der Beobachtungen oder Beobachtungsin-
kremente ist.  
Die prozessorientierte Interpretation der Eigenvektoren (EOF) ist ein viel und kontro-
vers diskutiertes Hilfsmittel in der globalen Klimaforschung (Dommenget und Latif, 
2002). Die Eigenvektoren werden dabei als wichtige Moden der Variabilität interpre-
tiert. Die Interpretation wird jedoch durch den formalen mathematischen Charakter der 
Eigenvektoren eingeschränkt. Dies gilt vorrangig für die Eigenvektoren ab dem zweit-
größten Eigenwert, da diese orthogonal zu allen vorangegangenen sein müssen. Die 
Muster der Eigenvektoren zeigen eine Abhängigkeit von der Form des betrachteten 
Gebietes. Weiterhin ergeben sich statistisch motivierte Entartungen, wenn die zugehö-
rigen Eigenwerte von ähnlicher Größe sind (Richman, 1986). Ein Lösungsansatz dafür 
ist die Drehung der Eigenvektoren, der hier aber nicht verfolgt wird. 

                                                 
105 aufgrund ihrer Orthogonalität 
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Im Folgenden werden für Ozon und NO2 beispielhaft Eigenvektoren der empirischen 
klimatischen Kovarianzmatrix aus den Beobachtungsdaten, der Modellrechnung106 und 
den Beobachtungsinkrementen miteinander verglichen (siehe Abbildung 3.29 bis 
Abbildung 3.34). Die an den Stationsorten vorliegenden Eigenvektoren wurden für eine 
bessere Darstellung analog zum Kovarianzmodell C räumlich interpoliert. Bei der 
Interpretation ist aus den dargelegten Gründen Vorsicht geboten. Der Vergleich scheint 
jedoch möglich, da die Artefakte für alle drei Datenbasen gleichwertige Auswirkungen 
haben sollten107.  
Für Ozon um 13 Uhr zeigen Modellrechnung und Beobachtungsdaten eine sehr ähnli-
che Struktur im ersten Eigenvektor (siehe Abbildung 3.29 und Abbildung 3.30). Das 
Zentrum des „Monopols“ ist jedoch in der Modellrechnung nach Süden verschoben. 
Der zugehörige Eigenwert erklärt bei der Beobachtung 44% und für die Modellrech-
nung 51% der Gesamtvarianz. Die nächsten beiden Eigenvektoren zeigen übereinstim-
mend108 einen Dipol mit Nord-Süd und NW-SO Orientierung. Ihr Erklärungsanteil liegt 
bei 13 % (Modell) und 8 % (Beobachtung) bzw. bei 7 und 6 %. Der erste Eigenvektor 
der Beobachtungsinkremente (Abbildung 3.31) hat einen wesentlich geringeren Erklä-
rungsanteil von nur 13 % und zeigt einen SW-NE gelagerten Dipol. Der zweite Eigen-
vektor der Beobachtungsinkremente entspricht in seiner Struktur dem dritten Eigenvek-
tor von Modellrechnung und Beobachtung.  
Die Struktur der Eigenvektoren der NO2-Immission um 7 Uhr ist wesentlich heteroge-
ner als bei Ozon um 13 Uhr (Abbildung 3.32 und Abbildung 3.33). Der erste Eigenvek-
tor trägt nur 22 % (Beobachtung) bzw. 29% (Modellrechnung) der Gesamtvarianz. Der 
erste Eigenvektor der Beobachtungsinkremente gleicht in seiner Struktur stark dem der 
Beobachtung (Abbildung 3.34). In den Beobachtungen sind die Räume Berlin und 
München weitere wichtige Moden der Variabilität, die in den Modelldaten so nicht zu 
finden sind. Hier herrscht die größte Variabilität in der Nähe der Ruhrgebietes. 
  
 

 
Abbildung 3.29 Die ersten drei Eigenvektoren (interpoliert) der empirischen Kovarianzmatrix der 
Beobachtungen für Ozon um 13 Uhr.  

                                                 
106 Die Kovarianzmatrix der Modelldaten wird nur für die Messorte gebildet, so dass die Größe und 
Bedeutung der Kovarianzmatrix in allen Fällen die gleiche ist. 
107 Die Untersuchung der Frage, ob beim RRSQRT-Ansatz für Kalman-Filter degenerierte oder „unphy-
sikalische“ Eigenvektoren entstehen und welche Auswirkungen sie haben, scheint lohnenswert.  
108 Die Struktur der Eigenvektoren ist vom Vorzeichen unabhängig. 
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Abbildung 3.30 Die ersten drei Eigenvektoren (interpoliert) der empirischen Kovarianzmatrix der 
Modellrechnung für Ozon um 13 Uhr. 

 
Abbildung 3.31 Die ersten drei Eigenvektoren (interpoliert) der empirischen Kovarianzmatrix der 
Beobachtungsinkremente (Beobachtung minus Modell ) für Ozon um 13 Uhr. 
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Abbildung 3.32 Die ersten drei Eigenvektoren (formal interpoliert) der empirischen Kovarianz-
matrix der Beobachtungen für NO2 7.00 Uhr. 

 
Abbildung 3.33 Die ersten drei Eigenvektoren (formal interpoliert) der empirischen Kovarianz-
matrix der Modellrechnung für NO2 7 Uhr. 

 
Abbildung 3.34 Die ersten drei Eigenvektoren (formal interpoliert) der empirischen Kovarianz-
matrix der Beobachtungsinkremente für NO2 7 Uhr. 
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3.3.5 Alternative dynamische Kovarianzmodelle  

Im Rahmen dieses Forschungsvorhabens werden vorrangig passive Ansätze der Daten-
assimilation angewendet. Die geschätzten Kovarianzmodelle des Backgrounds sind 
demzufolge unabhängig vom vorhergehenden Verlauf der Datenassimilation. Zusätz-
lich wurden jedoch zwei aktive Verfahren getestet:  
 

1. aktive OI während des Modelllaufs für das gesamte Jahr 2001 (siehe 4.1.7) 
2. der Kalman-Filter Lauf für den Juli 2001.  
 

Bei diesen Verfahren erfolgt die Kovarianzmodellierung während des Modelllaufs, 
denn beim aktiven Ansatz beeinflusst das Analyseergebnis zu einem Termin das Back-
groundfeld für den nächsten Termin. Aus diesem Grund sind klimatische Ansätze 
weniger geeignet. 
 
1. Bei der aktiven OI geschieht die Kovarianzmodellierung empirisch mit dem termin-
bezogenen homogenen Kovarianzmodell A der Beobachtungsinkremente. 
Vergleicht man das Rausch-Signal-Verhältnis der aktiven und passiven Variante, so 
stellt man ein um ca. 20% höheres Verhältnis bei gleichwertiger Beobachtungsfehlerva-
rianz fest. Dies spricht für eine geringere Ausprägung der Varianz des Background- 
bzw. Modellfehlers und damit für den positiven Effekt der Analyse im vorangehenden 
Zeitschritt. 
 
2. Beim Kalman-Filter ist die Prognose der Kovarianzmatrix die grundlegende Eigen-
schaft des Verfahrens (siehe Kapitel 2.5.7). Hier wird ein zeitlich veränderliches und 
räumlich inhomogenes Kovarianzmodell prognostiziert. Das Kovarianzmodell des 
Kalman-Filters liefert nicht nur die Kovarianz zwischen verschiedenen Punkten eines 
Feldes, sondern zwischen allen Elementen des Modellzustandsvektors. Der RRSQRT-
Ansatz des Kalman-Filters beruht auf der Eigenvektoraufspaltung der dynamisch mo-
dellierten Kovarianzmatrix P (siehe Kapitel 2.5.8).  
Eine Evaluierung des Kalman-Filters beschränkt sich meist auf den Nachweis seiner 
Funktionalität, d. h. der verbesserten Wiedergabe von Beobachtungen, die nicht an der 
Assimilation beteiligt waren (van Loon et al., 1999). Die Frage nach einer Verbesse-
rung der Assimilationsleistung kann durch dieses Vorgehen nicht beantwortet werden. 
Der Vergleich mit den in Kapitel 3.3.4.3 diskutierten Eigenvektoren und Eigenwerten 
der empirischen klimatischen Kovarianzmatrix kann zur Prozessevaluierung des Kal-
man-Filters herangezogenen werden. Dieser Vergleich ist angemessen, da die Stärke 
der Beeinflussung des Modellzustandsvektors durch die Beobachtungen mit dem 
Rausch-Signal-Verhältnis abgeschätzt werden kann. Die Beobachtungsfehlervarianz in 
der passiven Datenassimilation (Analyse) und der Kalman-Filter-Anwendung ist die-
selbe, so dass auch die Varianzen des Backgrounds bzw. des Modellzustandvektors 
vergleichbar sind.  
Der hier verwendete Kalman-Filter-Lauf ist eine erste Testversion. Der durchgeführte 
Vergleich hat demzufolge nur methodischen Charakter. Abbildung 3.35 zeigt beispiel-
haft die mit dem Kovarianzmodell C an den Stationsorten geschätzte empirische Stan-
dardabweichung für 13 Uhr im Sommerhalbjahr 2001 und den Mittelwert der Stan-
dardabweichung zur selben Zeit aus dem Kalman-Filter Lauf für den Juli 2001. Die 
Standardabweichungen des Kalman-Filter-Laufes sind um den Faktor 10 geringer. 
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Demzufolge ist auch die Möglichkeit der Veränderung des Feldes durch Beobachtun-
gen deutlich herabgesetzt109.  
Ein weiterer Unterschied ist die unterschiedliche Struktur der räumlichen Kovarianz. 
Abbildung 3.36 zeigt die Kovarianz zur Station Burg (BB001). Während bei den empi-
rischen geschätzten Werten erwartungsgemäß eine Abnahme der Kovarianz mit wach-
sender Entfernung auftritt, ist dies beim Kalman-Filter nicht zu erkennen. Die Stärke 
der Kovarianz hängt offensichtlich nicht von der Entfernung ab.  
Dieser Umstand lässt sich mit der hier angewandten dynamischen Methode zur Model-
lierung der Kovarianz durch die Modellprognosefehler (model noise, siehe 2.5.7) erklä-
ren. Der Modellfehler wird induziert, indem für das gesamte Modellgebiet eine kon-
stante Änderung von NOx- und VOC-Emission sowie vom vertikalen turbulenten 
Austauschkoeffizienten Kz angesetzt wird. Folgerichtig sind diese Modellprognosefeh-
ler über das gesamte Gebiet räumlich hoch korreliert. Folglich empfiehlt es sich, die 
Variation der Modellparameter gebietsabhängig zu machen. Aufgrund des erhöhten 
numerischen Aufwandes ist dies nur begrenzt möglich. Ansätze zur lokalen Begren-
zung der Kovarianz sind in Builtjes et al. (2000) zu finden. Die in dem vorliegenden 
Bericht empirisch modellierten Kovarianzen können diese Ansätze verbessern, da sie 
eine Spezifizierung von Einflussgebieten ermöglichen. 
Weitere zukünftige Untersuchungen könnten sich dem Einfluss der formalen Eigenvek-
torzerlegung und Reduktion (RRSQRT, siehe 2.5.8) auf die physikalisch-chemische 
Konsistenz der gebildeten Modellzustandsvektoren widmen. Dabei spielt die Frage der 
Entartung bzw. Rotation der Eigenvektoren ein Rolle. Die Ergebnisse des Kapitels 
3.3.4.3 bilden hierfür eine Arbeitsgrundlage. 

  
Abbildung 3.35 Standardabweichung (in ppb) des Fehlers des Backgrounds für Ozon um 13 Uhr 
aus dem Kalman-Filter-Lauf (links, Mittelwert im Juli 2001) und dem empirischen klimatischen 
Kovarianzmodell C (Sommer 2001). Die Skalierung ist für die Karten unterschiedlich.  

                                                 
109 Dieser Umstand wird noch verstärkt, da in der gegebenen Implementierung die Analyse mit dem Feld 
der Stundenmittelwerte und nicht mit dem prognostizierten Modellfeld erfolgt. Letzteres wird „nur“ über 
die Kovarianzen zum Feld der Stundenmittelwerte mit der Analyse verändert.  
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Abbildung 3.36 Kovarianz (in ppb2) zur Station Burg (BB001) (Pfeil) des Fehlers des Backgrounds 
für Ozon um 13 Uhr aus der Kalman-Filter-Lauf (links, Mittelwert im Juli 2001) und dem empiri-
schen klimatischen Kovarianzmodell C (Sommer 2001). Die Skalierung ist für die Karten unter-
schiedlich.  
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4 Analyse und Datenassimilation der 
Immissionsfelder  

 
In diesem Kapitel werden die auf Basis der Kovarianzmodelle A, B und C (siehe Kapi-
tel 3.3) erzeugten Immissionsfelder diskutiert. Ausgangspunkt für die statistische Ana-
lyse (siehe Kapitel 2.5.4) sind die stündlichen Beobachtungen in Deutschland und 
modellierte Felder des Modells REM/Calgrid (Flemming, 2003) für das Jahr 2001.  
Die stündlich analysierten Felder werden anhand ihrer Jahresmittelwerte110 zusammen-
gefasst und den reinen Modellrechnungen sowie den Beobachtungen gegenübergestellt. 
Die Bewertung des Analyseerfolgs erfolgt mit zwei unterschiedlichen Gütekriterien. 
Sie beruhen auf theoretisch abgeleiteten Fehlermaßen und einem vorraussetzungsfreien 
cross-validation-Ansatz. 
Die passiven Ansätze der Verbindung von Modell- und Beobachtungsinformation 
stehen im Mittelpunkt der Betrachtung.  

4.1 Verschiedene statistische Analyseverfahren der 
Immission  

Vier passive Ansätze für die Analyse auf Basis der Optimalen Interpolation (OI, siehe 
Kapitel 2.5.5) wurden im Rahmen des Berichtes für Ozon, NO2, NO, SO2 und PM10 
durchgeführt. Die Analyse erfolgt mit den drei Kovarianzmodellen A, B und C sowie 
für die logarithmisch transformierten Immissionswerte mit Kovarianzmodell A. Zusätz-
lich wird eine aktive Datenassimilation mit Kovarianzmodell A für eine Modellrech-
nung des Jahres 2001 durchgeführt. Für die Analyse müssen folgende Verfahrens-
merkmale festgelegt werden:  
 

1. Transformation der Variablen 
2. Bestimmung und Korrektur des Bias 
3. Festlegung der Beobachtungsfehlervarianz (Matrix R) 
4. Festlegung der Kovarianzen zwischen den an der Interpolation beteiligten 

Messstationen (Matrix HBHT) 
5. Festlegung der Kovarianz zwischen Beobachtungsort und Interpolationspunkt 

(Matrix HB) 
6. Art und Größe des Background-Feldes 
7. Anzahl der beeinflussenden Stationen 

                                                 
110 Wäre die alleinige Erzeugung von Feldern des Jahresmittelwertes die Aufgabe, so wäre unter Um-
ständen die direkte Analyse von Jahresmittelwerten mit einem terminbezogenen Kovarianzmodell ein 
ebenfalls vertretbarer Weg. Die stündlichen Werte werden jedoch für die Ableitung komplexer Luftgüte-
standards wie AOT40 (accumulation over threshold 40 ppb) benötigt. Darüber hinaus muss für die aktive 
Datenassimilation die zeitliche Auflösung der Beobachtung mit der der Modellierung übereinstimmen.  
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8. Auflösung der Analyse und der parametrischen Kovarianzmodelle 
9. mehrmaliges Durchlaufen mit homogenem Ansatz 

 
Eine Diskussion dieser Punkte erfolgt in den Kapiteln 4.1.1 bis 4.1.7. Eine Zusammen-
fassung wichtiger Verfahrensmerkmale wird in Tabelle 2 gegeben.  
 
 aktive 

Assimilation 
passiv 
terminbezogen & homogen 

passiv 
tlimatisch & Inhomogen 

Bezeichnung  DA A A_log B C 
Background  Modell_DA Modell Modell Modell Modell 
Log-Trafo - + - + + 
Biaskorrektur - Land-Stationen Land-Stationen  Land-Stationen  Land-Stationen 
R + HBHT  hom. s B

2 hom. s B
2 hom. s B

2 B + s Oi
2 C + s Oi

2 
HB A A A B C 
Auflösung 0.5°*0.25° 0.25°*0.125° 0.25°*0.125° 0.25°*0.125° 0.25°*0.125° 
Gebiet Mitteleuropa Deutschland Deutschland Deutschland Deutschland 

Tabelle 2 Untersuchte Variante des OI-Verfahrens für die Immission von Spurenstoffen 

Modell  Berechnetes Feld von REM/Calgrid  
Modell_DA  Berechnetes Feld von REM/Calgrid ausgehend von der Analyse vor 1 Stunde  
Land-Station Homogener Bias aus der Differenz der Land-Stationen zum Modellergebnis 
A   terminbezogenes homogenes Kovarianzmodell A 
B  klimatisches inhomogenes Kovarianzmodell B  
C  klimatisches inhomogenes Kovarianzmodell C  
s Oi

2  individuelle Beobachtungsfehlervarianz 
hom. s B

2 homogene Varianz der Beobachtungsinkremente  
 

4.1.1 Transformation der Variablen 

Die Analyse wird zum einem mit den unveränderten und zum anderen mit den loga-
rithmisch transformierten Größen durchgeführt. Die Transformiert wird, da so die 
Häufigkeitsverteilung aller betrachteten Spurenstoffe besser einer Normalverteilung 
folgt und dies eine Voraussetzung der Analyse ist. Bei der Rücktransformation findet 
die in Kapitel 3.1.1, Abschnitt „Abweichung von der Normalverteilung“, beschriebene 
Korrektur statt. Trotz dieser Korrektur gilt das für die Analyse grundlegende Prinzip 
der Varianzminimierung (siehe Kapitel 2.5.4) für die logarithmierte Größe. Dadurch 
werden die Unterschiede im Bereich der niedrigen Werte höher bewertet. Dies wider-
spricht den umweltpolitischen Intentionen der Luftreinhaltung, die an der Quantifizie-
rung der hohen Belastung orientiert sind.  
Neben diesem praktischen Argument ist die Analyse der unveränderten Variablen 
durch den Umstand zu rechtfertigen, dass die Beobachtungsinkremente, d. h. die Ab-
weichungen zwischen Modell und Beobachtungen, betrachtet werden. 
 

4.1.2 Biaskorrektur 

Die Korrektur des Bias zwischen Modell und Beobachtungen ist ein Problem, da er für 
unterschiedliche Stationen und Regimes sehr unterschiedlich sein kann (siehe Kapitel 
3.3.2). Daraus folgt das Problem seiner sinnvollen und skalengerechten Interpolation 
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über das gesamte Feld. Es ist besonders bei den aktiven Verfahren relevant, da bei 
diesen eine ungerechtfertigte Änderung in Gebieten ohne Messung, z. B. über dem 
Meer, das Modellergebnis negativ beeinflussen kann. Für die passiven Verfahren liegt 
der Schwerpunkt der Aufmerksamkeit in Deutschland und damit in den Gebieten, für 
die Messungen vorhanden sind. Weiterhin hängt der Bias stark von der Modellkonfigu-
ration ab und hat damit keinen allgemeingültigen Charakter.  
Aus diesen Gründen erfolgt für die passive Analyse im klimatischen wie auch im ter-
minbezogenen Fall eine homogene Korrektur des Bias an den Land-Stationen (R, siehe 
Kapitel 3.3.2). Das gesamte Modellfeld wird in den passiven Verfahren um einen kon-
stanten Wert verändert. In den aktiven Verfahren werden die Modellfelder nicht korri-
giert, mit der Annahme, dass der Bias durch die vorangegangene Assimilation stark 
verringert ist. 
 

4.1.3 Beobachtungsfehler und räumliche Kovarianz 

Für die homogenen Ansätze mit dem Kovarianzmodell A ergibt sich pro Termin ein 
Wert für die Gesamtvarianz (s 2

OB= s 2
B+ s 2

O) und ein sektoren- und abstandsabhängi-
ges Kovarianzmodell. Die Gesamtvarianz wird für die Hauptdiagonalelemente von 
HBHT+R verwendet. Mit dem homogenen Kovarianzmodell werden die Kovarianzen 
zwischen den beeinflussenden Stationen HBHT und zwischen Interpolationspunkt und 
den Stationen HB in Abhängigkeit von ihrem Abstand bestimmt.  

Bei den klimatischen Ansätzen stehen die empirische Kovarianzmatrix ·THBH + R zwi-
schen den Beobachtungsorten i, die daraus abgeleiteten Kovarianzmodelle B und C und 

die lokal geschätzte Varianz des Beobachtungsfehlers ¶2
Oiσ zur Verfügung.  

Die Kovarianz zwischen Beobachtungsort und Interpolationspunkt wird mit Hilfe der 
Kovarianzmodelle B und C ermittelt. Der Abstand sowie das Regime der Beobachtung 
und des Modellgitterpunktes sind die Kriterien für die Bildung des Kovarianzwerts für 
das Kovarianzmodell B. Bei Kovarianzmodell C wird die Kovarianz mit Hilfe der aus 
den interpolierten Eigenvektoren approximierten Kovarianzmatrix zwischen allen 
Gitterpunkten gewonnen (siehe Kapitel 3.1.3).  
Die Bereitstellung der Matrix HBHT+R kann alternativ durch direktes Verwenden der 
empirischen Kovarianzmatrix oder durch das Kovarianzmodell für HBHT und die lokal 

geschätzte Varianz des Beobachtungsfehlers ¶2
Oiσ  erfolgen. In ersten Fall ist keine 

separate Spezifizierung des Beobachtungsfehlers notwendig. Die Kovarianzen zwi-
schen den Beobachtungen sind gut durch die empirische Kovarianz quantifiziert. 
Diesem Vorteil steht die Verschiedenartigkeit in der Bestimmung von HB und HBHT 
gegenüber, die mit dem Kovarianzmodell gewonnen werden. Beide Vorgehensweisen 
wurden hinsichtlich des cross-validation-Analysefehlers getestet. Dabei stellte sich 
heraus, dass der zweite Ansatz, d. h. die Bestimmung von HBHT durch das Kovari-
anzmodell und von R durch die lokale Schätzung, bessere Ergebnisse bringt und dem-
zufolge hier angewendet wird.  
Hinsichtlich der Eignung von „sphärischer“, „exponentieller“ oder „Gaußscher“ Form 
des parametrischen Kovarianzmodells (Kapitel 3.2.3) ergab sich in Tests der Approxi-
mationsgüte eine Überlegenheit der „sphärischen“ und „exponentiellen“ Form. Beide 
ergeben gleichwertige Resultate hinsichtlich den damit abgeleiteten Beobachtungs- und 
Analysefehlern. Aufgrund des robusteren Verhaltens für sehr kurze Abstände und 
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seiner häufigen Anwendung für Immissionswerte (siehe 2.3.2) wurde dem „sphäri-
schen“ Kovarianzmodell der Vorrang eingeräumt. 
 

4.1.4 Auflösung, Interpolation von Gitterboxmittelwerten 

Die Auflösung des modellierten Feldes beträgt 0.5°*0.25° (ca. 25km * 25 km). Demzu-
folge ist sie die angestrebte Auflösung für die aktive Datenassimilation. Die geringsten 
Abstände zwischen den Stationen betragen im urbanen Bereich einige Kilometer. Das 
ist damit auch die untere Schranke der Auflösung (siehe auch Kapitel 2.1) für den lokal 
geschätzten Beobachtungsfehler. Um einen größeren Anteil der kleinräumigen Struktu-
ren sichtbar zu machen, wurde in einem Kompromiss die Auflösung der passiven Ana-
lyse auf 0.25°*0.125° (ca. 12km * 12 km) festgelegt. Die Auflösung der Analyse beein-
flusst die Weite der Abstandsklassen für die parametrischen Kovarianzmodelle (siehe 
3.2.1). Hierfür wird ein Wert von 7 km festgelegt. Bei kleiner Stichprobenanzahl ver-
größert sich das Intervall, um mindestens 30 Stichprobenelemente pro Abstandsklasse 
zu erreichen.  
Die Modellfelder bestehen aus Gitterboxmittelwerten; der vorgestellte Ansatz liefert 
jedoch zunächst nur die Interpolation von punktbezogenen Werten. Um dem Mittel-
wertcharakter gerecht zu werden, könnte eine Interpolation für mehrere Punkte in der 
Box mit anschließender Mittelwertbildung erfolgen. Es lässt sich jedoch zeigen, dass 
bereits eine Interpolation mit dem Mittelwert von HB, d. h. die Kovarianz zwischen 
Beobachtungsort und Analysepunkt, über dem Mittelungsgebiet den gewünschten 
Mittelwert liefert („Block-Kriging“, Cressie, 1993). 
  

4.1.5 Auswahl der beeinflussenden Stationen  

Nach Gleichung {0.31} ist jeder Analysepunkt durch die Gesamtheit aller Stationen 
beeinflusst. Die Größe des zu lösenden Gleichungssystems lässt sich stark verringern, 
wenn für jeden Punkt nur eine Auswahl von umliegenden Stationen zur Interpolation 
verwendet wird (siehe Kapitel 2.5.5). Für die Analyse wurden die 8 nächsten111 Beo-
bachtungen ausgewählt. Mehrere Tests mit einer erhöhten Anzahl von Stationen führ-
ten zu leicht glätteren Feldern ohne große weitere Unterschiede. Eine geringere Anzahl 
erwies sich teilweise als mathematisch instabil, da Artefakte einzelner Beobachtungen 
nicht ausreichend gedämpft wurden bzw. die Analysegleichung schlecht konditioniert 
war (siehe Kapitel 3.2.5.3).  
Neben der Anzahl der beeinflussenden Stationen stellt sich die Frage, ob die Kenntnis 
des Regimes die Auswahl der Stationen bestimmen soll. Dies ist bereit in dem regime-
abhängigen Kovarianzmodell B verwirklicht. Bei ihm sind die Kovarianzen zwischen 
sehr verschiedenen Regimes Null gesetzt worden. Es scheint jedoch für alle Analysen 
sinnvoll, die Beobachtungen des Regimes „Straße“ und „Straße extrem“ aus dem Ana-
lyseprozess auszuschließen. Ihre räumliche Repräsentativität ist deutlich kleiner als die 
gewählte Auflösung und ihr Beobachtungsfehler ist systematisch. Er ist deswegen mit 
der Varianz nur unvollständig erfasst. 
                                                 
111 Für die Analyse von Immissionsmessungen ist eine feste Anzahl von beeinflussenden Stationen 
empfehlenswerter, als alle Stationen innerhalb eines Einflussgebietes zu verwenden. Durch letzteres 
Vorgehen werden die Unterschiede zwischen Stadt und Land zu sehr verwischt. 
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4.1.6 Iterative Analyse 

Viele Analyseverfahren für meteorologische Ansätze der 60er bis 80er Jahre sind itera-
tiv, d. h. die Analyse wird mehrmals durchgeführt, wobei das jeweils letzte Analysefeld 
als Background für die nächste Analyse verwendet wird (Daley, 1991). Da das Back-
groundfeld sich verändert, ist für die nachfolgenden Analysen nur ein terminbezogener 
Ansatz möglich. Durch die nachfolgenden Analyseschritte wird meist die lokale Über-
einstimmung mit den Beobachtungen erhöht.  
Ob ein weiterer Analyseschritt sinnvoll ist, kann durch das Rausch-Signal-Verhältnis 
entschieden werden (siehe Kapitel 3.3.3.2): ist die Backgroundfehlervarianz im Ver-
gleich zur Beobachtungsfehlervarianz zu gering, so lohnt sich kein weiterer Analyse-
zyklus mehr und es besteht die Gefahr von instabilem Verhalten. Die in diesem For-
schungsvorhaben mit der iterativen Analyse durchgeführten Tests ergaben keine 
Verbesserung des Analyseergebnisses. In vielen Fällen konnte keine positiv definite 
Kovarianzfunktion approximiert werden.  
Darauf aufbauend wurde für die Durchführung der Vergleiche verschiedener Ansätze 
generell auf ein iteratives Vorgehen verzichtet, da es sich nur mit größerem Aufwand 
im Rahmen einer korrekten cross validation einbinden lässt. 
 

4.1.7 Aktive Datenassimilation mit Optimaler Interpolation  

Die aktive Datenassimilation mit Optimaler Interpolation ergibt sich aus einem Model-
lauf, bei dem jede Stunde die Modellfelder der Bodenschicht an die Beobachtungen 
angepasst werden. Dies geschieht, in dem jede Stunde die Analyse aus Modellfeld und 
Beobachtungen das Modellfeld ersetzt. Das Vorgehen gleicht dem Prinzip des Kalman-
Filters (siehe Kapitel 2.5.7, Abbildung 2.3) mit dem wichtigen Unterschied, dass die 
Kovarianz nicht mit Hilfe eines Ensembles von gestörten Modellzuständen prognosti-
ziert, sondern aus den Beobachtungsinkrementen zum Termin mit Modell A geschätzt 
wird. Ein terminbezogener Ansatz wurde gewählt, da die vorangegangene Assimilation 
die Modellfelder verändert. 
Die aktive Variante unterscheidet sich von der passiven dadurch, dass hierbei keine 
Biaskorrektur durchgeführt werden kann (siehe Kapitel 4.1.2) und dass die horizontale 
Auflösung des Feldes (siehe Kapitel 4.1.4) nicht erhöht wird.  
Da PM10 keine prognostische Modellvariable ist, muss ein Beobachtungsoperator 
(siehe Kapitel 2.5.3) für die Transformation in die PM10-Bestandteile existieren. Für 
die Aufteilung der PM10-Beobachtungen in die Modellvariablen wird hier das vom 
Modell gelieferten Massenverhältnis verwendet. Problematisch ist dabei, dass gewisse 
Aerosolbestandteile, wie die organischen, noch nicht in der Modellrechnung berück-
sichtigt werden. Weitere Untersuchungen sind notwendig, um eine angemessene Kor-
rektur der Modellrechnung auf Grundlage PM10-Beobachtung zu verwirklichen.  
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4.2 Methoden zur Beurteilung der Verfahrensgüte 

Eine Eigenheit der statistischen Interpolationsverfahren ist, dass sie neben dem Analy-
seergebnis ein zugehöriges Fehlermaß liefern. Dies ist die minimierte Varianz, die als 
Ausgangspunkt der Analysegleichung {0.31} dient. Die Varianz des Analysefehlers 
{0.37} basiert auf den Kovarianzmodellen und kann als ein die Analyse begleitendes 
Feld geliefert werden. Der so erfasste Analysefehler ist korrekt, wenn das geschätzte 
Kovarianzmodell fehlerfrei ist. Er hängt nur vom geschätzten Kovarianzmodell sowie 
dem Beobachtungsfehler ab und lässt sich im klimatischen Fall im Voraus bestimmen. 
Diese Analysefehlervarianz ist ein theoretisches Maß und stellt eine untere Schranke 
für den realen Analysefehler dar.  
Wegen der Abhängigkeit der theoretischen Analysefehlervarianz vom Kovarianzmodell 
besteht die Forderung nach einem voraussetzungsfreien Qualitätstest. Er beruht auf der 
Idee der „cross validation“: Einzelne Beobachtungen werden vom Analyseprozess 
ausgenommen112 und es wird überprüft, inwieweit die übrigen Messungen die ausgelas-
sene Messung reproduzieren können. Im Idealfall sollte der durch cross validation 
bestimmte Fehler kleiner als der reale Beobachtungsfehler sein. Dies gilt sowohl für 
seinen Erwartungswert (Bias) als auch für seine Varianz. Unterschiedliche Schätzungen 
der Beobachtungsfehlervarianz führen demzufolge zu unterschiedlichen Bewertungen 
des Analyseerfolgs. In umgekehrter Schlussfolgerung kann man mit einem vernachläs-
sigten Beobachtungsfehler eine genaue – aber unrealistische – Übereinstimmung zwi-
schen Beobachtung und Analyse am Beobachtungsort erzwingen (siehe Kapitel 2.5.5).  
Bei der aktiven Datenassimilation beeinflusst das Analyseergebnis eines Termins das 
Backgroundfeld für den nächsten Analysezeitpunkt. Durch diese Abhängigkeit von 
vorangegangenen Analysen lässt sich der cross-validation-Ansatz nur durch Weglassen 
einzelner Stationen für den gesamten Analyseverlauf realisieren. Es bedarf deswegen 
einer Vorauswahl eines ganzen Sets von Teststationen, da ein mehrmaliges Durchlau-
fen des Assimilationszyklus rechentechnisch zu aufwendig wäre. Durch das Weglassen 
eines großen Ensembles von Stationen wird jedoch die Assimilationsleistung verringert 
bzw. die ermittelten Kovarianzmodelle können verschiedenartig sein.  
  

                                                 
112 Für die Schätzung des Kovarianzmodells wurden jedoch der Vereinfachung wegen alle Stationen 
einbezogen, so dass das Kovarianzmodell immer das Gleiche ist. 
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5 Zusammenfassung 
 

Der grundlegende methodische Ansatz dieses Teils des Forschungsvorhabens ist die 
Kombination von Beobachtungen mit Modellrechnungen. Dieses Vorgehen nennt man 
„Datenassimilation“. Unter dem Begriff „Analyse“ versteht man eine räumliche Inter-
polation der Beobachtung durch die Kombination mit einem bereits vorgegebenen Feld. 
Im Fall dieses Forschungsvorhabens ist das ein vom Modell REM/Calgrid (Stern, 
2003a) berechnetes Feld. Die Analyse ist ein wichtiger Bestandteil der Datenassimilati-
on, da sie die Beobachtungen in das Modellfeld einfügt. Das Modellfeld wird dabei 
durch die Analyse zu einem Zeitpunkt ersetzt. Man spricht von „passiver Datenassimi-
lation“, wenn die analysierten Felder nicht aktiv in der Modellrechnung weiterverwen-
det werden.  
Die Optimale Interpolation ist das im Forschungsvorhaben angewendete Analysever-
fahren. Sie wird zur passiven und aktiven Datenassimilation verwendet. Der Kalman 
Filter ist eine komplexere Form der aktiven Datenassimilation, die besser die raum-
zeitliche Variabilität der Immissionsfelder berücksichtigt.  
Im Rahmen des Berichtes werden die bodennahen Spurenstoffimmissionen von Ozon, 
NO2, NO, SO2 und Feinstaub (PM10) in Deutschland behandelt. Die hier betrachteten 
Immissionsdaten stammen zum einen aus den operationellen Luftgütemessnetzen der 
Bundesländer, zum anderen wurden sie mit dem Eulerschen Chemie-Transport-Modell 
REM/Calgrid (Stern, 2003a) simuliert. Die horizontale Auflösung der Modellfelder 
beträgt 0.5° geografische Länge mal 0.25° Breite (ca. 25*25 km2). 
In diesem Bericht wird die Methodik von Analyse und Datenassimilation unter dem 
Blickwinkel der statistischen Besonderheiten der Immissionsdaten vorgestellt. Dabei 
wird auf die in diesem Forschungsvorhaben erstellte Klassifikation von Immissionsre-
gimes (Flemming, 2003) zurückgegriffen. Ein Schwerpunkt des Berichtes ist die Schät-
zung der statistischen Eigenschaften von Modell- und Beobachtungsfehler mit Hilfe 
von statistischen Modellen. Dies ist eine notwendige Voraussetzung für die Anwen-
dung der Analyse- und Datenassimilationsverfahren, da die Gewichtung von Beobach-
tung und Modellrechnung durch die Größe des jeweiligen Fehlers festgelegt wird. 
Die skalengerechte Kartierung von Luftgütestandards nach der EU-Rahmenrichtline 
zur Reinhaltung der Luft und deren Tochterrichtlinien (EU, 1996, 1999, 2000, 2002) ist 
die wichtigste Anwendung der Datenassimilation. Die genaue Darstellung der Luftgü-
testandards für das Jahr 2001 ist jedoch der Bestandteil eines gesonderten Berichtes, 
der im Rahmen des FE-Vorhabens 201 43 250 „Anwendung modellgestützter Beurtei-
lungssysteme für die bundeseinheitliche Umsetzung der EU-Rahmenrichtlinie Luftqua-
lität und ihrer Tochterrichtlinien“ erstellt werden wird. Eine erste Anwendung der OI 
zur Bewertung der Luftqualität 1999 kann in Stern und Flemming (2001) gefunden 
werden. 
Die Beschreibung der Kalman Filter Anwendung, deren wichtigstes Ergebnis die Op-
timierung von Modellparametern ist, erfolgt im Rahmen des FE-Vorhabens 299 43 246 
„Entwicklung eines Beurteilungssystems für das Zusammenspiel von Messung und 
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Modellrechnung für die bundeseinheitliche Umsetzung der EU-Rahmenrichtlinie Luft-
qualität und ihrer Tochterrichtlinien“. 
Ein umfangreicher Literaturüberblick stellt wichtige Arbeiten zur Kartierung von 
Immissionsdaten, zur inhomogenen Kovarianzmodellierung und zur Assimilation von 
Immissionsmessungen in Chemie-Transport-Modelle vor. In einem theoretischen Teil 
wird auf die Beschreibung von räumlichen Zufallsprozessen und die Schätzung seiner 
Momente aus Raum-Zeit-Daten eingegangen. Weiterhin werden die Gleichungen der 
statistischen Analyse und verschiedener Formen der Datenassimilation diskutiert. 
Das Grundproblem der statistischen Analyse ist die Bereitstellung der räumlichen 
Momente der Beobachtungen, der Modellrechnung bzw. die von deren Differenz (Beo-
bachtungsinkremente). Diesem Problem ist das Kapitel 3 gewidmet. Für die Schätzung 
der Momente aus einer Stichprobe sind vereinfachende Annahmen zur Bildung eines 
Kovarianzmodells erforderlich. In diesem Bericht werden ein homogenes terminbezo-
genes (A) und zwei inhomogene klimatische Kovarianzmodelle (B, C) entwickelt und 
miteinander verglichen. 
Das homogene Kovarianzmodell A beruht auf den Beobachtungen eines Termins und 
liefert eine abstandsabhängige homogene Kovarianzfunktion für verschiedene Rich-
tungssektoren. Es kann gut die zeitliche Variabilität der räumlichen Kovarianz abbil-
den, da es für jeden Termin neu ermittelt wird. Dieses Kovarianzmodell wurde für die 
ersten Arbeiten zur Kartierung der Immissionssituation für das Jahr 1999 verwendet 
(Stern und Flemming, 2001). Die neu entwickelten inhomogenen Ansätze werden 
separat für jede Tagesstunde gewonnen; sie können jedoch die über den Tagesgang 
hinausgehende zeitliche Variabilität nicht erfassen. Sie beruhen auf stationspaarbezo-
genen Kovarianzwerten, die aus gefilterten Zeitreihendaten geschätzt werden. Das 
Kovarianzmodell B greift auf die abgeleiteten Regimes zurück und setzt sich aus ho-
mogenen Kovarianzfunktionen für jede Kombination von Regimes zusammen. Das 
inhomogene Kovarianzmodell C beruht auf einer Interpolation der Eigenvektoren der 
empirischen Kovarianzmatrix.  
Wichtigstes praktisches Ergebnis der Kovarianzmodellierung ist die Quantifizierung 
der Standardabweichung eines unkorrelierten biasfreien Beobachtungsfehlers für alle 
Stationen. Der Beobachtungsfehler ist neben dem Messinstrumentenfehler ein Maß für 
die räumliche Repräsentativität der Messung. Der Betrag der Varianz des klimatischen 
Beobachtungsfehlers macht von ca. 20% für Ozon bis zu ca. 60% für NO der Gesamt-
varianz der Beobachtungsinkremente aus. Der Bias zwischen Modell und Beobachtung 
wurde klimatisch stationsbezogen oder homogen für alle Stationen zu einem Termin 
ermittelt. Er zeichnet sich durch einen ausgeprägten Tagesgang aus, der auf einen zu 
schwachen vertikalen Austausch in der Nacht und zu starken Austausch während des 
Tages durch die Modellierung schließen lässt.  
Weiterhin werden die mit Hilfe der Kovarianzmodelle erfassten räumlichen Strukturen 
und deren Anisotropie diskutiert. Die festgestellte Anisotropie der Kovarianz geht eher 
auf die Lage der Emissionszentren und der Messnetzanordnung als auf meteorologische 
Einflussfaktoren zurück. Für eine Testanwendung eines Kalman-Filters für 
REM/Calgrid wurde dessen dynamische Kovarianzmodellierung mit der hier durchge-
führten empirischen verglichen. Damit wurde eine Möglichkeit zur gezielten Verbesse-
rung der Assimilationsleistung mit dem Kalman-Filter aufgezeigt. 
Das abschließende Kapitel widmet sich technischen Aspekten der Analyse von stündli-
chen Immissionsfeldern auf der Basis von Beobachtungen und Modellrechnungen. Die 
angestrebte horizontale Auflösung beträgt dabei ca. 15 km. Es werden verschiedene 
Formen der Implementierung, wie z. B. die Anzahl der beeinflussenden Stationen, die 
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Biaskorrektur bzw. die Log-Transformation, diskutiert. Die Analyse erfolgt unter Ver-
wendung der Kovarianzmodelle A, B und C und zusätzlich mit Kovarianzmodell A für 
die logarithmisch transformierten Werte. Um die Güte der Analyseleistung zu ermittelt, 
wurde ein cross-validation-Ansatz entwickelt. Er bewertet die Interpolationsgüte an den 
Stationsorten, ohne dass die zugehörige Beobachtung zur Interpolation verwendet wird. 
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