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1 EinfUhrung

Fir die Einschdtzung umweltpolitischer Fragestellungen ist die genaue Kenntnis der
Immissionssituation in verschiedenen raumlichen und zeitlichen Mal3stdben unabding-
bar. Die Messung und die numerische Simulation atmospharischer Spurenstoffkonzen-
trationen ergeben aber immer nur ein unvollstandiges Abbild der Wirklichkeit. Die Mo-
dellrechnungen sind aufgrund der Unzulénglichkeit der Modelle und der von ihnen be-
notigten Eingabedaten einschliefdlich der Rand- und Startwerte fehlerhaft. Modelle kon-
nen jedoch fir verschiedenste Zeiten und Gebiete |mmissionsdaten berechnen.
Messungen der Immission sind nur fir ausgewahite Orte und fir wenige Spezies vor-
handen. Sie sind mit einem Messgerétefehler behaftet und ihre réumliche Représentati-
vitét ist aul3erst variabel und schwer spezifizierbar Messungen liegen nur fir bodennahe
Konzentrationen von Ozon, Stickoxiden, Schwefeldioxid, Kohlenmonoxid und TSP
vor. Die Stationsdichte ist dabei in Mitteleuropa am hochsten. Die Genauigkeit der
Messungen ist insbesondere fur Stickoxide und Kohlenmonoxid unzureichend. Ein-
zelne operationelle Radiosondenaufstiege vermitteln das vertikale Profil der Ozonkon-
zentration. Satellitenmessungen (z.B. von GOME® auf dem Satelliten ERS-2) der tro-
posphérischen Ozonsaule sind in den letzten Jahren verfligbar geworden. Der guten
Flachenabdeckung steht eine grof3e Messunsicherheit (Standardabweichung von 40-50
% ) gegentiber (Debruyn,1998). Daneben sind Feldmesskampagnen (z.B. BERLIOZ)
durchgefihrt worden, um einen genauen Einblick in die Prozesse und die dreidimensio-
nalen Verteilung der atmospharischen Spurenstoffe zu gewinnen.

Die moglichst realitétsnahe raumliche Darstellung der Spurenstoffkonzentration wird in
Anlehnung an die meteorologische Praxis Analyse” genannt. Die modernen Analyse-
verfahren® fiihren die Information der einzelnen Beobachtungen mit modellierten Fel-
dern zusammen. Sie sind damit eine (passive) Form der Datenassimilation. Die dabei
gewonnenen Analysen sind modellbezogen und abhéngig von der M odell aufl 6sung.

Bei der passiven Datenassimilation werden Modellfelder und Beobachtungen verbun-
den, ohne dass die Analyse im Modell weiterverwendet wird. Die passive Datenassimi-
lation dient vorrangig der Kartierung der Immissionsfelder und relevanter Luftgitepa-
rameter.

Man spricht von aktiver Datenassimilation, wenn Informationen aus Messungen zu
verschiedenen Zeitpunkten im Modellauf verwendet werden. Durch die Analyse wer-
den die Beobachtungsdaten in skalengerecht in den Modellzustandsvektor eingebracht.
Durch die aktive Datenassimilation wird die Information der Beobachtungen im Modell
fortgepflanzt. Sie wird dadurch fir Gebiete und Modellgréfen nutzbar gemacht, fir die
keine Beobachtungen vorliegen. Die Modelldynamik bewirkt, dass die entstandene
Analysein physikalisch chemischer Hinsicht konsistenter wird.

! Global Ozone Monitoring Experiment
2Unter Analyse versteht man sowohl den Prozess der Erstellung als auch deren Resultat

%Im Gegensatz zur subjektiven Analyse werden meist statistisch motivierte Kriterien fur die Analyse
verwendet. Die Erstellung der Analyse erfolgt numerisch
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2 Methodik der Analyseund
Datenassimilation

2.1 Problemstellung

Die Vorstellung eines kontinuierlichen Feldes der atmosphérischen Eigenschaften ist
von zentraler Bedeutung in der Meteorologie. Die dreidimensionale Variabilitat wird
haufig mit der Vorstellung von zweidimensionalen Feldern in mehreren Hohenniveaus
ausgedruickt.

Die Kontinuitét des Feldesimpliziert eine gewisse , Glattheit“ und damit eine untere
Schranke fur die raumliche Skala (Grofdenmalistab) der darstellbaren Phdnomene. Der
Begriff der Skalaist fur die Meteorologie entscheidend, da die Prozesse in verschiede-
nen Skalen h&ufig methodisch separiert* werden.

Die Eigenschaften des Feldes werden gewdhnlich nur an ausgewahlten Orten mit Mess-
instrumenten beobachtet. Methoden der raumlichen Interpolation, mit denen aus punkt-
bezogenen Messungen eine Felddarstellung an regelméaldig verteilten Gitterpunkten
gewonnen wird, werden in der Meteorologie mit dem Begriff Analyse zusammenge-
fasst.

Die gewonnene Felddarstellung wird gleichfalls Analyse genannt. Sie hat eine be-
stimmte raumliche Auflésung, die die untere Schranke fur die kleinste darstellbare
Skalavorgibt. Die Wahl der Aufldsung sollte demzufolge durch die interessierenden
bzw. die erfassbaren Skalen bestimmt sein.

Die K artierung’ als Grundlage der Visualisierung von atmosphéarischen Feldern ist
eine wichtige Motivation fir die Analyse. Durch die Felddarstellung konnen rdumliche
Beziehungen, wie z. B. das geostrophische Gle chgewicht, erkannt werden. Dariiber
hinaus kann das erzeugte Feld als Zustandsvektor eines dynamischen Modells verwen-
det werden. Die Analyse ist damit eine Methode, um Beobachtungswerte in Modell-
rechnungen einflief}en zu lassen. Die Analyse ist ein Kernpunkt in allen Verfahren der
Datenassimilation. Die Modellaufltsung stellt hierbel die Begrenzung fir die erfass-
baren Skalen dar, die sich von denen der Beobachtungen in vielen Féllen unterscheidet.
Die Separation der fur Analyse und Beobachtungen relevanten Skalen ist ein wichtiger
Punkt bei alen Analyseverfahren.

In den letzten 40 Jahren ist in der numerischen Wettervorhersage ein umfangreiches
Instrumentarium von Analyse- und Datenassimilationsmethoden entwickelt worden®.

“ Durch die Nichtlinearitét der zugrundeliegenden physikalischen und chemischen Gleichungen beein-
flussen die Prozesse der nicht erfassten Skalen die gréf3erskaligen Phénomene. Dies fuhrt zum Schlie-
Bungsproblem, d. h. zur Parametrisierung des Einflusses der nichtaufgeldsten Skalen auf der Basis der
aufgel bsten Skalen.

® Auch bei der Kartierung ist die raumliche Auflésung von Bedeutung; insbesondere fiir den Algorithmus
zur Isolinienfindung.

® Ein Standardwerk zu dieser Thematik ist das Buch von Daley (1991).
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Die modernen Verfahren beruhen auf der Theorie der Prognose’ von stochastischen
Prozessen, die unter dem Begriff Optimale Interpolation von Gandin (1965) in die
Meteorologie eingefuhrt wurden. Parallel dazu ist der statistische Zugang fir die réaum-
liche Interpolation unter dem Begriff Kriging® in der Geostatistik ausgearbeitet worden.
I mmissionsdaten werden haufig mit dem Kriging-Ansatz interpoliert.

Die statistischen Methoden haben sich bewahrt, da sie ein Instrumentarium bieten, um
die rdumlichen Beziehungen zu quantifizieren. Die statistisch geschétzte raumliche
Kovarianzfunktion ist die Grundlage fir die Bestimmung des Einflusses der Beobach-
tungen bei der rdumlichen Interpolation. Gleichzeitig kann ein méglicher Beobach-
tungsfehler berticksichtigt werden, der sowohl Ausdruck des Messgerétefehlers als
auch des Fehlers durch mangelnde Reprasentativitét ist. Letzterer ist die Folge man-
gelnder Ubereinstimmung zwischen den erfassten Skalen von Beobachtung und Analy-
se. Die statistischen Ansétze beinhalten die M6glichkeit zur Bestimmung von Vertrau-
ensbereichen der interpolierten Werte. Damit kann die Gite der Analyse bewertet und
in einem weiteren Schritt die Messnetzanordnung optimiert werden. Der erste Punkt ist
fur die Aufgabenstellung dieses Forschungsvorhabens von besonderem Interesse, da
die Felddarstellungen zur Ableitung von administrativen L uftgltestandards dienen
konnen.

Die Anwendung der modernen Methoden der Analyse und der Datenassimilation fr
die numerische Wettervorhersage beruht meist auf der Annahme von homogenen statis-
tischen Eigenschaften der Felder und Beobachtungen. Diese Annahmen sind fur bo-
dennahe Immissionsfelder haufig nicht gerechtfertigt. Im Folgenden sind Eigenschaften
der Immissionsfelder und ihrer Messung aufgelistet, die bei der Anwendung von statis-
tischen Analyseverfahren zu beriicksichtigen sind:

1. Diebodennahen Immissionsfelder sind aufgrund der Emissionsverteilung raum-
lich sehr inhomogen.

2. Die Messstationen liegen gehauft in den belasteten Gebieten und dienen haupt-
séchlich dazu, kleinrdumige Spitzenkonzentrationen und nicht ein moglichst
grof3es Gebiet zu erfassen.

3. Dieraumliche Représentativitdt und die Giite der Messung sind nur in geringem
Mal3e bekannt.

4. Die Haufigkeitsverteilungen der semi-positiv definiten® Immissionswerte sind

unsymmetrisch und kénnen mehrere Grélenordnungen umfassen.

I mmissionsdaten zeichnen sich durch eine hohe zeitliche Variabilitét aus.

Es existieren keine raumlichen Balancebeziehungen'®, dafiir aber lokale chemi-

sche Kopplungen™.

7. Die Gute der Chemie-Transport-Modelle liegt hinsichtlich der relevanten Vari-
ablen unter denen der numerischen Wettervorhersage™.

o o0

" In Anlehnung an die Statistik von Zeitreihen wird haufig von Prédiktion bei der raumlichen Interpolati-
on gesprochen.

8 Benannt nach einem siidafrikanischen Bergbauingenieur D.G. Krige, der das Verfahren zur Interpolati-
on von Probebohrungen entwickelte.

® Stets groRer gleich Null

% wie z. B. der geostrophische Wind

1 7. B. das fotostationére Gleichgewicht zwischen Ozon, NO und NO»

12 Da CTM haufig mit modellierten Daten der Wettervorhersage angetrieben werden, ist diese Aussage
trivial. Hier ist jedoch gemeint, dass die Fehlermal3e fir Ozon etc. weit gréfier sind als die der Tempera-
tur- oder Windprognose.
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2.2 Zielstellung

Das Ziel dieses Forschungsvorhabensist die Entwicklung, Anwendung und der Ver-
gleich von Verfahren zur statistischen Analyse von bodennahen I mmissionsmessungen.
Damit sollen Felder von stiindlichen Werten von Ozon, NO,, NO, SO, und PM 10 fir
Deutschland bzw. Mitteleuropa erzeugt werden. Die raumliche Auflosung der Analysen
betragt dabei ca. 15 km. Eine Darstellung der Strukturen der urbanen Skala wird damit
nicht angestrebt.

Die aufgefiihrten Stoffe unterscheiden sich hinsichtlich der raumlichen Variabilitét
aufgrund der Struktur ihrer Quellen und ihrer atmosphérischen Lebensdauer. Aus
Grunden der Vereinfachung und der Vergleichbarkeit wird jedoch versucht, eine mog-
lichst einheitliche Methodik fur alle Stoffe zu entwickeln.

Der methodische Ansatz der Analyseist vorrangig die passive Datenassimilation, d. h.
die Kombination der Beobachtungen mit den Modellfeldern des Eulerschen Ausbrei-
tungsmodells REM/Calgrid (Stern, 2003a; Stern, 1994). In Anbetracht der gestellten
Aufgabe, stiindliche Immissionsfelder fir mehrere Jahre zu gewinnen, wird auf die
Anwendung der numerisch aufwendigen aktiven 4-dimensionalen Datenassimilations-
verfahren verzichtet. Eswird ein auf der Optimalen Interpolation beruhendes passives
Analyseverfahren'® entwickelt, dass die in Kapitel 2.1 aufgefiihrten Besonderheiten der
Immissionsdaten beriicksichtigt. Zu Vergleichzwecken wird jedoch eine aktive Assimi-
lation auf der Basis der Optimalen Interpolation und die Anwendung eines Kalman-
Filter diskutiert. Bei der aktiven Datenassimilation ersetzt die Analyse die Modellfelder
und bewirkt damit eine Assimilation der Beobachtungen wahrend des Modellaufes.

In dem Bericht wird den raumlich statistischen Eigenschaften der Beobachtung und
ihrer Fehler besondere Aufmerksamkeit geschenkt. Die Ergebnisse dieser Untersu-
chung sind auch fur alle weiteren Datenassimilationsverfahren von Bedeutung. Fur das
Anayseverfahren werden terminbezogene und klimatische Kovarianzmodelle der
Beobachtungsinkremente bzw. Modellfehler abgeleitet. Die terminbezogenen Kovari-
anzmodelle erlauben eine bessere Wiedergabe der zeitlichen Variabilitét; klimatische
Kovarianzmodelle sind besser geeignet, die raumliche Inhomogenitét abzubilden.
Dariiber hinaus werden ausschliefdlich auf Beobachtungen oder auf Modelldaten beru-
hende raumliche Kovarianzmodelle gewonnen. Diese kdnnen fur die Evaluierung von
Modellen verwendet werden, die Gber den Vergleich der ortsbezogenen statistischen
Mal3e, wie Mittelwert und Varianz, hinausgeht.

2.3 Literaturlberblick

Die fur dieses Forschungsvorhaben relevante Literatur lasst sich in zwei Gruppen
einteilen. Es sind zum einem Arbeiten, die die Interpolation von Immissionsbeobach-
tungen fur deren Kartierung zum Thema haben (Kapitel 2.3.2). Zum anderen werden
Arbeiten zur Datenassimilation von vorrangig bodennahen Messungen mit Eulerschen
Chemie-Transportmodellen (Kapitel 2.3.3) vorgestellt. Zu Beginn wird ein kurzer
Uberblick tiber praktische Anwendung gegeben (Kapitel 2.3.1), da der gegebene Uber-

3 Da die Analyse immer ein wesentlicher Bestandteil der 4D-Datenassimilation ist, kénnen die dabei
gewonnenen Erkenntnisse zur Verbesserung der Assimilation von Spurenstoffkonzentrationen verwendet
werden.
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blick vorrangig durch die Methodik motiviert ist. Es liegt in der Natur der Sache, dass
die vorgestellte Auswahl unvollstandig und subjektiv ist.

231  Anwendungsgebiete

Die meisten Verfahren der Immissionskartierung dienen der réumlichen Darstellung
der Luftqualitét. Sie beziehen sich auf die wirkungsspezifischen Eigenschaften, d. h.
auf abgeleitete klimatische Felder™, mit denen L uftreinhaltungsziele formuliert wer-
den. Es sind dies Jahresmittelwerte, Maximalwerte oder dosi sbezogene Grofien wie
AOT40™-Werte. Die Darstellung orientiert sich dabei vorrangig an der Uberschreitung
von umweltpolitisch vorgegebenen Grenzwerten oder 6kol ogischen Toleranzbereichen.
Neben der Kartierung sind Untersuchungen zur optimalen Messnetzgestaltung ein
weiteres Anwendungsgebiet der Geostatistik. Es beruht auf der Untersuchung der
Interpolationsfehler fir verschiedene Messnetzkonfigurationen (Nychka und Saltzman,
1998 und Shindo et al., 1990).

Ein weiteres Anwendungsfeld der Immissionskartierung ist die Evaluierung von Che-
mie-Transport-Modellen. Aufgrund des Skal enunterschiedes der Beobachtungen hin-
sichtlich der Gitterboxmittelwerte des Modells erscheint ein direkter Vergleich von
Rechnung und Messung problematisch (McNair et al., 1996). Dies gilt besonders dann,
wenn die raumliche Représentativitét der Messung gering oder unbekannt ist. Ein
moglicher Lésungsansatz ist, die Modellergebnisse mit einer aus den Beobachtungen
interpolierten Felddarstellung zu vergleichen. Die Felddarstellung muss dabei der
Aufldsung bzw. Skala des Modells entsprechen. Beispiele fur dieses Vorgehen bei der
Evaluierung sind die Arbeiten von Schaug et al. (1993), Davis et al. (2000) und Flem-
ming et al. (2001).

Aufgrund der hohen Komplexitét wird die Datenassimilation fir Chemie-Transport-
Modelle meist nur in Prozess- und Modellstudien mit Episodencharakter angewendet.
Neben den bodennahen Immissionsmessungen liegt der Schwerpunkt auf der Assimila-
tion von Satellitendaten fur grof3r&umige Modellrechnungen (Jeuken et a., 1999). Die
Initialisierung von operationellen Immissionsprognosen mit gemessenen Ozonkonzent-
rationen ist ein Beispiel fur die Anwendungen von einfachen Assimilationstechniken
(Flemming, 1996). In einem weiteren Zusammenhang stehen Methoden der inversen
Modellierung, bei denen aus Beobachtungsdaten Emissionswerte abgeleitet werden.

2.3.2 I nter polation von M esswerten

Das Standardwerk fur Fragen der rdumlichen Statistik, mit Beispielen fur Immissions-
daten, ist Cressie (1993). Darauf aufbauend werden neue inhomogene Ansétze von
Smith (2001) behandelt.

Die Auswahl der nun vorgestellten Arbeiten orientiert sich vorrangig an der Methodik,
mit der Losungsansétze fur diein Kapitel 2.1 erwahnten Probleme angeboten werden.
Homogenere Felder wie die von Ozon sind mit geringeren Schwierigkeiten zu interpo-
lieren als die stark strukturierten Felder von NO oder Feinstaub (PM10).

 Fiir die Datenassimilation mit einem dynamischen Modell, aber auch fiir die Sommersmogproblematik
werden Analyseverfahren flr aktuelle Immissionsfelder bendtigt.
> Akkumulierte Dosis {iber 40 pbb Belastung.
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Obwohl Beobachtungsfehler und die ungleichmaliige Stationsdichte nicht ohne weite-
res behandelt werden kénnen, sind fir die Interpolation der Messwerte formale
nichtstochastische Methoden gelaufig, da sie die aufwendige Schdtzung der Kovarianz-
funktion und der Beobachtungsfehler vermeiden (Wiegand und Dickmann, 2000). Die
direkte Beriicksichtigung® der Stationsdichte muss bei diesen Ansétzen (siehe 2.5.5)
zusétzlich eingefuihrt werden. Falke und Husar (1998) liefert hierfir ein Beispiel bei der
Interpolation von Ozonmessungen.

2.3.2.1 Homogene statistische Ansatze

Zier (1976) entwickelte ein verteilungsunabhangiges I nterpol ationsverfahren auf der

Basis von Quantilkorrelationsmal3en fur die Staubbelastung in der DDR. Das Interpola-
tionsergebnis ist kein absoluter Wert, sondern die Wahrscheinlichkeit, dass der Wert in
einem bestimmten Werteintervall liegt*’.

Eine grundlegende Anwendung der statistischen Interpolation stuindlicher Werte von
SO, und zusétzlich fur NO,, NO sowie Ozon in den Niederlanden geben van Egmond
und Onderdelinden (1981). Die erstellte Analyse hat dabei eine Auflésung von 40 bzw.
28 km. Die Autoren vergleichen drel Interpolationsmethoden mit 1) einem exponentiel-
len Korrelationsmodell (Optimale Interpolation, Ol), 2) einem nichtparametrischen
Ansatz (Eigenvektorinterpolation, siehe Kapitel 3.2.5.2) und 3) mit formaler Abstand-
wichtung. Dabei wird eine leichte Uberlegenheit der ersten beiden statistischen Ansitze
festgestellt. Die notwendigen empirischen Korrelationswerte werden sowohl terminbe-
zogen (rein raumlich, siehe Kapitel 3.2.1) als auch klimatisch (aus Zeitreihen, siehe
Kapitel 3.2.2) ermittelt. Aufgrund mangelnder zeitlicher Filterung ergeben sich dabel
grofdere Unterschiede, die fir die Bewertung der relativen Analysefehler und Beobach-
tungsfehler von Bedeutung sind. Die Beobachtungsfehlervarianz wird fur SO, auf ca. 5-
10 % der terminbezogenen Varianz geschétzt.

Cressieet a. (1999) liefern ein Beispiel fur die rdumliche Interpolation von PM10in
der urbanen Skala. In dieser Arbeit wird Standard-Kriging fur logarhitmisch normalver-
teilte Daten mit einem modernen Markov-Zufallsfeld-Ansatz mit Hilfe von cross vali-
dation'® verglichen. Letzteres VVerfahren liefert Felder mit starkeren Gradienten, be-
rcksichtigt jedoch nicht die Wirkung von Beobachtungsfehlern. Weiterhin treten
Probleme bei ungleichméaldiger Stationsverteilung auf

2.3.2.2 Raum-Zeit-Zusammenhange

Die Gesamtheit der Raum-Zeit Variabilitat erfasst Bilonick (1985 und 1988) mit der
Modellierung von verbundenen Raum-Zeit Kovariogrammen zur Kartierung der mo-
natlichen sauren Deposition in den USA. Weiterentwicklungen der Kriging-Technik
werden zur Bildung von Flachenmitteln (Block Kriging) und lokalen Histogrammen
(Indikator Kriging) angewandt. Der letzte Ansatz ist eine Form der nichtlinearen statis-

1° Dies gilt firr die Interpolation und nicht fiir die Kovarianzmodellierung.
7 Das Verfahren ahnelt sehr dem sogenannten Indikator-Kriging (siehe Kapitel 2.4.1.3).
18 Die Interpol ation fiir den Stationsort wird mit dem dabei nicht verwendeten Messwert verglichen.
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tiscrllgen Interpolation, bei der die Interpolationsgewichte vom Messwert selbst abhén-
gen—.

Die Spezifikation der zeitlich periodischen Erwartungswerte ist die Grundlage fir die
Interpolation von Ozon-AOT40-Werten in Norwegen (Host und Follestad (1999). Die
vom Jahres- und Tagesgang befreiten Abweichungen bilden die Grundlage fir die
Schétzung der Kovarianzstruktur. Fir die Gewinnung normalverteilter Ensembles
werden die logarithmierten Ozonmessungen betrachtet.

2.3.2.3 Inhomogene Kovarianzmodellierung

Seit Beginn der 90er Jahre sind in der Geostatistik verstarkt Ansétze zur Behandlung
inhomogener und anisotroper Zufallsfelder entwickelt worden (Meiring et al., 1997),
die auch fir Luftverschmutzungsprobleme angewendet werden. Smith (2001) gibt eine
gute Darstellung und Diskussion dieser Entwicklungen. Es kann zwischen den folgen-
den Ansitzen® der K ovarianzmodellierung unterschieden werden:

Moving-Window-Ansatz
Deformationsansatz
EOF-Erweiterung

Der Moving-Window-Ansatz (Haas, 1990) spezifiziert eigensténdige K ovarianzmodel -
le fUr Teile des Untersuchungsgebietes. Der Deformationsansatz (McNair et a., 1996)
ist eine vielversprechende Methode, mit der anisotrope Strukturen behandelt werden
kénnen. Es wird dabei eine Verzerrung des réaumlichen Koordinatensystems vorge-
nommen, so dass die zugehdrige K ovarianzfunktion mdglichst homogen und isotrop
ist. Die EOF-Ansétze bilden ein nichtparametrisches Kovarianzmodell, das auf der
Eigenvektoraufspaltung (SVD) der empirischen Kovarianzmatrix der Messwerte beruht
(Obled und Creutin, 1986, siehe auch Kapitel 3.2.5.2).

Die Basis fur das Aufspiren der Inhomogenitét ist die empirische Kovarianzmatrix fir
alle Paare von Stationsorten. Sie wird aus Zeitreihendaten ermittelt (siehe Abbildung
3.1, S. 37). Damit ergibt sich fur alle Methoden die Notwendigkeit zur Separation der
zeitlichen Variabilitét, um zeitlich unabhéngige Realisierungen eines Zufallsfeldes zu
erhalten (siehe 3.2.2).

Das Grundproblem, die unbekannte Kovarianz zwischen Beobachtungs- und Interpola-
tionspunkt zu bestimmen, bleibt zunachst bestehen. Es wird gel6st, indem die fir die
Beobachtungsorte bestimmte Grofien mit einfachen Ansétzen auf die Orte ohne Beo-
bachtung Ubertragen werden. Eine Alternative sind flachendeckende |mmissionswerte,
die durch Eulersche Modelle simuliert wurden.

Mit dem Moving-Window-Ansatz identifiziert Haas (1995) fur die USA 6 verschiedene
Gebiete mit einer unterschiedlichen Kovarianzstruktur hinsichtlich der monatlichen
Sulfatdeposition. Fur jedes Teilgebiet wird ein homogenes Variogramm der logarith-
mierten Werte geschétzt und fir das Kriging des gesamten Gebietes verwendet.

Der Deformationsansatz ist die Grundlage fir die Analyse der stiindlichen Ozonkon-
zentration in Gitterpunktsdarstellung in Meiring et al. (1998). Die Analyse wird zur

¥ Die raumliche Kovarianzstruktur ist fiir hdhere bzw. niedrigere Belastung verschiedenartig.
% Dariiber hinaus gibt es komplexere Methoden, die mit Bayesschen Ansstzen die Linearitét des traditi-
onellen Krigings aufgeben.
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Evaluierung des Eulerschen Ausbreitungsmodells SARMARP in North Carolinafir eine
2-monatige Ozonepisode verwendet. Diese Arbeit ist von besonderem Interesse, da das
Vorgehen bei der Behandlung der Zeit-Raum-Trennung Ahnlichkeiten mit dem hier
gewdhlten aufweist. Aus einer Vorarbeit von Sampson und Guttorp (1998) stammt die
Erkenntnis, dass die rdumliche Kovarianzstruktur grof3e Unterschiede im Verlauf des
Tages aufweist und kein geeigneter Separationsansatz (siehe 2.4.2) fir Raum und Zeit
zu bilden ist. Aus diesem Grund wurde —wiein dieser Arbeit — ein eigenstandiges
réumliches Kovarianzmodell fir jede Tagesstunde geschétzt. Die Analyse bezog sich
dabei auf die logarithmierten Ozondaten, um eine Normalverteilung zu gewahrleisten.
Die Zeitreihen fur jede Tagesstunde wurden mit dem Mittelwert zentriert und die wel-
terhin vorhandene zeitliche Korrelation mit Hilfe eines AR(2)-Modells** detektiert. Die
Residuen zu der mit AR(2) geglétteten Reihe wurden dann als zeitlich unabhangiges
Ensemble zur Bildung der paarbezogenen Kovarianzwerte verwendet. Der Deformati-
onsansatz verzerrte nun das Koordinatensystem, um méglichst homogene exponentielle
Kovarianzmodelle bilden zu kénnen. Mit Hilfe dieser Modelle wurde dann der Wert
des Residuums am Interpolationsort mit Block-Kriging ermittelt, um dem Mittelwert-
charakter der Gitterzellendarstellung gerecht zu werden. Zu diesem Wert wurden nun
in Umkehrung der Filterung der Wert des AR(2)-Modells und der Mittelwert addiert.
Dadiese Werte fUr den Interpolationsort unbekannt sind, wurden die Koeffizienten fur
AR(2) und der Mittelwert von den Beobachtungsorten mit Hilfe eines einfachen nume-
rischen Interpolators ermittelt.

Eine Anwendung der EOF-Erweiterung ist die Analyse der jahresgangbefreiten Wo-
chenmittel von SO, im Osten der USA (Holland et al., 1999). Fiir diese Arbeit werden
drei Kovarianzmodelle mit unterschiedlicher Komplexitét angenommen: 1) das traditi-
onelle homogene und isotrope Kovarianzmodell, 2) ein homogenes und isotropes Kor-
relationsvarianzmodell bei rdumlich variabler Varianz (siehe Gleichung {0.12}) und 3)
ein Kovarianzmodell analog zu 2) mit einer zusétzlichen Erweiterung auf Basis der
EOF der Kovarianzmatrix der Abweichung der empirischen Kovarianzmatrix vom
Kovarianzmodell 2. Durch diese Erweiterung werden die grofr&umige Inhomogenitét
und Isotropie erfasst, der kleinrdumigen Variabilitét wird elne isotrope Struktur zuge-
schrieben. Median und 98%-Perzentil des Interpolationsfehlers lagen bei dem Kovari-
anzmodell 3) deutlich unter denen der anderen Ansétze.

2.3.3 Datenassimilation

Daley (1991) liefert die Grundlagen zur Analyse fur die numerische Wettervorhersage.
Einen guten Uberblick tiber die modernen Methoden der Datenassimilation enthalt die
Darstellung von Bouttier und Courtier (1999).

Die komplexen vier-dimensionalen Verfahren (Kaman-Filter, 4D-VAR) bedeuten
einen hohen mathematisch-numerischen Aufwand, dessen Bewdltigung auch haufig der
Schwerpunkt der entsprechenden Publikationen ist. Dieser Uberblick beleuchtet haupt-
séchlich die Frage, wie die besondere Spezifik (siehe Kapitel 2.1) der |mmissionsbeo-
bachtungen und ihrer Modellierung behandelt wurden.

Eswird vorrangig auf die Assimilation der bodennahen Messungen aus den L uftgite-
messnetzen fur Eulersche Chemie-Transport-Modelle eingegangen; Arbeiten mit Satel-
litendaten oder Lagrangesche Modelle sind nur kurz aufgefihrt. Weiterhin werden

2! Autoregressives Modell auf Basis der beiden zuriickliegenden Datenwerte
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Arbeiten erwdhnt, die sich mit der Analyse auf Basis von Beobachtungen und Modell-
betrachtungen befassen und damit als V orstufen der Datenassimilation dienen konnen.

2.3.3.1 Einfache Ansatze

Einfache Ansétze fir die Verbindung von Modellierung und Beobachtung stellt die
Arbeit von Venkatram (1988) zur Kartierung der Sulfatdeposition dar. Hier wird ein
Gaul-Modell verwendet, um einen inhomogenen Erwartungswert fir die anschlief3ende
Interpolation mit normalem Kriging zu gewinnen.

Stedman et al. (1997) gehen den umgekehrten Weg fur die hochaufgel 6ste Kartierung
der NOy-Jahresmittelwerte in Grof3britannien. Sie verwenden die Jahresmittelwerte von
Stationen mit l&ndlicher Charakteristik fir die Interpolation eines Hintergrundfeldes
mit Hilfe von Kriging. Die Darstellung der Immission in bel asteten Gebieten beruht auf
einem hochaufgel 6sten Emissionskataster. Mit Hilfe eines einfachen Regressionsmo-
dells wird ein Zusammenhang zwischen der Jahresemission und -immission gewonnen
und fur die Kartierung verwendet.

Eine methodische Ahnlichkeit zum Kalman-Filter ist in der Arbeit von Nychka und
Saltzman (1998) fur die rdumliche Interpolation von Ozonmessungen im Mittelwesten
der USA zu finden. Hier werden die Ergebnisse des Eulerschen Modells ROM zur
Schétzung eines inhomogenen Kovarianzmodells herangezogen. Das Model| liefert
somit nicht die aktuellen Werte, sondern nur die raumlich statistischen Eigenschaften.
Eswird dabel der Umstand ausgenutzt, dass die Modellrechnungen fur jeden beliebigen
Ort vorliegen und somit Inhomogenitéten erfassbar sind.

I nitialisierung von Ozonprognosen

Fur ein UBA-Projekt zur operationellen Ozonprognose mit REM 3 wurde ein Initialise-
rungsverfahren mit Ozonbeobachtungen entwickelt (Flemming et al., 1999a,b). Fir den
Termin des Modellstarts um 15 UTC wird aus dem prognostizierten Ozonfeld und
vorliegenden Messungen aus Deutschland eine Analyse mit Hilfe der optimalen Inter-
polation gewonnen (Gandin, 1965). Die Korrektur des Modellfehlersist dabei auf die
Ozonkonzentrationen in Deutschland beschrénkt. Die Varianz des Beobachtungsfehlers
wird mit der Beobachtungsmethode nach Hollingsworth und Lonnberg (1986) mit Hilfe
eines terminbezogenen und homogenen Kovarianzmodells bestimmt.

Diese Anayse dient als Startfeld fur den nachsten Prognoselauf. Aufgrund des be-
schrankten Reprasentati onsgebietes der Messungen erfolgte eine Anderung des Ozon-
feldes nur im deutschen Gebiet. Untersuchungen zeigten, dass eine alleinige Anderung
der Ozonkonzentration der Bodenschicht des Modells keine Auswirkungen auf die
prognostizierten Ozonkonzentrationen des nachsten Tages hat (Flemming, 1996).

Mit der Annahme guter vertikaler Durchmischung der Grenzschicht zum Zeitpunkt des
Modellstarts wurden die Bodenmessungen auch zur Analyse der zweiten Modellschicht
herangezogen. Gleichzeitig wurden die NO,-Konzentrationen mit Hilfe des fotostatio-
néren Gleichgewichtes an die veranderten Ozonwerte angepasst. In einer Fallstudie fir
eine typische Sommersmog-Periode (20.7.-30.7.1994) reagierte das Modell auf diese
Initialisierung mit besseren Ergebnissen, insbesondere bei hohen Ozonkonzentrationen.
Fir die Untersuchung wurden diagnostische Daten verwendet. Bei der Auswertung
Uber den gesamten Zeitraum der Prognoseanwendung verringerte sich die festgestellte
mittlere Beeinflussung des nachsten Tages durch die Initialisierung. Der Einfluss des
zunehmenden Prognosefehlers der meteorol ogischen Daten Uberlagert den Effekt der
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Initialisierung. Deutlich erkennbar ist jedoch der ,, Export” der Initialisierung mit der
Hauptwindrichtung nach Polen. Dies macht deutlich, dass Beobachtungen aus ganz
Mitteleuropa fr eine Initialisierung notwendig sind. Der Umstand, dass die Anfangs-
bedingungen des Ozons fir die Rechnung mit troposphérischen Chemie-Transport-
Modellen keinen grof3en Einfluss haben, wird auch durch anderen Autoren bestatigt
(Petry, 1993).

2.3.3.2 Variationsansatze

Assimilation von stratospharischem Ozon

Eine Hauptanwendung fur die Datenassimilation von Spurengasen ist die Gewinnung
von Anfangszustanden fir global e numerische Wettervorhersagemodelle, in denen die
atmosphérische Ozonkonzentration eine prognostische Variableist (z. B. in Modellen
am ECMWF, UK Met Office und NCEP). Dabei stehen die Dynamik und die Wech-
selwirkung mit der Strahlung des stratosphérischen Ozons im Mittel punkt des Interes-
ses. Chemische Reaktionen werden von diesen Modellen nur in einfacher Form behan-
delt.

Die Beobachtungen werden mit Hilfe satellitengestitzter Fernerkundungsmethoden
gewonnen. Um aus den Strahlungsdaten K onzentrationen zu gewinnen, missen inverse
Strahlungsrechnungen unter V orgabe von Druck- und Temperaturprofilen durchgefiihrt
werden. Variationsmethoden eignen sich besonders, diese Daten mit ihren komplizier-
ten Beobachtungsoperatoren in Modellzusténde zu assimilieren bzw. zu analysieren
(Anderson, 1992).

Die europaischen Aktivitaten auf diesem Gebiet sind im SODA?-Projekt zusammen-
gefasst. Variationsmethoden (4DVAR) wurden z. B. am ECMWF und am UK Met
Office fur die Satellitenmessungen von Ozon und weiteren Spurenstoffen entwickelt.
Durch die Assimilation von stratosphérischem Ozon erhofft man sich eine V erbesse-
rung der Strahlungsrechnung, der UV-Strahlungsvorhersage am Boden und eine Uber-
prufung von Stromungsfeldern in der Stratosphére (Fisher und Lary, 1995).

4DVAR fur das EURAD System

In den letzten Jahren wurde von Elbern und Schmidt (2001) ein 4DVAR System fir
das Ausbreitungsmodell EURAD CTM2 entwickelt. Das adjoint model zur Minimie-
rung der Kostenfunktion ist fir den Transportteil und den RADM 2-Gasphasen-
Chemismus formuliert.

Das Verhalten dieses Systems wurde mit ,,identical twin®-Experimenten untersucht.
Dazu werden synthetische ,, Beobachtungen® aus einem Modellauf mit bestmoglicher
Konfiguration (Aufldsung, Parameter etc.) entnommen. Das Assimilationsverhalten
einer anderen Modellkonfiguration beztiglich dieser Beobachtungen ist dann Gegens-
tand der Untersuchung.

Experimente mit 70 realen Ozonmessungen aus ganz Europa wurden fir den August
1997 durchgefuhrt. Die Assimilation erfolgte in einem 6-sttindigen Intervall von 6 bis
12 UTC. Von diesen Analysen ausgehend, konnten deutlich verbesserte Modellsimula-
tionen der Ozonkonzentration bis in die Abendstunden, d. h. mit einem Zeithorizont
von 6 Stunden, verzeichnet werden.

22 European Union Satellite Ozone Data Assimilation
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Der 4DVAR Ansatz wurde auch zur Analyse und Optimierung von Emissionsraten
herangezogen. Eine genaue Einschétzung des praktischen Erfolgs dieser Optimierung
war aus den beiden vorliegenden Publikationen nicht zu entnehmen.

2.3.3.3 Kalman-Filter-Ansitze

Ausbreitungsrechnung von SO,

Erste Anwendungen vom Kalman-Filter fir die Luftreinhaltung stammen aus den
siebziger Jahren (Fronzaet d., 1979).

Fir die SO,-Ausbreitungsrechnung wurden Kalman-Filter-Ansdtze im Rahmen des
UBA-Projektes "Anwendung stati stisch-systemdynamischer Methoden in der Ausbrei-
tungsrechnung von Luftbeimengungen” untersucht (Dlabka et a., 1986). Mit dem
Kaman-Filter wurde die Schétzung der optimalen Anfangskonzentrationsfelder fur die
SO,-Prognose des TUB-Modells durchgefiihrt. Das TUB-Modell ist ein Eulersches
Ausbreitungsmodell ohne chemische Prozesse mit einer horizontalen Gitterweite von 3
km und 10 Modellschichten. Es tiberdeckt das Stadtgebiet von Berlin. SO,-Messungen
des Berliner Stadtmessnetzes BLUME wurden fir die Assimilation in einer Winter-
Smog Episode vom 20.2.-28.2.1982 verwendet. Der Kalman-Filter wurde mit einem
reduced-rank-Ansatz implementiert. Die Grofde der Kovarianzmatrix des Modellzu-
standsvektorsist mit einer Aufspaltung in Modellteilgebiete verringert worden.

Die mit dem Kalman-Filter erzeugten Anfangsfelder bewirkten eine verbesserte Prog-
noserechnung fir einen Zeitraum von drel Stunden. Diese relativ geringe Zeitspanne ist
mit der geringen raumlichen Ausbreitung des Modellgebiets zu erklaren. Die Randbe-
dingungen haben so einen besonders grof3en Einfluss. Die Untersuchung widmete sich
darum dem Vergleich von Randbedingungen aus Messungen und aus einer Rechnung
eines grol3raumigen Ausbreitungsmodells.

Ozonmodellierung mit LOTOS

Im Umfeld der Abteilung fUr Technische Mathematik und Informatik der TU Delft
wurden numerische Verfahren fir die Implementierung von Kalman-Filter mit dem
RRSQRT-Ansatz fur nichtlineare Modelle entwickelt (Heemink et al., 1999). Die
Anwendungen betreffen sowohl Gezeitenvorhersagemodelle a's auch verschiedene
Chemie-Transport-Modelle.

Im Rahmen des RITFOZ (Regional differences in tropospheric Ozone) Projektes wurde
zusammen mit der TNO ein Programmpaket fir den KF im RRSQRT-Ansatz in ver-
schiedenen Ausbaustufen fir das Modell LOTOS entwickelt (Segers et al., 1998 und
van Loon et a., 1998). Fir die Anwendung des Programmpaketes sind keine wesentli-
chen Modifikationen des Ausbreitungsmodells notwendig, so dass esrelativ leicht auf
andere Modelle Ubertragbar ist. Diese Implementierung wird auch im Rahmen dieser
Arbeit angewendet werden.

Um die Modellunsicherheiten fur den Kalman-Filter zu beschreiben, wurde ein Set von
lander- und speziesspezifischen Emissionsfaktoren fir die noise-Parameter verwendet.
Ihre Aufgabe ist es, eine stochastische Schwankung der Emissionen mit einer Stan-
dardabweichung von 25% zu simulieren. Die Schwankungen werden jedoch zeitlich
korreliert, so dass eine alzu schnelle Variation der Emission vermieden wird. Mit der
Aufnahme der noise-Parameter in den Zustandsvektor kann deren Verhalten untersucht
werden. Die Analyse der noise-Parameter, d. h. die Betrachtung der Korrelationen
zwischen diesen Parametern und den Abweichungen zwischen Modell und Beobach-
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tung, kann systematische Abweichungen aufdecken. Diese geben Hinwelse auf mogli-
che Unter- oder Uberschitzung der verwendeten Emissionsdaten.

Die Simulation galt einer Periode im August 1997, in der bodennahe Ozonbeobachtun-
gen in Deutschland und den Niederlanden sowie drei Ozonsondenmessungen assimi-
liert wurden. Fur alle Messungen ist eine Fehlerstandardabwel chung von 10 % ange-
nommen worden. Die Satellitenmessungen der Ozonséaule durch den GOME-Satelliten
konnten nicht direkt assimiliert werden; sie dienten als die obere Randbedingung des
Modells.

Das Assimilationsverhalten wurde mit Beobachtungen, die nicht in die Assimilation
einbezogen wurden, bestimmt. Es konnte gezeigt werden, dass fur diese Stationen eine
deutliche Verbesserung der Modellrechnung erreicht wird (van Loon et al., 1998).

Es kam jedoch auch zum Ausdruck, dass die durch die Emission eingefihrten Modell-
fehler nur einen Teil der Unsicherheiten erfassten. Die Anayse der noise-Parameter
ergab bisher keine belastbaren Aussagen Uber systematische Abweichungen der Emis-
sion. Ein wesentlicher Einfluss der GOME-Daten auf die Ozonkonzentration am Erd-
boden konnte nicht nachgewiesen werden (van Loon et al., 1999).

2.4 Raumliche Zufallsprozesse

Die atmosphaérischen Eigenschaften sind in Raum und Zeit variable Gréfien. Deren
Untersuchung im Rahmen der Theorie der Zufallsprozesse beschrankt sich meist auf
einerein zeitliche oder rein raumliche Herangehensweise. Im ersten Fall handelt es sich
um die Betrachtung von Zeitreihen, im zweiten um jene von Feldern, die haufig ,, Geo-
statistik” genannt wird (Cressie, 1993).

Es gibt keine theoretischen Unterschiede bei der Behandlung von zeitlichen und r&um-
lichen Zufallsprozessen. Dies fuhrt dazu, dass in Lehrbichern haufig nur Zeitreihen
behandelt werden mit dem Hinweis, dass die Theorie auf raumliche Prozesse Uibertrag-
bar sai. Es gilt jedoch, die folgenden Besonderheiten der Zufallsfelder zu beachten:

Die unabhangige Variable der Zufallsfelder ist der mehrdimensionale Ortsvek-
tor r (2D oder 3D).

Die Beobachtungen von Zeitreihen liegen fast immer in &quidistanten Abstén-
den vor, wéhrend die réaumliche Anordnung der Messstationen im Allgemeinen
irregular® ist.

Begriffe wie Vergangenheit und Zukunft kdnnen fur Felder nicht angewandt
werden.

Die statistische Analyse ist eine Anwendung der Geostatistik und beruht damit vorran-
gig auf der Theorie raumlicher Zufallsprozesse. Fur die Schétzung der Momente der
raumlichen Prozesse wird jedoch ein Ensemble bendtigt, das aus den Beobachtungen
des Feldes zu verschiedenen Zeitpunkten gewonnen werden kann®*. Aufgrund des
zeitlichen Zusammenhangs ist jedoch die notwendige Unabhéngigkeit der Realisierun-
gen nicht gewdahrleistet. Die Beschaftigung mit der zeitlichen Komponente des Zufalls-

% Dadurch ist die Anwendung der spektralen Betrachtungsweise in der Praxis eingeschrénkt. Daten eines
Eulerschen Modells bilden dafiir eine geeignete Grundlage.

# Es handelt sich dann um ein klimatologisches Kovarianzmodell, mit dem eine hohere raumliche
Spezifizierung moglich ist (siehe Kapitel 3.2.2)
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prozesses ist deshalb notwendig, um die zeitliche und réaumliche Variabilitét angemes-
sen zu trennen. Eine zusammenhéngende Behandlung der Raum-Zeit-Prozesse bieten
4D-Datenassimilationsverfahren.

24.1 Beschreibung raumlicher Zufallsprozesse

Der raumliche Zufallsprozess X(r) kann methodisch in eine mittlere Komponente p(r),
gegeben durch den Erwartungswert E(X(r)), und eine stochastische Komponente e(r)
mit verschwindendem Erwartungswert zerlegt werden:

X(r)=m(r)+e(r) {0.1}

E(X())=m{r) und E(e(r))=0 {0.2}

Fir die Beschreibung der statistischen raumlichen Beziehungen® wird auf die Momen-
te zweiter Ordnung zurtickgegriffen. Handelt es sich um einen Gaul3schen Zufallspro-
Zess, so ist er mit den Momenten erster und zweiter Ordnung ausreichend charakteri-
siert. Es bieten sich hierfir zwei Grof3en an:

1. Die Autokovarianzfunktion C = f(r,r;) beruht auf den Produkten des stochasti-
schen Antellse:

C(ry,r,) = Cov(X(ry), X(r,)) = E(e(rl)e(rz)) {0.3}

2. Die Strukturfunktion 2? = f(r,r;) beschreibt den Erwartungswert der quadrati-
schen Differenz zwischen zwei Orten des Feldesr;, und r;. (Gandin, 1965):

29 (r,,r,) =Var (X(r) - X(r,)) = E((e(rl)- e(rz))z) {0.4}

Die Kovarianzfunktion C(r 1,r;) muf3 positiv definit sein, d. h. es gilt fir jede Menge
von Orten r; und willkirlichen Koeffizienten g die folgende Gleichung:

a

i=1 j=1

Qo

aacrr) 3 0 {0.5}

Ein positive Spektraldichte ist daf ir eine hinreichende V oraussetzung (Bochner-
Theorem). Die stetige Differenzierbarkeit der Kovarianzfunktion fir den Abstand Null
ist Ausdruck der Differenzierbarkeit des zugrundeliegenden Prozesses (Schweschni-
kow, 1965).

% persistenz
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24.1.1 Statistisch motivierte Skalentrennung

Der stochastische Anteil e(r) kann in unabhéngige Komponenten aufgeteilt werden
(Cressie, 1993), die im Sinne des meteorol ogischen Skalenbegriffs interpretierbar
sind®. Die K ovarianzfunktionen der einzelnen Subprozesse addieren sich wegen der
gegenseitigen Unabhangigkeit zu der des gesamten Prozesses:

er) = &) + &(r) +e&(r)

Var(e(r)?)=s2(r) = s2() + sl +sir) OO
Die Komponente ey(r) ist die raumliche Variabilitat®’, fur die eine von Null verschiede-
ne kontinuierliche Kovarianzfunktion bzw. Strukturfunktion existiert. Die subskalige
raumliche Variabilitat®® e(r) besitzt eine Kovarianz- bzw. Strukturfunktion nur im
Bereich der nicht aufgel 6sten raumlichen Unterschiede, d. h. fir Distanzen, die kleiner
als der minimale Abstand der Beobachtungen bzw. Modellgitterpunkte sind. Der Bei-
trag e(r) weist keine raumliche Korrelation auf. Er entspricht einem wei3en Rauschen
und wird haufig als Mef3gerdtefehler interpretiert. Zusammen mit dem subskaligen
Anteil ex(r) bildet er den sogenannten Beobachtungsfehler eo(r ) (siehe Kapitel 2.5.2).
Der Zufallsprozess X(r) ohne den Beobachtungsfehler:

Xs(r) =m(r) +e(r) {0.7}

wird alsder , glatte” bzw. ,rauschfreie” Prozess von X(r) bezeichnet. Er ist das eigent-
liche Ziel der Interpolationsbemiihungen (siehe Kapitel 2.4.1.3).

Die konkrete Form der Zerlegung eines raumlichen Zufallsprozesses ist nicht eindeutig
und hangt von der Problemstellung, der Datenverfiigbarkeit und von der subjektiven
Einschatzung ab.

s

EBEEEVATION
ERROR SD
STANDARDTDEVIATION
/ SMOOTH SCALE FIELD

SMOOTH SCALE FIELD

EXPECTATION FIELD

SPACE

Abbildung 2.1 Schema eines raumlichen Zufallsprozesses und seiner M essung

% Dieser Skalenbegriff ist mit dem Problem der Auflésung verbunden und geht nicht auf die physika-
lisch motivierten Skalen ein.

%" Smooth scale variation

% sub scale variation
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2.4.1.2 Homogenitat und I sotropie

Durch die Annahme der Homogenit&t®® und Isotropie hinsichtlich der 1. und 2. Mo-
mente ist es maglich, die Komplexitét der statistischen Eigenschaften des Zufallsfeldes
X(r) zu verringern. Homogenitét hinsichtlich des Erwartungswertes bedeutet, dass er
fUr das gesamte Feld einen konstanten Wert 1 besitzt. Ist dieser Umstand nicht gege-
ben, so wird vor der weiteren statistischen Behandlung versucht, den mittleren Anteil
K(r) zu bestimmen. Die Abweichungen X’ (r) =X(r)-p(r) bilden dann ein Zufallsfeld
mit homogenem mittleren Antell.

Homogenitét hinsichtlich der Kovarianzfunktion bzw. der Strukturfunktion bewirkt,
dass diese nicht mehr von der Lage im Raum, sondern nur noch von dem Differenzvek-
tor ?r =r,- r, abhangt. Durch die Annahme von | sotropie wird die Richtungsabhan-
gigkeit aufgegeben. Die Annahme der Homogenitét und Isotropie fuhrt dazu, dass die
Kovarianz- und Strukturfunktion alein vom skalaren Abstand | ?r | = r der beiden Orte
bestimmt ist. In diesem Fall, d. h. bei Homogenitét und Isotropie, ist der statistische
Apparat fur Zeitreithen und raumliche Prozesse gleichartig.

Homogenitét fir den Erwartungswert und die Kovarianzfunktion, d. h. das erste und
zweite Moment, wird als Homogenitat 2. Ordnung™ bezeichnet.

Homogenitét 2. Ordnung

E(X(r))=m und Cov(X(r,), X(r,)) = C(Dr) {08}
Homogenitét hinsichtlich der Strukturfunktion und ein konstanter Erwartungswert wird
intrinsische Homogenitét (intrinsic stationarity) genannt. Diese Annahme ist etwas
schwécher, da die Erwartungswerte homogen, aber nicht bekannt sein missen. Die
Strukturfunktion fir einen homogenen (stationdren) Prozess wird als Variogramm® 2?
bezeichnet (Cressie, 1993).

"Intrinsische Homogenitét" (09

E(X(r)- X(r,))=0 und Var(X(r,)- X(r,))=29(Dr) '
Unter der Annahme der Homogenitét 2.0rdnung |asst sich jedoch eine einfache Bezie-
hung zwischen Strukturfunktion und r&umlicher Autokovarianzfunktion finden.

29(Dr)=2C(0)- 2c(Dr) {0.10}

Autokovarianzfunktion und Strukturfunktion sind bei Homogenitét 2. Ordnung gleich-
wertig.® Variogramme konnen jedoch robuster geschétzt werden (Gneithing et al.,
2000) und mit Gleichung {0.10} die Kovarianzfunktion festlegen (siehe 3.2.1). Der
gegenlaufige Charakter von Kovarianzfunktion und Variogramm (Strukturfunktion)
wird bei grof3en Abstanden deutlich. Geht man von einer verschwindenden Kovarianz-

% In Anlehnung an Zeitreihen auch haufig Stationaritét (stationarity) genannt; Homogenitét bezeichnet
dann Stationaritét und | sotropie.

%auich Stationaritét im weiteren Sinne (weak stationarity) genannt.

31 2 heilt Semivariogramm

%2 mit Einschrankung der schwécheren Forderung der , intrinsic stationarity*
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funktion aus, so entspricht das Variogramm bei sehr grof3en Abstanden der homogenen
Varianz s<” des glatten Feldes.

Aufgrund der Wirkung der raumlich nichtkorrelierten Schwankung ess und der nicht
auflosbaren Anteile e, (Gleichung { 0.6} ) ist die VVarianz des glatten Prozesses s2(r)
um den Beitrag der Varianz des Beobachtungsfehlers s?o(r) = s2ss(r) + s2(r) erhoht:

N 2 2 —

c(r)::'ssz+So =90 {0.11}
7ssr(r) r>0

Die Kovarianzfunktion des ,, kontaminierten“ Prozesse weist also einen Sprung am
Abstand Null im Vergleich zum ,, glatten* Prozess auf. Dieser Umstand wird genutzt,
um mit Hilfe eines Kovarianzmodells die Varianz der Beobachtungsfehler zu schétzen
(siehe Kapitel 3.2.6).
Eine komplexere Form der Kovarianzfunktion ist gegeben, wenn sich Homogenitét und
Isotropie nur auf die Korrelationsfunktion® 2(r) beziehen. Die raumlich variable Vari-
anz s*(r) wird zur Normierung der Kovarianzfunktion verwendet (Daley, 1991).

i 2 + 2 :O
C(r,r,) =i Sq(r)+sy7(r) r

{0.12}
TSS(I’l)SS(I’Z)r (r) r>0

2.4.1.3 Interpolation

Die rdumliche Interpolation, d. h. die Pradiktion des unbekannten Wertes X(ro) aus
i=1,n bekannten Werten X(r;), ist eine der Hauptanwendungen der raumlichen Statistik.
Sieist eine objektive Methode der Geowissenschaften, mit der aus Beobachtungswer-
ten ein zusammenhangendes Feld gewonnen wird. Die Interpolation bewirkt jedoch
immer eine Glattung, da nur der Prozess ohne den raumlich unkorrelierten Anteil e(r)
prognostiziert werden soll.

Der verallgemeinerte Ansatz fur die statistische Interpolation besteht darin, den Erwar-
tungswert (Minimale Varianz) oder den wahrscheinlichsten Wert (maximum likeli-
hood) der verbundenen Wahrscheinlichkeit p(X(r,) | X(r;),i =1,n) zu finden.

Daraus leiten sich zwel algemeine Teilaufgaben ab: 1. Die Schétzung der statistischen
Eigenschaften des Zufallsfeldes X(r) und 2. die Bestimmung des konkreten Feldwertes
X(ro) mit Hilfe der bekannten Beobachtung X(r;) unter Verwendung der Ergebnisse
von 1. Der erste Punkt umfasst meist die Schéatzung von Erwartungswert und Autoko-
varianzfunktion. Der zweite Schritt wird zur Unterscheidung vom ersten auch im geo-
statistischen Kontext haufig Prédiktion genannt. Die Qualitét der Interpolation ist we-
sentlich von der Richtigkeit der Schatzung der Momente bestimmt.

Der optimale Pradiktor minimiert eine Kostenfunktion, die den Interpolationsfehler,
also die Abweichung des interpolierten Werts vom wahren Wert bemifit. In dieser
Arbeit wird die Schétzung tUber die Minimierung der Varianz gewonnen:

* In den meisten Darstellungen der Optimalen Interpolation (Daley, 1991 und Gandin, 1965) werden
Homogenitét und Isotropie angenommen. Die Interpolationsgleichungen werden nur in Form von Korre-
lationen entwickelt. Die algemeinere Darstellung mit Kovarianzen in dieser Arbeit wird verwendet, um
die Zusammenhange zwischen Ol 3/4D-V AR und Kalman-Filter herauszuarbeiten.
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E((Xp(r)- X(r))z)b min {0.13}

Diese Pradiktion® ist biasfrei und linear. Der gesuchte Wert ergibt sich aus dem Mit-
telwert p(r) und einer linearen Kombination der beobachteten Werte X(r;), wobei fir X
GaufRscher Zufallsprozess®™ angenommen wird. Xp(ro) représentiert den ,, glatten” Pro-
zess* (siehe 2.4). Die Gewichte k; hangen nicht von den aktuellen Beobachtungswerten
ab. Aus der Minimierung des quadratischen Interpolationsfehlers von X,(ro) werden die
Koeffizienten k; aus der Kovarianzfunktion oder dem Variogramm gewonnen. Die
L6sung fur die k; fr die statistische Analyseist Inhalt des Kapitels 2.5.4.

In der statistischen Analyse und der Datenassimilation wird vorrangig mit Autokovari-
anzen gearbeitet. Sind Variogramme die Grundlage fur die raumliche Interpolation,
dann spricht man von der Kriging-Methode. Beruht die Interpolation auf Kovarianzen,
dann muss nicht von Homogenitét ausgegangen werden. Sieist jedoch haufig die Vor-
aussetzung, um die Kovarianzfunktion aus vorgegebenem Datenmaterial abzuleiten
(siehe Kapitel 3).

Es existieren verschiedene Kriging-Entwicklungen (Cressie, 1993). Im Falle von , Ein-
fachem Kriging“ ist p(r) bekannt, beim ,, Gewoéhnlichen Kriging® ist p(r) unbekannt,
aber konstant. Man spricht von ,,Universellem Kriging“, wenn der Mittelwert raumlich
variabel ist und durch eine Funktionsfolge parametrisiert wird. ,, Block-Kriging* ist ein
Verfahren, um aus Beobachtungen Flachenmittelwerte oder Gitterzellenmittelwerte zu
interpolieren. ,, Indikator-Kriging“ ist eine nichtlineare Interpolation, mit der lokale
Histogramme geschétzt werden.

24.2 Raum-Zeit-Prozesse

Fur die zusammenhangende Bearbeitung der Raum-Zeit-Zufallsprozesse gibt es nur
wenige Beispiele (Bilonick, 1985). Zur Vereinfachung geht man von einer Separation
in eine raumliche und zeitliche Komponente aus (Gneiting und Schlather, 2001). Damit
werden die Raum- und Zeitkomponente als unabhangig voneinander angesehen:

n(r,t) =m(r)m(t)
er,t)=e(r)g(t)
mit {0.14}
Cov(X(r,t)X(r,.t,)) = C (r.r,)C(t.t,)

oder
nr,t)=m(r)+m(t)
e(r,t)=¢g(r) +e(t)
mit
Cov(X(r,t)X(r,.t,)) = C.(r.r,)+Cy(t,t,)

{0.15}

3 auch BLUE (,, best linear unbiased estimate*) genannt
% Bei der Varianzminimierung firr nicht-normalverteilte Prozesse ist diese Schatzung die optimalste in
der Klasse der linearen Schatzungen.
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Dieses Vorgehen erscheint geeignet, wenn eine ortsunabhangige zeitliche Periodizitét,
wie z. B. der Tagesgang, erfasst werden soll. Die Wechsel beziehung der raum- und
zeitabhangigen Prozesse kann damit nicht wiedergegeben werden.

Ansétze ohne Separation entstehen z. B. durch die Bildung einer einheitlichen Raum-
Zeitmetrik. Dabel wird zu dem réumlichen Abstand der zeitliche Abstand in skalierter
Form addiert. Die Skalierungsgrof3e der Zeit kann als eine konstante Driftgeschwindig-
keit physikalisch interpretiert werden.

Auch wenn man sich auf Zeitreithenanalyse oder Geostatistik beschrénkt, kann die
fehlende Betrachtung der Raum-Zeit-Persistenz Fehlinterpretationen von statistischen
Tests zur Folge haben, wenn die Unabhangigkeit der Stichprobe vorausgesetzt wurde.
Aus dem Blickwinkel der Geostatistik fihren weiterhin die Nichtbeachtung von zeitli-
cher Persistenz oder die Periodizitét zu Fehlern in der Schéatzung der Momente des
réaumlichen Prozesses.

24.2.1 Schéatzung der raumlichen M omente aus Zeitreithen

In der statistischen Interpolation bzw. Analyse bestimmt sich der unbekannte Wert des
Zufallsfeldes aus den bekannten Beobachtungen des gleichen Termins. Dafir wird nur
die rdumliche Struktur von Erwartungswert und K ovarianzfunktion bendtigt (siehe
2.4.1.3).

Der zeitliche Zusammenhang ist jedoch bei der Bestimmung der Kovarianzfunktion
von Bedeutung, wenn dies mit Hilfe eines klimatischen Kovarianzmodells (siehe 3.2.2)
erfolgt. Es werden dafir Felder zu verschiedenen Zeitpunkten als Realisierungen des
selben réumlichen Prozesses aufgefasst. Die Zeitreihen der Beobachtungen dienen der
Schétzung von stationspaarbezogenen raumlichen Kovarianzwerten. Das klimatische
Kovarianzmodell erlaubt aufgrund des erweiterten Ensembles eine héhere raumliche
Strukturierung™.

Aufgrund der zeitlichen Persistenz kdnnen die Felder zu verschiedenen Zeiten nicht
ohne weiteres als unabhéngige Realisierung des raumlichen Prozesses angesehen wer-
den (Zwiers und von Storch, 1995). Es bedarf einer Trennung der zeitlichen und réum-
lichen Kovarianzanteile durch Filterung der Daten (siehe Kapitel 3.2.2.1). Sie ent-
spricht einer zeitlichen Hochpassfilterung, die durch Differenzbildung mit einer
geglétteten, die zeitliche Variation wiederspiegelnden Datenreihe erfolgt. Das En-
semble der Residuen wird dann zur Schétzung der raumlichen Kovarianz herangezo-
gen. Die Zeitreihe der Residuen muss dazu ergodisch sein.

Im Gegensatz zum klimatischen wird das terminbezogene Kovarianzmodell nur aus
den Daten der vorliegenden Realisierung unter der Annahme von raumlicher®’ Ergodi-
zit&t>® gewonnen. Das Konzept der Ergodizitét fiir raumliche Zufallsprozesse ist nur
unvollstandig ausgearbeitet® (Cressie, 1993). Analog zur Stationaritét ergodischer
Zeitreihen ist dabei von einer raumlichen Homogenitét auszugehen. Weiterhin gilt die
physikalisch sinnvolle Forderung der verschwindenden Kovarianzfunktion fr grof3e

% Dieser Ansatz ist die Grundlage fir die Entwicklung von nichtstationdren Kovarinzmodellen
(Sampson et a., 2001).

% Das K onzept der raumlichen Ergodizitét ist nicht vollstandig ausgearbeitet.

% Die Folge von Ergodizitét ist, dass die Parameter des Prozesses aus einer Realisierung gewonnen
werden konnen.

% | nsbesondere fiir die Turbulenzforschung ist der Zusammenhang zwischen Eulerscher (Zeitmittel) und
Lagrangescher (Ensemblemittel) Kovarianzfunktion interessant (Roedel, 1992, S.246).
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Abstande. Die Plausibilitdt der klimatischen Kovarianzmodelle kann mit Hilfe der
terminbezogenen Uberprift werden.

24.2.2 Ergodozitat von Zeitrethen

Um fir die klimatischen Kovarianzmodelle die Erwartungswerte aus zeitlichen Mittel -
werten zu gewinnen, missen die entsprechenden Zeitreihen ergodisch sein
(Schweschnikow, 1965). Der Erwartungswert einer ergodischen und damit stationaren
Gauldschen Zeitreihe X(r ,t) ergibt sich fir den Ort r aus dem zeitlichen Mittelwert:

E(X(r)) =Iim% t(‘)(X(r,t)dt {0.16}

t® ¥

Die raumliche Kovarianz Cov(X(r1),X(rz)) fur zwei Orte ry und r> kann aus den zwei
ergodischen Gauf3schen Zeitreihen X(r1,t=t;_t2) und X(r», t=t; _to) Uber deren Kreuzva-
rianz gebildet werden:

Cov(X(rl),X(rl)):E@T%BX(Q,U- E(X(r,t))(X(r,,t) - E(X(r,,t))dt{0.17}

Fir die Ergodizitét einer stationdren Zeitreihe lasst sich die hinreichende Bedingung
angeben, dass flr grof3e Zeitdifferenzen ?t die zeitliche Kovarianzfunktion C; gegen
Null geht (Schweschnikow, 1965, S. 167):

lim C,(Dr) =0 {0.18}

Taubenheim (1969) erlautert die Bedingung fur die zeitliche Ergodizitét in der spektra-
len Betrachtungsweise. Danach darf das Spektrum der ergodischen Zeitreihe keine
diskreten Spektrallinien enthalten, denn diese fiihren zu einer Schwingung der Autoko-
varianzfunktion, die auch fiir groRRe Zeitabstande erhalten bleibt™®.

Fir die Verwendung von Zeitreihen zur Berechnung der réumlichen Kovarianz fir
zwel Orteist die Folge mangelnder Ergodizitét sofort einsehbar. Weist das Feld an

zwei weit entfernten Orten eine periodische Schwingung® bzw. einen lineraren Trend
auf und werden die lokalen Erwartungswerte durch zeitliche Mittel bildung gewonnen,
so wird eine empirische Kovarianz geschétzt, die keine Entsprechung in der raumlichen
Dimension hat. Um dies zu vermeiden, muss der periodische Anteil entfernt bzw. dem
mittleren Anteil pu(r,t) zugeordnet werden.

Trégt man die zeitlichen Kreuzvarianzwerte als Schatzung der rdumlichen Kovarianz in
Abhangigkeit vom Abstand auf, so sollten die Werte fir grof3e Abstande gegen Null
streben. Damit besteht die Moglichkeit, die Ergodiziét der Zeitrethen X(r,t) zu testen.

“0 Die Kovarianzfunktion ist die Fouriertransformierte des Energiespektrums (Wiener-Chinchin- Theo-
rem).
“ 7. B. der durch den Verkehr bedingte Tagesgang der Immission
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2.5 Theorieder statistischen Analyse und Datenassimilation

251 Grundprinzip

Die Analyse stellt die bestmdgliche Wiedergabe des Feldes von atmosphérischen Vari-
ablen in einer regelméaldigen rdumlichen Auflésung dar. Der Begriff Analyse wird dabei
auch fur die Methode zur Gewinnung der Analyse aus Beobachtungsdaten verwendet.
Man spricht von objektiver Analyse, wenn numerische Verfahren fur die Analyse
angewendet werden (Gandin, 1965).

Die Auflésung der Analyse flhrt zu einer unteren Schranke fir die kleinste darstellbare
Skala. Weil die Beobachtungen auch durch nichtaufgel 6ste Prozesse beeinflusst wer-
den, ist die angemessene Separation® der relevanten Skalen ein wichtiges Problem im
Rahmen der Analyseverfahren.

Die modernen Analyseverfahren beruhen auf statistischen Ansétzen zur Interpolation
(siehe Kapitel 2.4.1, Interpolation). Sie zeichnen sich dadurch aus, dass sie neben den
Beobachtungen y auf einer unabhangig vorgegebenen Feldverteilung x. basieren. Diese
wird als Background® bezeichnet und kann als eine erste Vorgabe firr die Analyse
betrachtet werden. Es handelt sich dabel meist um ein von einem Eulerschen Modell
berechnetes Feld. Ein klimatologisch bestimmtes Feld oder die Analyse eines vorange-
gangenen Zeitpunkts sind weitere M 6glichkeiten fir den Background. Die r&umliche
Auflésung™® stimmen in Background und Analyse tiberein.

Durch die Methodik, einen vorgegebenen Background durch Messungen zu verandern,
werden neben der Information aus den Beobachtungen zusétzliche Informationsquel -
len™ firr die zu erstellende Analyse herangezogen. Diesist von Vorteil, wenn die Mes-
sungen aufgrund ihrer begrenzten Reprasentativitét keine befriedigenden Ruckschllisse
auf die gesamte Feldverteilung zulassen, wie es in beobachtungsarmen Gebieten der
Fall ist. Dies gilt auch lokal, falls die Messungen Skalen wiedergeben, diein der Ana-
lyse nicht enthalten sein sollen.

Im Fall der Datenassimilation ist der Background das von einem Modell berechnete
Feld. Der Background X; ist somit ein Teil oder der gesamte Zustandsvektor des dyna-
mischen Modells. Die Beobachtungen flief3en bel der Datenassimilation in die Model |-
rechnung ein, indem die Analyse den berechneten Zustandsvektor des Modells ersetzt.
Fur die statistische Analyse ist die verbundene Wahrscheinlichkeit von x bei gegebenen
y und xg der theoretische Ausgangspunkt:

P(X Y, Xg) {0.19}

“2 Filterung

“3 Der Background darf im Zusammenhang mit der Immissionsanalyse nicht mit einem Hintergrund im
Sinne einer unbelasteten bzw. nattirlichen Immissionssituation verwechselt werden.

“ Falls in der Analyse vom Modell nicht wiedergegebene Skalen dargestellt werden sollen, so wird
formal die Auflésung des Backgrounds erhéht. Die Aufldsung ist eine technische, die kleinste wiederge-
gebene Skala eine inhaltliche Fragestellung. Die Aufldsung stellt nur die untere Schranke fir die kleinste
wiedergegebene Skala dar.

> Dadie Anzahl der Messwerte im Allgemeinen wesentlich geringer als die der Analysepunkte ist, stellt
die Analyse im mathematischen Sinne ein unterbestimmtes Problem dar. Zu dessen Lésung werden
weitere Informationsquellen (d. h. der Background) benétigt.
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Die Analyse xa kann sich aus dem Erwartungswert {0.20} oder dem Modalwert {0.21}
ergeben. Der erste Fall entspricht einer Schatzung nach dem Kriterium der minimalen
Varianz, der zweite einem modifizierten*® Maximum likelihood Ansatz (Lorenc, 1986):

X = A)P(X | Y, Xg )X {0.20}
xp=x fur p(x|y,Xg)=max {0.21}
Datenassimilaton

Fehler
Statlotilc [l

Analyse
(Ol, 3SADVAR)

AD-Werfahren

Abbildung 2.2 Schematisches Grundprinzip der Analyse und Datenassimilation

252 Definition der Fehlermalle

Die Zustandsvektoren bzw. die fur Gitterpunkte | gegebenen Felder werden mit dem
Vektor x bezeichnet. Es sind dies der Background xg die Analyse xa und das nur me-
thodisch eingefuhrte ,, wahre® Feld X ye. Die Analyse wird durch eine Korrektur des
Backgrounds gewonnen. Sie zielt damit auf die Abweichungen®’ des Backgrounds
hinsichtlich des,,wahren® Feldes Xi,ye, das durch xa geschétzt wird.
Die Abweichung zwischen der Analyse und dem wahren Wert ist der zu minimierende
Analysefehler e,

€, =X, - X x,I R" {0.22}

true

“6 “ Maximum a posteriori probability estimation” Todling R. (1999)
" Damit ergibt sich ein enger Zusammenhang zwischen Analyse und der Modellevaluierung.
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Der Fehlervektor des Backgrounds e, stellt die Abweichung des M odellzustandsvektors
Xs Von dem hypothetischen wahren Zustandsvektor X..., dar:

eB :XB - Xtrue XB’XtrueT RN’(XIB ::L N) {023}
Die unregelméidig verteilten Beobachtungen i bilden den Vektor y. Die Fehler der
Beobachtungen e, sind die Differenzen zwischen den Beobachtungen y und dem mit
dem Beobachtungsoperator H transformierten Zustandsvektor X...

€ =Y - H(X;) Beobachtungsfehler
yl R™(y,i=1m) {0.24}
HT RV™ Beobachtungsoperator

Der Beobachtungsfehler besteht aus dem Messgeratefehler (y - y...) und eéinem Fehler,
der durch die Ungenauigkeit des Beobachtungsoperators H hervorgerufen wird. Dieser
Anteil kann mit dem Fehler in der Reprasentativitéat der Messung fur die Modellvariab-
le interpretiert werden (siehe Kapitel 2.5.3)

Die aktuellen Werte von Modell- und Beobachtungsfehler sind unbekannt, dadie
»wahren* Werte naturgemal3 nicht bekannt sind. Die statistische Analyse beruht jedoch
auf der Annahme, dass probabilistische Angaben Uber beide Fehler gemacht werden
konnen. Es wird davon ausgegangen, dass die Fehler von Background und Beobach-
tung al's Gaul3sche Zufallsprozesse behandel bar und damit durch den Erwartungswert
und die raumliche Kovarianzfunktion ausreichend beschrieben sind.

Die Schétzung dieser Groéfden aus Modell- und Beobachtungsdaten ist der Inhalt von
Kapitel 3. Eswird dabei auf die Beobachtungsinkremente epg zurtickgegriffen, dieim
Gegensatz zu den Fehlern direkt bestimmbar sind:

€ =Y - H(Xp) Beobachtungsinkrement {0.25}

Die rdumliche Beziehung der Fehler zwischen den einzelnen Elementen des Modellzu-
standsvektors bzw. zwischen den einzelnen Beobachtungen wird durch die Kovarianz-
matrizen B und R erfasst.

Genauso wie der Zustandsvektor x die Diskretisierung eines kontinuierlichen Feldes
darstellt, so ist die Matrix B die Diskretisierung der rdumlichen Kovarianzfunktion C
(siehe Kapitel 2.4). Die Beobachtungsfehler werden als unkorreliert angenommen, und
so ergibt sich R as Diagonamatrix:

B = E(eBeBT) = E((XB - Xtrue)(XB - Xtrue)T) {0.26}

R = E(ese) =E((y- HXuo ) - Hx,)') = 1E(e?) {027}
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Beide Matrizen sind symmetrisch und positiv definit*®, Das Quadrat*® der Anzahl der
Elemente des M odellzustandsvektors bzw. der Beobachtungen ist die Anzahl der Ele-
mente in den entsprechenden Matrizen.

Die Hauptdiagonalelemente von B und R sind die Varianzen der entsprechenden Fehler
s?s und s?g; fiir jeden Gitterpunkt | bzw. jede Beobachtung j.

Analog zu den Matrizen B und R kann die Kovarianzmatrix A des Analysefehlers
definiert werden:

A = E(eAeAT) = E((XA 'Xtrue)(XA 'Xtrue)T) {0.28}

25.3 Beobachtungsoper ator

Im Allgemeinen entsprechen die analysierten Modellvariablen x nicht vollkommen den
Beobachtungen y: Die Beobachtungsorte stimmen meist nicht mit den Gitterpunkten
Uberein bzw. die Modellvariablen besitzen einen anderen raumlichen und zeitlichen
Mittelungscharakter als die Beobachtungen. Dariiber hinaus kénnen die Modellvariab-
len und Beobachtungen keine direkte Entsprechung haben, wie dies bei Satellitenbeo-
bachtungen oder bei der hier vorgestellten aktiven Assimilation fur PM 10 (siehe Kapi-
tel 4.1.7) der Fall ist. Die urspriinglichen Strahlungsmesswerte missen erst in die
prognostische M odellvariable umgerechnet werden bzw. die PM 10-Masse muss auf die
modellierten PM 10-Bestandteile verteilt werden.

Der Ubergang™ aus dem Raum der Zustandsvektoren x (Modell oder Analysefeld) in
den der Beobachtungen wird formal durch den Beobachtungsoperator H geleistet
(Bouttier und Courtier, 1999):

y « H(x) {0.29}

Fur die Ableitung der Gleichungen der Gewichte K durch eine Minimierung der Vari-
anz des Analysefehlers (siehe Kapitel 2.5.4) wird die Existenz eines linearisierten
Beobachtungsoperators H gefordert®’. Das bedeutet, dass dieser Beobachtungsoperator
auch auf Differenzen bzw. Fehler des Zustandvektors xg anwendbar ist. H ergibt sich
aus einer Taylor-Reihenentwicklung von H

H (Xg +Dx) » H (X, )+ HDx mit H:‘l]"—j {0.30}

“8 Diese aus der Autokorrelation tber das Bochner-Chinchin Theorem (eine Funktion ist positiv definit,
wenn ihr Spektrum positiv ist) ableitbare Eigenschaft muss insbesondere bei der numerischen Behand-
lung der Backgroundfehlermatrix beachtet werden.

“* |m Falle eines REM/Cal grid-Feldes (80* 96 Gitterpunkte) hat sie 58 982 400 Elemente.

% z. B. falls Modellvariablen und Beobachtungen keine direkte Entsprechung haben, wie es bei aus
Satellitenbeobachtungen abgel eiteten Temperaturprofilen der Fall ist.

! |m Rahmen der Datenassimilation mit 3/4ADVAR ist diese Forderung nicht nétig. Darum eignet sich
dieses Verfahren besonders fur komplexe Beobachtungsoperatoren, wie es bei Satellitendaten der Fall
ist.
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Durch die Linearitét ist H mit der Erwartungswertbildung vertauschbar, so dass H auf
die Kovarianzmatrix B angewendet werden kann. Die entsprechenden Terme lauten
HBH' und HB.

Die elementarste Anwendung des Beobachtungsoperators ist die rdumliche Verschie-
bung: Mit Hilfe des Beobachtungsoperators H oder H wird der Backgroundwert oder
seine Varianz am Gitterpunkt J auf den Ort j der vorliegenden Beobachtung transfor-
miert, um die Beobachtungsinkremente bilden zu kénnen. Die Beobachtung j liegt
dabei in der zugehdrigen Gitterbox J. Die HBH ist damit die Kovarianzmatrix zwi-
schen den Orten der Beobachtung, HB zwischen den Beobachtungsorten und den Git-
terpunkten. HBH' + R entspricht demzufolge der K ovarianzmatrix der Beobachtungs-
inkremente eog.

Eine numerische Formulierung des Beobachtungsoperators H fir den Skalentibergang
ist meist nicht bekannt. Eine statistische Beschreibung des Skal enunterschieds kann
jedoch mit dem Ansatz { 0.6} erfolgen. Mit ihm wird die subskalige Komponente ex
mit dem unkorrelierten Messfehler e zum Beobachtungsfehler zusammengefasst. Der
Beobachtungsfehler ist damit auch Ausdruck der Unzulénglichkeit von H. Die Bertick-
sichtigung des Skalenunterschiedes erfolgt somit durch die Erhéhung der Varianz des
Beobachtungsfehlers, der Bestandteil der Matrix R ist.

Der statistische Ansatz fur die Skalentrennung geht von eine ,, Kontaminierung® des
»glatten” Prozesses durch eine subskalige Komponente mit verschwindendem Mittel-
wert aus. Dieses Vorgehen ist fir Immissionsbeobachtungen nur teilweise gerechtfer-
tigt, da die subskalige Komponente meist ein zusétzlicher und systematischer Auf-
schlag aufgrund kleinrdumiger Emissionen ist. Der auf die Kovarianzmatrix
angewendete linearisierte Beobachtungsoperator H enthalt diesen Aufschlag nicht.
Die entsprechende Emissionssituation kann aus den in Flemming (2003) bestimmten
Immissionsregimes geschlussfolgert werden. Sie werden im folgenden verwendet, um
eine sinnvolle Klassifizierung innerhalb des Kovarianzmodells einzufiihren (siehe
3.1.3).

254  Analysedurch Varianzminimierung — Optimale
I nter polation

Fir die genaue Herleitung der Analyseglei chung durch eine Minimum-V arianz-
Schétzung mit Hilfe der in Kapitel 2.5.1 angedeuteten Prinzipien wird auf Todling
(1999) oder Lorenc (1986) verwiesen. Die Herleitung wird vereinfacht, wenn man von
folgendem linearen Ansatz ausgeht:

Xa=Xo+K (Y- H(Xg)) {0.31}
Die Analyse wird dabel aus dem Background x; und den Beobachtungsinkrementen

(Y - Hx.) gebildet. Die Matrix K legt die Gewichte fur den Einfluss der Beobachtungs-
inkremente fest.



UBA F&E Vorhaben298 41 252  Grundlagen von Ol und Kalman Filter 27

Die Gleichung fiir die Gewichte {0.35} wird aus der Minimierung® der Gesamtvarianz
des Analysefehlers s%s gewonnen. Die Gesamtvarianz s ist die Spur Tr der Kovari-
anzmatrix des Analysefehlers A {0.28}.

N N
T(A)=as2=A E((Xa- Xue)’)® min {032}
i=1 i=1

Bei der Minimierung werden folgende V oraussetzungen gemacht:

1. Kein Bias zwischen den Beobachtungen und dem Modellfeld:

E(e;)=E(e,)=0 {0.33}
2. KeneKorrelation (Kovarianz) zwischen den Fehlern von Modell und Beobach-
tungen:
E(e,€ef)=0 {0.34}

3. Existenz eines linearisierten Beobachtungsoperators, der auf die Kovarianz-
matrizen des Backgroundfehlers B anwendbar ist.

Unter diesen Voraussetzungen ergibt sich fur K das folgende Gleichungssystem aus
den Kovarianzmatrizen von Background B und Beobachtung R.

(HBH"+R)KT =HB
bzw. Invertierbarkeit {0.35}
K =HB(HBH™ +R)*

Setzt man Gleichung {0.31} in Gleichung {0.28} ein, so ergibt sich die Matrixglei-
chung fur die Kovarianzmatrix des Analysefehlers A:

A=(-KHB(IKH) +KRKT {0.36}
Mit den optimalen Gewichten K vereinfacht sich der Ausdruck fir den Analysefehler:

A = B - KHB {0.37}

255  Veenfachung und Diskussion der Analysegleichungen

Die Struktur der Analysegleichungen { 0.31} und {0.35} kann durchschaubarer ge-
macht werden, wenn die Analyse nur fur einen Wert xa; am Punkt Jformuliert wird.
Eine weitere Vereinfachung ergibt sich, wenn nur eine Auswahl von i =1, n; Stationen
zur Interpolation am Punkt J beitragt. Der Backgroundwert Xg; an den Beobachtungsor-

*2 Gleichwertig ist eine maximum-likelihood-Schatzung der Wahrscheinlichkeitsfunktion bei Gaufschen
pdfs (Lorenc, 1986).
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ten i wird durch den Beobachtungsoperator> H(xg) aus dem zugehdrigen Gitter-
punktswert gewonnen:

Xay = Xgy +é kJi(yi - Xg {0-38}

i=1

Diese Form der Analyseist von Gandin (1965) unter dem Begriff Optimale I nter pola-
tion in die Meteorologie eingefihrt worden. Die Schéatzung der raumlichen Kovarianz-
funktionen beruht bei den meisten weiteren Anwendungen auf homogenen und meist
isotropen Verhaltnissen.

Es erscheint sinnvoll, nur Stationen in der N&he des Analysepunktes zu verwenden.
Das Verschwinden der Kovarianz HB kann als ein formales Kriterium fur die Auswahl
gelten. Es zeigt sich jedoch haufig, dass eine viel geringere Anzahl® fir die Analyse
ausreicht, d. h. keine wesentlichen Verénderungen hinzukommen®>. Durch die Datense-
lektion wird der numerische Aufwand fir die Analyse stark reduziert, dafir jeden
Gitterpunkt ein Gleichungssystem von deutlich geringerer Grof3e gel st werden muss.
Die Analyse zeichnet sich durch folgende Eigenschaften aus, die aus der Diskussion
von Gleichung { 0.39} begriindet werden:

Hohe Kovarianz des Backgrounds zwischen Beobachtungsort und Analyse-
punkt fuhren zu hohem Einfluss des zugehorigen Beobachtungsinkrements.

Hohe Kovarianz des Backgrounds zwischen zwei Beobachtungsorten verringert
den Einfluss der zugehorigen Beobachtungsinkremente.

Hohe Varianz des Beobachtungsfehlers einer Messung fihrt zu einem geringen
Einfluss des zugehdrigen Beobachtungsinkrements.

Durch die Stationsauswahl vereinfacht sich die Matrixgleichung {0.35} zu einem in-
homogenen linearen Gleichungssystem nj-ter Ordnung fur die Gewichte kj:

6®11+r11 bnl %310 @Jl'.o.
¢ i S A {0.39)

é bln e bnn I ngn B éan 5

Die kj werden hauptsachlich durch die rechte Seite, d. h. die Kovarianzen des Back-
groundfehlers by zwischen den Beobachtungsorten i und dem Analysepunkt J be-
stimmt. Je ausgepragter die Beziehung, ausgedriickt durch die Kovarianzen, zwischen
Beobachtungsort und Interpolationspunkt ist, desto wichtiger wird das ermittelte Beo-
bachtungsinkrement fir die Analyse.

Die Matrix der linken Seite beschreibt die Eigenschaften und Beziehungen zwischen
den Beobachtungen. Dabel werden die Beobachtungsfehler und die Beziehung des

%3 Der Beobachtungsoperator ist hier eine bilineare Interpolation von den Gitterpunktswerten am Station-
sort.

> Gandin zeigt fiir das 500 hPa Geopotential, dass ca. 10 Stationen ausreichend sind.

*® Dies gilt nicht, wenn Gradienten etc. des Feldes betrachtet werden, da hier die von Punkt zu Punkt
verénderliche Stationsauswahl zu Spriingen fuhren kann.
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Backgroundfeldes an den Beobachtungsorten berticksichtigt. Eine hohe Varianz des
Beobachtungsfehlersri; = s’ der Messung i verringert den Einfluss der Beobachtung i
fUr die Analyse. Die Stérke dieser Verringerung wird durch Varianz des Background-
fehlers by = s%g relativiert. Eslasst sich zeigen, dass das Verhaltnis so und sg; fur die
Bewertung des Beobachtungsinkrements am Ort i entscheidend ist (siehe Kapitel
3.3.3.2).

Weiterhin trégt die Beobachtungsfehlervarianz zur numerischen Stabilitat des Gle -
chungssystems bei. Ohne ihn kénnte die Matritx HBH ' durch zwei nahezu identische
Beobachtungsorte singulér werden.

Die Nichtdiagonalelemente by; (i j) beschreiben die Beziehungen™ der Backgroundfeh-
ler an verschiedenen Beobachtungsorten zueinander. Hohe Werte der Kovarianz fur
zwei Orte reduzieren die individuellen Gewichte beider Beobachtungsinkremente. Die
Beobachtungsinkremente sind in diesem Fall nicht unabhéngig. Ihr individueller Ein-
fluss auf den Analysewert sollte individuell kleiner sein als der eines unabhangigeren
Beobachtungsinkrements. Das Berticksichtigen der Beziehungen zwischen den Beo-
bachtungsorten wird as,,declusterung” bezeichnet und ist ein Vorteil der statistischen
Analyse gegeniiber anderen Verfahren. Durch ihn wird die variable Stationsdichte®
berticksichtigt: Geht man von einem homogenen und isotropen K ovarianzmodell aus™,
so erhalten alle Beobachtungen mit dem gleichen Abstand zum Analysepunkt das
gleiche Gewicht. Befinden sich nun viele dieser Stationen dicht gedrangt, z. B. in einer
Stadt, so wirde der Analysewert stark durch die Beobachtungsinkremente aus diesem
Gebiet beeinflusst werden. Die Berticksichtigung der Kovarianzen des Backgroundfeh-
lers fuhrt jedoch dazu, dass der ungerechtfertigt hohe Einfluss dieses Gebietes verrin-
gert wird.

Aus der Gleichung {0.36} ergibt sich die Varianz des Analysefehlersim Falle optimal
spezifizierter Gewichte k)i aus:

S JZA = S JZB - é kliin £ SAJZA

i=1
Die Varianz des Fehlers der optimalen Analyse s?a liegt unter dem des Backgrounds
sZJA_ Der Wert stellt die theoretische untere Schranke fur die tatsachliche Varianz des

Analysefehlers 2, dar, bei nicht optimalen K oeffizienten aufgrund unzureichender
Kenntnis der Matrizen B und R. Fir eine suboptimale aber sinnvolle Interpolation
sollte 2, kleiner als s, sein.

Eine Moglichkeit, den tatsachlichen Analysefehler abzuschétzen, ergibt sich durch
einen cross-validation-Ansatz fur die Stationsorte. Dabel werden die Stationswerte
prognostiziert, ohne sie bei der Interpolation zu verwenden (siehe Kapitel 4.2).

256 Variationsansatze

Neben der Minimierung der Varianz des Analysefehlers™ (siehe Kapitel 2.5.1) kann die
Analyse as Variationsproblem formuliert werden. Der Ausgangspunkt ist die maxi-
mum-likelihood-Schétzung fir die Analyse, die sich aus den mehrdimensionalen

% Dakeine Korrelation der Beobachtungsfehler angenommen wird, gilt r; = 0 fir i ?j.

> Die Immissionsbeobachtungen zeichnen sich durch groRe Unterschiede in der Stationsdichte aus.
%8 gleichbedeutend mit einer reinen Abstandsabhangigkeit

% entspricht der Bestimmung des Erwartungswertes
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Wahrscheinlichkeitsfunktionen fir Background und Beobachtung ergibt (siehe Glei-
chung {0.19}). Gehorchen diese einer Gaul3-Verteilung, so ist das Ergebnis des Ansat-
zes identisch mit dem der Varianzminimierung (Lorenc, 1986).

Das Ergebnis des Maximum-Likelihood-Ansatzes ist eine skalare Kostenfunktion J
{0.40}, dieihr Minimum bei dem wahrscheinlichsten Wert fir x = x, hat. Die Kosten-
funktion besteht aus zwei Teilen, die die Abweichungen zum Background und zu den
Beobachtungen bewerten. Die inversen Kovarianzmatrizen der Fehler von Background
B und Beobachtung R dienen als verallgemeinerte Gewichte. Je hther der Fehler, umso
geringer wird die Abweichung bewertet.

Die Anayse wird durch die Minimierung der Kostenfunktion gefunden, die auf dem
Gradient von J beruht. Ein Vorteil des Variationsansatzes ist, dass der Beobachtungs-
operator nicht linearisiert werden muss. Weiterhin kénnen leicht Zwangsbedingungen
eingefuhrt werden, denen der Zustandsvektor exakt oder in moglichst hohem Male
gehorchen soll (Sasaki, 1970). Dafir bieten sich physikalische und chemische Gleich-
gewichte® oder eine Modellrechnung an. In der 4-dimensionalen Variationsrechnung
(4D-VAR) werden die Abweichungen zu den Beobachtungen fir mehrere Zeitpunkte
einbezogen. Dabel gilt die starke Zwangsbedingung, dass die M odellzustandsvektoren
x fur verschiedene Zeiten durch eine Modellintegration gebildet werden. Fir dieitera-
tive Bestimmung des Minimums der Kostenfunktion wird der Gradient der Kosten-
funktion verwendet. Fir seine Berechnung wird die Adjungierte des linearisierten®
Modelloperators (adjoint model) benétigt (Bouttier und Courtier, 1999). Sie entspricht
der transponierten Linearisierung des urspringlichen Modells. Fir die mit zeitlichen
Differenzenschemata formulierten Modellteile (Advektion, Chemie etc.) ist die Pro-
grammierung des adjungiert-linearen Modells méglich (Talagrand, 1997). Im Rahmen
der Chemie-Transport-Modellierung wird 4D-VAR fir das EURAD-Modell verwendet
(Elbern und Schmidt, 1997, 2001):

N _ _ _
I =(x- %) BH(X- xg)+@ (¢v' - HX)'R*(y'- HX) {040}
i=1
J(x,)=min mit Zwangsbedingung x** = MXx'
M ... Modéelloperator {0.41}
Zeitpunktei=1...n,

25.7 Kaman-Filter
Der Kaman-Filter® kann als ein vierdimensionales Verfahren zur Datenassimilation

verwendet werden. Sein Grundprinzip ist der Wechsel von Prognose und Analyse des
Modellzustandsvektors x und seiner Fehlerkovarianzmatrix P®® (Abbildung 2.3). Der

% 7. B. das geostrophische Gleichgewicht fiir Wind- und Geopotentialfelder bzw. das fotostationére
Gleichgewicht.

® Die Linearisierung komplexer Modelle ist, wenn tiberhaupt, nur firr kleine Zeitschritte méglich. Man
spricht dann von dem tangential-linearisierten Modell.

82 K alman-Filter sind eine groRe Gruppe von optimalen rekursiven Methoden zur Prognose. Sie miissen
nicht wie hier mit einem dynamischen Modell gekoppelt sein.

% Da diese sich standig verandert, wird sie in Abgrenzung zur empirischen Kovarianzmatrix B mit P
bezeichnet.
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Kaman-Filter ist fur lineare Modelle formuliert. Er wird als Kalman Bucy Filter fur
nichtlineare Modelle erweitert, wenn das Modell M durch eine lineare Approximation
M fiir die Prognose der Kovarianzmatrix der Fehler P verwendet werden kann®* { 0.43}
. Bei dieser Prognose wird der Fehlerhaftigkeit des Modells durch die Modellprognose-
fehlermatrix Q Rechnung getragen. Liegen Messungen y vor, so erfolgt eine Analyse
Xa, bel der der prognostizierte Zustandsvektor an die Messungen angepasst wird { 0.45}
. Die prognostizierte Kovarianzmatrix P** und die Fehlervarianzen der Messungen
bestimmen dabel die Analysegewichte K {0.44}. Gleichzeitig wird die Kovarianz-
matrix fur den analysierten Zustand P berechnet {0.46} . Die Analysen des Modellzu-
standes und der Kovarianzmatrix werden nun als Ausgangspunkt fir den nachsten
Prognoseschritt verwendet.

Prognose des Zustandsvektors:

) {0.42}
X"t= MX|
Prognose der Fehlerkovarianzmatrix:
t+1 t T {043}
P"=MP,M" +Q
Bestimmung der Anal ewichte:
St (044
K'=HP;(HP;H" +R)
Analyse des Zustandsvektors:
t t t iyt t {0'45}
XA :XB+K (y - HXB)
Bestimmen der Fehlerkovarianzmatrix der Analyse: {0.46)

P! =(I - K'H)P,

Der Analyseschritt gleicht dem nach dem Minimum-Varianz-Ansatz { 0.31} . Es gelten
auch fur den Kalman-Filter die gleichen Voraussetzungen, d. h. kein Bias und keine
Korrelation zwischen den Modell- und Beobachtungsfehlern. Fur die Berechnung der
Fehlerkovarianzen wird von deren Normalverteilung ausgegangen.

Die Besonderheit des Kalman-Filters besteht in der Prognose und Analyse der Kovari-
anzmatrix P. Die Prognose ist dynamisch und durch die zugrundeliegenden Model |-
gleichungen bestimmt. Dadurch kénnen Zusammenhange innerhalb des Zustandsvek-
tors (z. B. Advektion oder chemische Kopplung) erfasst und bei der Analyse
berlicksichtigt werden: Ist eine entsprechende statistische Beziehung in P entwickelt
worden, so erfolgt eine Korrektur auch in Teilen des Zustandsvektors, fir die keine
direkten Beobachtungen vorliegen. Durch das mehrmalige Durchlaufen des Zyklus
wird der Analysefehler schrittweise bis zu einem Konvergenzniveau verringert. Fir die
Initialisierung des Kalman-Filters muss eine Kovarianzmatrix aus anderen Quellen
bereitgestellt werden.

Im einfachsten Fall ist die Kovarianzmatrix Q des Modellprognosefehlers einereine
Diagonamatrix, die den Elementen des Zustandsvektors eine Varianz (Unsicherheit)
zuordnet. Nichtprognostische Model|parameter kbnnen in gewissem Sinne Uberprift
werden, indem man sie in den Zustandsvektor und die Analyse mit einbezieht. Bewirkt
die Analyse zu verschiedenen Zeitpunkten eine gleichgerichtete Korrektur dieser Wer-
te, so deutet dies auf einen systematischen Fehler hin, der im Modell korrigiert werden
kann. Aufgrund des rein statistischen Zusammenhanges muss jedoch sichergestellt

% \ereinfachend wird bei der Datenassimilation jedoch nur vom Kalman-Filter gesprochen.
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werden, dass die richtige Ursache fuir die Modellfehler gefunden wurde und kein un-
physikalisches und rein episodenbezogenes ,, Modelltuning” vorgenommen wird. Van
Loon et a. (1999) verwenden diesen Ansatz, um Emissionsangaben in dem Modell
LOTOS fur eine bessere Modellleistung zu verandern.

Der numerische Aufwand fir die Prognose der Kovarianzmatrix ist sehr grof3 und
wirde N Modellintegrationen entsprechen, wobei N die Anzahl der Elemente des Mo-
dellzustandsvektors ist®. Aus diesem Grund sind Vereinfachungen nétig. Mit dem
RRSQRT-Ansatz (reduced rank square root, siehe Kapitel 2.5.8) wird die Kovarianz-
matrix auf die wichtigen Moden der Variabilitét beschrankt, so dass der Rechenzeitbe-
darf nur ca. 50-100 Modellintegrationen entspricht (Heemink et a., 1999). Fur die
Chemie-Transport-Modellierung werden Kalman-Filter-Ansétze z. B. fir das LOTOS-
Modell angewendet (van Loon und Heemink, 1997):

‘ State x! ‘ ‘ Covariance Pt
Model

— Forecast —

‘ State xt1 ‘ ‘ Covariance P™1

‘ State x, ‘ ‘ Covariance P, ‘
Model

— Forecast e

‘ State xt1 ‘ ‘ Covariance Pt

‘ State x, ‘ ‘ Covariance P, ‘
Model

— Forecast ———

Abbildung 2.3 Funktionsprinzip des Kalman-Filters

2.5.8 RRSQRT-Ansatz fur Kalman-Filter

Die Abkirzung RRSQRT steht fir reduced rank square root. Esist eine Methode, die
Prognose der Kovarianzmatrix P {0.43} fir nichtlineare Modelle M zu redlisieren, ohne
explizit eine liniearisierte Form M angeben zu mussen (van Loon und Heemink, 1997).
Zunéchst wird die originale Kovarianzmatrix P durch die square root Matrix S (,, Wur-
zelmatrix*) ausgedrickt:

% REM/Calgrid besitzt einen Zustandsvektor mit ca. 10° Elementen, der Rechenzeitaufwand betragt
damit fir den vollstandigen K BF das 10°-fache der Modellrechenzeit.
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P=SS' {0.47}

Dadurch wird auch erreicht, dass die Matrix P immer positiv definit ist, was bei einer
direkten Behandlung von P aufgrund von numerischen Ungenauigkeiten nicht immer
der Fall sein muss. Die square root Matrix Sist eine Matrix aus m Reihen von Vektoren
der Grof3e des Modellzustandsvektors x:

S=gx'l,x'2,x'3---x'm|§l {0.48}

Die Anzahl m der Spalten bestimmt den Rang der Matrix P und damit deren statistische
Gute. Fur eine approximative Darstellung von P kann S jedoch eine bedeutend geringe-
re Anzahl von Spalten als die Dimension von x haben (Seghers, 2002). Selbst mit einer
einspaltigen Matrix S lasst sich eine gultige Kovarianzmatrix bilden.

Anschaulich kann man sich die Spalten von Salsein Ensemblevon j = 1, m ver-
schiedenen, d. h. gestérten Modellzustanden x’, von denen der jewellige Mittelwert
abgezogen wurde, vorstellen. Je grof3er die Anzahl m, um so mehr Ensembleelemente,
d. h. Redlisierungen von Modellzusténden, wurden verwendet, um die Varianzen bzw.
Kovarianzen in der Matrix P zu berechnen.

Die Formulierung der Kalman-Filter-Gleichungen erfolgt mit der Matrix S und die Pro-
gnose von P wird mit einer Prognose von S ersetzt {0.43}. DafUr wird zu jeder Spalte
von S ein Grundzustand addiert, so dass m Realisierungen eines M odel |zustandsvektors
entstehen. Diese kdnnen mit Hilfe des Computercodes des Modells M prognostiziert
werden. Anschlief3end wird durch Abzug des prognostizierten Grundzustandes die
prognostizierte Matrix S gebildet.

Um den Modellfehler, ausgedrickt durch die Matrix Q, in die Prognose der Matrix S
einflieflen zu lassen, werden q zusétzliche Modellzusténde mit einer Stérung zeitlich
integriert. Die Stérung wird gebildet, indem ausgewéhlte Model|parameter wie die
Emission oder die Stérke des vertikalen Austauschs veréndert werden. Sie werden mit
angenommenen Unsicherheiten der Modellierung quantifiziert und als g Rausch-
Parameter (noise) formuliert. Die Differenz der so gestdrten Zusténde x* vom Grund-
zustand werden als zusétzliche Spalten in die square root Matrix S aufgenommen. Mit
jedem Prognoseschritt erhdht sich demzufolge die Anzahl der Spaltenin Sum q:

1 — & 11+l it+l it+l it+l * L
S =g XXX X X {0.49}

m ?

Um die Anzahl der Spalten von S und damit die Anzahl der notwendigen Modellschrit-
te konstant zu halten, wird eine Eigenvektoraufspaltung der Matrix P vorgenommen.
Fir den néchsten Prognoseschritt werden dann nur die m grofdten Eigenvektoren beibe-
halten. Die Matrix S wird damit durch Modellzustande représentiert, die einen we-
sentlichen Anteil an der Varianz bilden. Sie heif3en darum auch die Moden von S. Im
Ubertragenen Sinn bedeutet die Eigenvektoraufspaltung, dass gestorte Modell zustande
konstruiert werden, die ein bedeutsames Anwachsen der Varianz vermuten lassen.
Ohne die Eigenvektoraufspaltung wére ein grol3es Ensemble von Modellzusténden n6-
tig, um P in ausreichender Gite zu gewinnen. Durch die Einfiihrung von Moden reicht
eine geringere Anzahl von Spalten und damit von notwendigen Modellprognosen aus,
um P gleichwertig zu reprasentieren.

Zum Beginn der Kaman-Filter Rechnung sind die Matrizen S bzw. P unbekannt. Man
nimmt fir sie Null Matrizen an. Mit jedem Prognoseschritt werden g neue Spalten in
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die Matrix S eingebettet, um den stochastischen Modellfehler zu berticksichtigen.
Ubersteigt die Anzahl der Spalten die Anzahl m von handhabbaren Moden, so wird
deren Anzahl mit der Eigenvektoraufspaltung auf die m grofdten beschrénkt. Somit wird
kontinuierlich die Matrix S bzw. P entwickelt. Dabei ist zu beachten, dass nur Kovari-
anzen modelliert werden, die durch die Wahl der Stérung, z. B. Emissionsvariationen,
im Modell entstehen. Die maximale Anzahl der notwendigen Moden muss durch Kon-
vergenzkriterien und die numerische Kapazitét festgel egt werden. In den zitierten
Anwendungen von LOTOS werden ca. 30-50 Moden verwendet.

Esist gunstig, den konkreten Wert der g Rausch-Parameter (noise), z. B. eine Erhdhung
der NOy-Emission, in den Modellzustand einzubeziehen. Jeder Analyseschritt verandert
diese Werte im Lichte der vorliegenden Beobachtungen aufgrund der aufgebauten
Kovarianzen. Die Auswirkung der gebildeten noise-Parameter auf die Modellrechnung
ist dadurch erkennbar.
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3 Kovarianzmodelierung der
|mmissionsfelder

Im Kapitel 2.5 wurde die statistische Analyse der Immission auf Basis der Kovarianz-
matrizen von Background und Beobachtungen beschrieben, ohne Hinweise Uber deren
Gewinnung zu geben. Die korrekte Schatzung dieser statistischen Momente, d. h.
HBH, HB und R und der Erwartungswerte, ist das Hauptproblem bei der Analyse. Sie
werden mit Hilfe von Kovarianzmodellen geschétzt und ausgedriickt. Das Kapitel
beinhaltet einen Uberblick tiber die Kovarianzmodellierung und stellt die fir dieses
Forschungsvorhaben entwickelten Kovarianzmodelle vor. Die Varianz des Beobach-
tungsfehlers R wird haufig durch subjektive Abschétzung festgelegt. Die Beobach-
tungsmethode (siehe Kapitel 3.2.6 ) stellt eine Moglichkeit dar, den Beobachtungsfeh-
ler mit Hilfe eines Kovarianzmodells des Backgrounds und der Varianz der
Beobachtungsinkremente zu bestimmen. Im Kapitel 3.3 werden die Ergebnisse vorge-
stellt und diskutiert.

3.1 Kovarianzmodellefur raumliche Prozesse

Dader betrachtete raumliche Zufall sprozess X bzw. seine Diskretisierung X nur unzu-
reichend bekannt ist, missen seine Momente aus Stichproben geschétzt werden. Das
Ergebnis der Schéatzung ist ein Kovarianzmodell, das alle benttigten Kovarianzen fir
die Analyse liefert. Dieses Kovarianzmodell beruht neben der Stichprobeninformation
auf vereinfachenden Annahmen, um die Information der Stichprobe z. B. auf Orte ohne
Messinformation zu erweitern. Die Unterschiede dieser Annahmen sind entscheidend
fUr die verschiedenen Typen von Kovarianzmodellen. In einem weiteren Sinnewird in
diesem Bericht auch die Ableitung der Beobachtungsfehler mit Kovarianzmodellen a's
Kovarianzmodellierung bezeichnet.

Die Kovarianzmatrix B ist fiir groRRe Zustandsvektoren nicht handhabbar®. Die zu-
sammenfassende Beschreibung von B stellt weiterhin eine wichtige Aufgabe des Kova-
rianzmodells dar, auch wenn B vollstandig bekannt wére.

Von entscheidender Bedeutung fir die Kovarianzmodellierung und die gesamte Analy-
seist die Bestimmung des Erwartungswertes. Im Falle der Datenassimilation fungiert
der Background, d. h. das biasfreie Modellfeld, als Erwartungswert. Die Bestimmung
des Biasist damit genauso wie die Schétzung des Beobachtungsfehler Bestandteil der
Kovarianzmodellierung.

Es gibt unterschiedlichste Varianten der Kovarianzmodelle, die sich durch ihre Kom-
plexitét, ihren Aufwand und ihren Erfolg bei der Analyse unterscheiden. Im Folgenden
wird versucht, eine Klassifizierung der Einteilungsprinzipien von Kovarianzmodellen
Zu geben. Kovarianzmodelle kdnnen untertellt werden nach der Art

% das Quadrat der Anzahl der Elemente des Zustandsvektors
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ihrer Gewinnung (empirisch — dynamisch)

des wahrscheinlichkeitstheoretischen Ansatzes (bayessch)

ihrer Darstellung (parametrisch — nichtparametrisch)

der zugrundeliegenden Annahmen hinsichtlich des Prozesses (homogen, i-
sotrop, normalverteilt etc. )

der raumlichen oder zeitlichen Aggregation des Stichprobenmaterials (termin-
bezogen oder klimatisch®")

Empirische oder dynamische Kovarianzmodelle

Empirische Kovarianzmodelle werden mit Hilfe von empirisch geschétzten Kovari-
anzwerten gewonnen. Dynamische Kovarianzmodelle sind aus Kenntnissen der
zugrundeliegenden physikalischen Vorgange abgeleitet (Balgovind et a., 1983). Beim
Kaman-Filter wird die Kovarianzmatrix dynamisch mit einem deterministischen Mo-
dell bestimmt.

Nichtbayessche (klassische) oder bayessche K ovarianzmodelle

Die klassischen Methoden beruhen auf der Annahme, dass die Kovarianzfunktion
unbekannt, aber feststehend ist und durch empirische Daten geschétzt werden kann.
Bayesianische Ansdtze erlauben es, eine Wahrscheinlichkeitsfunktion fir die Parameter
der Kovarianzfunktion zu berticksichtigen.

Parametrische oder nichtparametrische Kovarianzmodelle

Parametrische Kovarianzmodelle gehen von einer bestimmten analytischen Funktion
der Kovarianzfunktion aus. Deren Parameter werden durch Approximation (Fit) der
Funktion mit empirischen Kovarianzwerten gewonnen. Dabei ist ein Kompromiss
zwischen der Anzahl der Parameter und der Gute ihrer Schatzung zu finden.
Nichtparametrische Kovarianzmodelle verzichten auf die Approximation mit einer
analytischen Funktion. Sie verwenden Kernel-Ansétze (Altman, 1990) oder eine Ei-
genvektoraufspaltung (SVD) der empirischen Kovarianzmatrix HBH an den Beobach-
tungsorten und deren Interpolation fir HB (siehe Kapitel 3.2.5.2).

Homogene, isotrope oder normalverteilte Kovarianzmodelle

Um ein Ensemble mit gleichen statistischen Eigenschaften fur die Schétzung der empi-
rischen Kovarianzwerte zu bilden, sind vereinfachende Annahmen notwendig. Der
Standardfall fir die Kovarianzmodellierung ist dabel die Annahme von Homogenitéat
und Isotropie, so dass das Kovarianzmodell nur abstandsabhéngig ist. Ist der betrachte-
te Prozess normalverteilt, so kann der Erwartungswert mit dem arithmetischen Mittel -
wert geschétzt werden.

Terminbezogene oder klimatische Kovarianzmodelle

Terminbezogene Kovarianzmodelle werden empirisch aus rein raumlichen Daten fur
einen Zeitpunkt geschétzt. Klimatische Kovarianzmodelle verwenden die Daten zu
mehreren Terminen, um die rdumliche Kovarianz zu schétzen (siehe Kapitel 2.4.2.1).
Eswird dabel davon ausgegangen, dass die Felder zu verschiedenen Zeitpunkten unab-

%7 Diese Bezeichnung wurde vom Verfasser eingefiihrt, um beide Methoden begrifflich zu unterscheiden.
Sehr haufig wird der Unterschied zwischen beiden Ansédtzen nicht herausgearbeitet. Es kann jedoch zu
Fehlern der geschétzten raumlichen Kovarianz fuhren, falls die zeitliche Korrelation nicht beachtet wird.



UBA F&E Vorhaben298 41 252  Grundlagen von Ol und Kalman Filter 37

hangige Realisierungen eines raumlichen Zufallsprozesses sind. Um diese Annahme zu
rechtfertigen, missen die Zeitreihen gefiltert werden (siehe Kapitel 2.4.2. und 3.2.2).
Die Abbildung 3.1 vergleicht schematisch die beiden Methoden. Im klimatischen Fall
kann fUr jedes Paar von Beobachtungen ein Kovarianzwert angegeben werden. Damit
ist eine differenzierte raumliche Struktur erfassbar. Die terminbezogenen® K ovarianz-
modelle benttigen Toleranzgebiete zur Ensemblebildung und verlangen aufgrund des
beschrankten Datenangebots meist die Annahme von Homogenitat® und Isotropie.
Durch die Zusammenstellung von terminbezogenen Kovarianzmodellen zu verschiede-
nen Zeitpunkten kann jedoch die zeitliche Variabilitét der Kovarianzfunktion wieder-
gegeben werden. Problematisch ist bei den klimatologischen Kovarianzmodellen die
Erfassung des Erwartungsfeldes an den Punkten ohne M essinformation.

Terminbezogene
Raum Kovarianzmodelle
Homogenitat
[ raumliche Aggregatio@ | ¢ hohe zeitliche
= HomogenT Differenzierung
™ [ raumliche Aggregation | o geringe raumliche
. _ Differenzierung
omogenitét
v [ rdumliche Eggregatio@ |
Klimatisches
Zei > Kovarianzmodell
NN
Stationaritét
% Stationaritét < DiﬁerenZierung
o zeitliche Aggregation Cof& * geringe zeitliche
_ _Stationaritat _ DIﬁerenZlerung
v zeitliche Aggregation

Abbildung 3.1 Schematische Ubersicht der terminbezogenen und klimatischen K ovarianzmodelle

Der haufigste und einfachste Ansatz fir die Kovarianzmodellierung ist das empirische,
nichtbayessche, Gaul3sche, homogene, isotrope, parametrische Modell. Das Kovari-
anzmodell ist dann eine eindimensional e analytische Funktion, die die Abstandsabhén-
gigkeit der raumlichen Kovarianz beschreibt.

% Terminbezogene K ovarianzmodelle beruhen allein auf dem Apparat der raumlichen Statistik.
% Die Toleranzgebiete vereinfachen sich dadurch zu Klassen gleichen raumlichen Abstands.
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Fir grof3skalige meteorologische Felder kann die Annahme von Homogenitét und

I sotropie haufig gerechtfertigt werden. Die Felder der Immissionswerte sind jedoch
inhomogen (siehe Kapitel 2.1), so dass diese Annahmen fragwrdig erscheinen. Es gibt
in der Praxisjedoch viele Beispiele fir homogene Ansétze zur Interpolation von
Messwerten. Seit Anfang der neunziger Jahre gibt es verstarkt Bemuihungen, empiri-
sche inhomogene Kovarianzmodelle zu entwickeln (Sampson et al., 2001), die fir die
Analyse von Immissionsdaten V erwendung finden (siehe Kapitel 2.3). Um die Inho-
mogenitét zu erfassen, muss ausreichendes Datenmaterial vorhanden sein. Aus diesem
Grund ist der klimatische Ansatz, d. h. die Schétzung von Kovarianzmodellen unter
Verwendung von Raum-Zeit-Daten, die Basis fir die Beschreibung inhomogener raum-
licher Kovarianzen. Er kann jedoch die zeitliche Variabilitét der Kovarianzfunktion nur
ungentigend wiedergeben.

Die meteorologischen Anwendungen der statistischen Analyse beruhen vorrangig auf
klimatischen Kovarianzmodellen™ (z. B. Hollingsworth und L énnberg, 1986 und Gan-
din, 1965). Im Kriging-Ansatz der Geostatistik wird das Kovarianzmodell bzw. das
Variogramm (siehe Kapitel 2.4) aus den Daten des Termins' geschétzt™. Reimer
(1986) verwendet z. B. ein terminbezogenes Kovarianzmodell fir die Analyse meteoro-
logischer Felder auf den zeitlich variablen isentropen Koordinaten.

311 Besonder heiten der Kovarianzmodellierung von
| mmissionsdaten

Will man die statistischen Eigenschaften aus einer Stichprobe schétzen, so sollten die
Daten aus der gleichen statistischen Grundgesamtheit stammen. Eine wesentliche Be-
sonderheit der Immissionsmessung ist die Existenz von unterschiedlichen Regimes. Die
Kenntnis des Regimes der Beobachtungen ist demzufolge eine V oraussetzung fir eine
sachgerechte Interpolation der Daten bzw. die Analyse. Durch den Einbezug der Mo-
dellrechnung in die Analyse wird eine weitere wichtige I nformationsguelle, insbeson-
dere an Orten ohne Beobachtung, nutzbar gemacht. Genauso wie bei den Beobachtun-
gen kann die flachendeckende Kenntnis der Immissionsregimes der Modellfelder die
statistische Analyse verbessern (Flemming, 2003).

Die mangelnde Beriicksichtigung der Besonderheiten der Immissionsdaten (siehe Kapi-
tel 2.1) kann die empirische Kovarianzmodellierung, insbesondere bei homogenen
Ansétzen, beeintréchtigen. Im Folgenden werden die Auswirkungen mangelnder Be-
achtung der Besonderheiten und Ansétze zur Behandlung diskutiert. Die Lésungen
beruhen auf einer Verwendung der Klassifikation der Immissionsregimes (Flemming,
2003) und der Modellrechnung einschlief3lich der aus ihr abgel eiteten statistischen
Information. In Kapitel 3.1.3 werden drei konkrete, fur die Analyse verwendete Kova-
rianzmodelle vorgestellt.

Inhomogenitat der Immissionsfelder
Die Inhomogenitét der Immissionsfelder bezieht sich sowohl auf die Erwartungswerte
als auch auf die Kovarianzfunktion. Durch den Ansatz der Datenassimilation, eine

" ohne die Stationaritat und Ergodizitét der Zeitreihen zu tiberpriifen

™ In geologischen Anwendungen sind die Daten meist tiberhaupt nicht zeitlich variabel.

"2 Die mangelnde Zeitabhangigkeit des Kovariogramms ist ein Unterschied zwischen Optimaler Interpo-
lation und einfachem Kriging.
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Modellrechnung als Grundlage fur die Schétzung des Erwartungswertes zu verwenden,
kann bereits ein hohes Mal3 an Inhomogenitét beschrieben werden. Dies gilt z. B. auch
fUr die Grenzflache von Land und Meer. Aufgrund der Unzulanglichkeiten der Re-
chenmodelle (siehe Kapitel 3.3.2) ist jedoch davon auszugehen, dass das Feld der
Fehler weder einen homogenen Erwartungswert Null noch eine homogene und isotrope
Kovarianzstruktur hat.

Im Gegensatz zu anderen inhomogenen atmosphérischen Feldern wie z. B. dem Nie-
derschlag, sind die Inhomogenitédten der Immissionsfelder in hohem Mal3e ortsfest.
Dieser Umstand wird genutzt, indem die aus langfristigen Modellrechnungen abgeleite-
te rdumliche Verteilung der Immissionsregimes als Klassifikationsmerkmal bei der
Kovarianzmodellierung verwendet wird. Weiterhin gestattet dieser Umstand die An-
wendung von klimatischen inhomogenen Kovarianzmodellen.

Geometrische Anisotropie

Das homogene Zufallsfeld ist anisotrop, wenn die Kovarianz von der Richtung abhangt.
Diese Eigenschaft heil3 geometrische Anisotropie, weil sie durch Skalierung und Dre-
hung der Raumkoordinaten aufgehoben werden kann. Geometrische Anisotropie wird
in der Atmosphére z. B. bei der Form der Tiefdruckgebiete beobachtet (Daley, 1991).
Die Immissionsfelder kdnnen gleichfalls eine solche Anisotropie z. B. aufgrund der
vorherrschenden westlichen Windrichtung besitzen.

Die Richtungsabhangigkeit kann bel einer grof3en Stichprobe festgestellt werden, in-
dem homogene parametrische Kovarianzmodelle fir verschiedene Richtungen ermittelt
werden. In diesem Forschungsvorhaben werden unterschiedliche Kovarianzmodelle fur
vier Sektoren mit einer Breite von 45 ° geschétzt. Der gesuchte Kovarianzwert wird
dann aus einer gewichteten linearen Kombination der Kovarianzmodelle der benach-
barten Sektoren gebildet. Auf den Nachweis der statistischen Verschiedenartigkeit der
Kovarianzmodelle fir verschiedene Sektoren wird verzichtet. Die festgestellte Ani-
sotropie wird in Kapitel 3.3.4.1 diskutiert.

Abweichung von der Normalverteilung

Immissionsdaten sind meist nicht normalverteilt. Dasist fir die Schatzung der empiri-
schen Kovarianzwerte mit der Momentenmethode von Bedeutung. |mmissionsdaten
kénnen durch Transformation mit dem Logarithmus (Hogrefe und Rao, 2001) oder der
Quadratwurzel (Meiring et al., 1998) auf eine anndhernd normalverteilte Form gebracht
werden. Die Kovarianzmodellierung und die Analyse erfolgt in der transformierten
Grof3e und anschlieffend wird in die eigentliche Grofe zurlcktransformiert. Diesem
formal richtigen Vorgehen steht entgegen, dass die logarithmische Transformation die
Unterschiede in den hoheren Wertebereichen unterbewertet, was den Intensionen der
L uftreinhaltung widerspricht.

Fihrt man die Analyse eines Feldes Z mit der log-transformierten Grofde Y =log(Z)
durch, so muss bei der Riicktransformation des interpolierten Werts Y a(r)) ein Bias"
korrigiert werden. Er entspricht der Halfte der Varianz des Analysefehlers (Cressie et
al., 1999, S. 135) s®ay:

? Der Bias entsteht durch den Umstand, dass der Erwartungswert der normalverteilten log-
transformierten GrofRe nicht dem log-transformierten Erwartungswert der nichttransformierten GroRe
entspricht.
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Neben der Transformation besteht die Mdglichkeit, die empirische Kovarianz mit Hilfe
verteilungsunabhangiger und robuster Methoden zu schétzen. Die auf den Perzentilen
basierenden Schéatzformeln weisen eine geringe Anfalligkeit fir Ausreif3er auf, was
besonders bel NO- und Staubmessungen (PM 10) wichtig ist. Hiervon wird in dieser
Arbeit Gebrauch gemacht (siehe Kapitel 3.2.1 und 3.2.2).

Die M ehrzahl der Beobachtungen stammt aus urbanen und belasteten Regimes
und die Stationsdichteist heter ogen

Die Mehrzahl der stadtischen und verkehrsbeeinflussten Messungen verleiht den ho-
mogenen Kovarianzmodellen einen ,,urbanen* Charakter, der sich in der Analyse nie-
derschlégt. Esist deshalb empfehlenswert, das Ensemble zur Schétzung nach dem
Regimetyp zu unterscheiden.

Die stérkere raumliche Konzentration der Beobachtungen in Ballungsréumen wird vom
Anayseverfahren berticksichtigt (siehe Kapitel 2.5.5). Die heterogene Stationsdichte
verfalscht jedoch die Kovarianzmodel lierung, da Messungen mit geringen Abstanden
fast ausschliefdich aus belasteten Gebieten stammen. Die Werte des Kovarianzmodells
fur kurze Abstande sind jedoch von besonderer Wichtigkeit: 1) Aufgrund der einge-
fUhrten Stationsauswahl aus der Umgebung des Analysepunktes (siehe Kapitel 2.5.5)
und der hohen Beobachtungsdichte werden vorrangig nahe Stationen berticksichtigt. 2)
Die Abschétzung der Beobachtungsfehler beruht auf der mit dem Kovarianzmodell fur
den Abstand Null extrapolierten Varianz.

Systematische M odell- und Beobachtungsfehler

Die Analyse{0.31} verlangt eine Biasfreiheit zwischen Modell (xg) und Beobachtung
(Hy) sowie einen unabhangigen und réaumlich unkorrelierten Beobachtungsfehler (siehe
Kapitel 2.5.4) mit dem Erwartungswert Null. Die mangel hafte Erfullung dieser Forde-
rungen beruht auf der Fehlerhaftigkeit des Modells und einem systematischen Repré-
sentativitatsfehler der Beobachtung in den Gebieten mit hoher Immission.

Die Fehlerhaftigkeit der Eulerschen Ausbreitungsmodellierung ist vorrangig durch die
ungenaue Kenntnis der Emission und im geringeren Mal3e von mangel haften meteoro-
logischen Daten bestimmt. Man kann jedoch annehmen, dass trotz fehlerhafter Men-
genangaben die Lokalisierung der Emissionsschwerpunkte vertrauenswirdig ist.

Korrektur des Bias

Die sachkundige Quantifizierung und Korrektur des Bias zwischen Modell und Mes-
sung, d. h. die Abweichung der Erwartungswerte, ist problematisch. Wird der Erwar-
tungswert der Beobachtungen als homogener Mittelwert tber alle vorliegenden Beo-
bachtungen ohne Berticksichtigung der Stationsdichte geschétzt, so bestimmen
wiederum vorrangig die bel asteten Beobachtungen den Wert. Das Problem wird noch
verschérft, da haufig die hochbel asteten Beobachtungen eine vom Modell nicht aufl6s-
bare Skala wiedergeben. Versucht man einen raumlich variablen Biasim Kontext der
klimatischen Kovarianzmodelle zu ermitteln, so steht man wiederum vor einem Inter-
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polationsproblem. Es stellt sich die Frage, wie aus den nur an den Beobachtungsorten
bekannten Beobachtungsinkrementen eine Korrektur fur das gesamte Feld zu finden ist.
Der Kompromiss ist die Annahme eines homogenen Bias, der nur durch Stationen mit
einem grof3en Représentationsbereich geschétzt wird. Aus diesem Grund wird nur der
Bias hinsichtlich der Land-Stationen fur die Korrektur verwendet.

Systematischer Beobachtungsfehler

Das uibliche statistische Modell fir den Beobachtungsfehler, d. h. von Repréasentativi-
tats- und Messfehler, geht von einem raumlich unkorrelierten Beobachtungsfehler
(siehe Kapitel 2.5.4) mit Erwartungswert Null aus. Diesen Ansatz nitzt die Beobach-
tungsmethode (siehe Kapitel 3.2.6). Im klimatischen Ansatz besteht die M 6glichkelt,
die Beobachtungsfehler stationsbezogen zu bestimmen. Dabei muss sinnvoll zwischen
dem unkorrelierten und dem systematischen Beobachtungsfehler unterschieden werden.
L etzteren kdnnte man mit dem Beobachtungsoperator korrigieren.

Einfluss eines nichtkorrigierten Bias

Bei der Kovarianzschétzung fuhrt ein Bias zu einer starken Uberschitzung, daes sich
um einen quadratischen Term handelt. Die Linearitét der Analysegleichung {0.31}
bewirkt einen linearen Einfluss des Bias. Geht man von einem Bias des Model | zu-
standsvektors xg und geringen Beobachtungsfehlern aus, so wird der Bias der Analyse
gleichwertig oder im Einflussgebiet der Beobachtungen geringer sein. Ist eine Beo-
bachtung aufgrund subskaliger Einfliisse biasbehaftet, so wird fiir sie eine grof3e Beo-
bachtungsfehlervarianz (siehe 3.2.6) bestimmt. Damit wird der Einfluss der Beobach-
tung auf die Analyse reduziert (siehe Kapitel 2.5.5) Alternativ konnte solch ein Bias
durch eine Korrektur mit dem Beobachtungsoperator H berticksichtigt werden.

Zeitliche Periodizitat

Die Periodizitét, bzw. die damit verbundene zeitliche Korrelation, ist ein Problem fur
die Schétzung der empirischen Kovarianzwerte der klimatischen Kovarianzmodelle
(siehe Kapitel 2.4.2). Um die Zeitreihendaten al's unabhangige Beobachtungen eines
raumlichen Prozesses ansehen zu konnen, ist die Identifizierung der zeitlich korrelier-
ten Komponente (,, pre-whitening*) notwendig, damit die zeitliche Kovarianz nicht die
Schétzung der réumlichen verfascht. Hierfur sind die Klassenbildung und zeitliche
Filterung™ geeignet.

In Flemming (2003) werden die typische zeitliche Variabilitét der hier betrachteten
Stoffe diskutiert. Der Tagesgang ist meist die am starksten ausgepréagte zeitliche Struk-
tur. Auch die raumliche Kovarianz kann starke Tagesschwankungen aufweisen. Elbern
et al. (1998) zeigen dies z.B fur die Beobachtungsinkremente der Ozonimmission. Der
Tagesgang in der Raum-Zeit-Kovarianz | &sst sich demzufolge nur unzureichend sepa-
rieren (siehe Kapitel 2.4.2). Aus diesem Grund ist es sinnvoll, den Tageszyklus nicht
durch Filterung zu entfernen, sondern fir jede Tagesstunde ein eigenes raumliches
Kovarianzmodell zu bilden.

Weitere wichtige Zyklen sind Jahresgang und Wochengang. Diese werden durch robus-
te Filterung entfernt. Damit wird von einer Separation der mittleren zeitlichen und
raumlichen Komponente ausgegangen.

Meiring et a. (1998) bilden gleichfalls tagesstundenbezogene K ovarianzmodelle und
verwenden ein autoregressives Modell AR(2), um den restlichen Teil der zeitlichen

" Die technische Durchfiihrung der Filterung kann unter Artefakten des Verfahrens leiden.
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Korrelation zu besaitigen. Host und Follestad (1999) entfernen nur den Tages- und
Jahresgang durch Filterung.

3.1.2 Datenbasisfir die empirischen Kovarianzmodelle

Die Kovarianzmodelle konnen fur verschiedene Zufallsfelder bestimmt werden. Die
Wahl der Datenbasis hangt von der Aufgabenstellung ab.

Fur die Bestimmung der empirischen Kovarianzmodelle der Immissionsfelder stehen
mehrjahrige Zeitreihen von sttindlichen Beobachtungen und die stiindlichen Jahres-
rechnungen fur die Gitterpunkte des Modells REM/Calgrid zur Verfiigung. Die Schét-
zung der empirischen Kovarianzwerte kann auf folgender Datenbasis beruhen und den
angegebenen Aufgabenstellungen dienen:

1. Beobachtungsinkremente, d. h. die Abweichung zwischen Beobachtung und
Modell b Analyse und Datenassimilation, Beobachtungsfehlerbestimmung

2. Beobachtungsdaten b Messwertinterpolation, Beobachtungsfehlerbestimmung,
Beobachtungsklimatologie, Modellevaluierung

3. Modellrechnung b Modellklimatologie, Modellevaluierung

1. Bei der Datenassimilation ist die Kovarianzstruktur des biasfreien Modellfehlerfel -
des und der Modellbias gesucht (siehe Kapitel 2.5.4). Die Kovarianzmodellierung
erfolgt fur die Beobachtungsinkremente. Gleichzeitig kann mit der Beobachtungsme-
thode aus Kapitel 3.2.6 der aufl 6sungsabhangige Beobachtungsfehler mit Hilfe des
Kovarianzmodells abgeschétzt werden.

2. Von modellunabhangiger und damit allgemeinerer Aussagekraft ist die Kovari-
anzstruktur des Immissionsfeldes, wie es durch die Beobachtungen registriert wird.
Problematisch ist dabei die Ermittlung des kontinuierlichen Erwartungswertfeldes p(r)
und der Kovarianz aufgrund der beschrankten Beobachtungsdichte. Der Beobachtungs-
fehler 1&sst sich in gleicher Weise wie bei den Beobachtungsinkrementen abschétzen.
Betrachtet man das Modellfeld als eine biasfreie Schétzung des Erwartungswertes ju(r),
so entspricht dies dem Vorgehen bei der Datenassimilation.

3. Die Vorteile bei der Schatzung von Kovarianzmodellen aus Modelldaten sind, dass
fur alle Raumpunkte Informationen vorliegen und dass diese nicht mit dem Beobach-
tungsfehler kontaminiert sind. Im Idealfall einer Ubereinstimmung der statistischen
Eigenschaften (Erwartungswert und Kovarianzfunktion) des Modells mit denen des
»wahren* Feldes Xy kdnnen die Modellwerte al's empirische Datenbasis fur die Kova-
rianzmodellierung verwendet werden. Die Kovarianzstruktur des Modells kann auch
direkt mit der der reinen Beobachtungen in einer anspruchsvollen Modellevaluierung
verglichen werden (siehe Kapitel 3.3.3.1).

Die Kovarianzmodellierung fur Modelldaten hat Tradition in der numerischen Wetter-
vorhersage. Die,, NMC"-Methode" vergleicht Modellprognosen fiir einen Termin aus
einer 24- bzw. 48-stindigen Vorhersage (Parrish und Derber, 1992). Die Analysis-
Ensemble-Methode verwendet ein Ensemble von Prognosen mit leicht variierten An-
fangsbedingungen (Fisher und Courtier, 1995). Diese Methoden gehen schliefdlichim
Kaman-Filter auf, bel dem die Kovarianz aus gestorten Modellzustanden gebildet wird
(siehe Kapitel 2.5.7).

> National Meteorological Center
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3.1.3 Drei Kovarianzmodelle (A, B und C) fur Immissionsdaten

Im Rahmen des Forschungsvorhabens sind drei empirische Kovarianzmodelle A, B und
C fir die Analyse von stiindlichen Immissionsdaten entwickelt und verglichen worden.
Es handelt sich dabel um eiln homogenes, terminbezogenes Kovarianzmodell A und
zwei klimatische, inhomogene Kovarianzmodelle B und C, die jeweils fir Ozon, NOy,
NO SO, und PM 10 abgel eitet werden.

Das terminbezogene homogene Modell A liefert einen réumlich homogenen Wert der
gesuchten Grof3en fr jeden Termin. Die klimatischen Kovarianzmodelle geben stati-
onsbezogene bzw. réaumlich inhomogene Werte fir jeweils eine Stunde des Tages an,
die fur einen langen Zeitraum Gultigkeit haben (siehe Abbildung 3.1).

Das klimatische Kovarianzmodell B beruht auf Kombination von mehreren parametri-
schen, homogenen Kovarianzmodellen, die fir jeweils eine Kombination von Immissi-
onsregimes aufgestellt werden. Das klimatische Kovarianzmodell C ist nichtpara-
metrisch und wird durch die Eigenvektoraufspaltung der empirischen Kovarianzmatrix
HBH gebildet. Die klimatischen Kovarianzmodelle B und C sind fir jede Tagesstunde
separat formuliert und beriicksichtigen so die Variabilitét der raumlichen Kovarianz im
Tagesgang.

Alle drel Kovarianzmodelle werden hinsichtlich der erzielten Analysegite untersucht.
Der Vergleich unterschiedlicher Kovarianzmodelle als Ansatz einer Modell- und Beo-
bachtungsklimatologie erfolgt in Kapitel 3.3.

Terminbezogenes homogenes parametrisches Kovarianzmodell A

Es stellt den klassischen Ansatz der Optimalen Interpolation fir homogene Felder dar.
Der Ausgangspunkt der Schétzung ist eine Stichprobe der Beobachtungsinkremente zu
dem gegebenen Termin. Aus ihnen werden empirische Kovarianzwerte pro Abstands-
klasse und fir 4 verschiedene Richtungssektoren geschétzt und mit Hilfe einer analyti-
schen Funktion approximiert (siehe 3.2.3). Es erfolgt eine Korrektur mit dem homoge-
nen Bias der Land-Stationen. Die durch die Beobachtungsmethode bestimmte Varianz
des Beobachtungsfehlers gilt fur alle Stationen. Dieses des Kovarianzmodells wurde in
der ersten Anwendung der Optimalen Interpolation fir das Jahr 1999 (Stern und Flem-
ming, 2001) verwendet.

Der Vorteils dieses Kovarianzmodells ist seine einfache Schatzung aus vorliegenden
Daten. Mit diesem Kovarianzmodell kann auch die Analyse von Jahresmittelwerten der
Beobachtung direkt erfolgen. Im Rahmen der aktiven Datenassimilation mit Ol wird
auch dieses Kovarianzmodell verwendet, um wéahrend der M odellrechnung Beobach-
tungen zu assimilieren. Auch die Eigenvektoren fir Kovarianzmodell C werden mit
diesem Modell A ohne Biaskorrektur interpoliert.

Klimatisches inhomogenes parametrisches Kovarianzmodell B auf Basis der Immissi-
onsregimes der Modellrechnung

Der Ansatz, die Inhomogenitét zu beschreiben, beruht auf einer Superposition ver-
schiedener homogener Kovarianzmodelle. Es wird dabei angenommen, dass innerhalb
eines Regimes eine homogene Kovarianzstruktur zu finden ist. Die Verteilung der
Regimes wird aus der Modellrechnung gewonnen.

Die Basisfur die Modellbildung sind die empirischen klimatischen stationspaarbezoge-
nen Kovarianzwerte. Sie werden aus den Zeitreihen der Werte zu einer Tagestunde fur
das ganze Jahr und getrennt fir Sommer und Winter gebildet. Somit liegt fir jede
Tagesstunde und Saison ein homogenes Kovarianzmodell fir jede Kombination von
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Regimes vor. Die Auswahl des anzuwendenden Kovarianzmodells fur die Analyse-
punkte, d. h. fir HB, wird durch das Regime der Gitterbox aus der Modellrechnung
und dem der verwendeten Beobachtung festgel egt.

Die Varianzen des Beobachtungsfehlers werden, aufbauend auf diesem Kovarianzmo-
dell, fir jede Kombination des Regimes des Backgrounds am Stationsort und dem
Regime der Stationsmessung bestimmt.

Klimatisches inhomogenes Kovarianzmodell C auf Basis der EOF der empirischen
Kovarianzmatrix

Anders als beim klimatischen Kovarianzmodell B wird bel diesem Kovarianzmodell
die Struktur der rdumlichen Inhomogenitét aus der empirischen Kovarianzmatrix abge-
leitet. Mit Hilfe einer Eigenvektoraufspaltung der empirischen Kovarianzmatrix lassen
sich die wichtigen Anteile der Kovarianz, d. h. die Eigenvektoren, an den Stationsorten
bestimmen und in einem weiteren Schritt auf die Analysepunkte ohne Messinformation
interpolieren. Aus den interpolierten Eigenvektoren wird dann die vollsténdige Kovari-
anzmatrix fur alle geforderten Paare von Orten rekombiniert. Eine genauere Beschrei-
bung dieses Kovarianzmodells erfolgt in Kapitel 3.2.5.2.

Das hier verwendete Kovarianzmodell auf Basis der EOF unterscheidet sich von ande-
ren Anwendungen (Holland et a., 1999, Obled und Creutin, 1986, und van Egmond
und Onderdelinden, 1981) durch die vorherige Separation des Beobachtungsfehlers und
die Anwendung der Optimalen Interpolation (Kovarianzmodell A) zur Interpolation der
Eigenvektoren. Die anderen Autoren verwenden hierfir mathematische formale Ver-
fahren ohne statistische Komponente.

3.2 Die Schatzung der empirischen Kovarianzmodelle

321 Schéatzung homogener ter minbezogener Kovarianzwerte

Das Ensemble zur Schédtzung der empirischen Kovarianzwerte é(r) wird fur den ho-

mogenen Prozess aus der Menge N(r) von Beobachtungen y(ri) am Ort r; im gleichen
Abstandsintervall r+?r gewonnen:

&) =—— & (yo- pe)) (v - i,
O = i,ﬁaN(r)(y“') o)) (ver) - ) 2
N(r):{(ri,rj):rE‘ri-rj‘<r+Dr, i,j:L....n}

10 =i=y=14 yr) (13

Die Breite der Abstandsintervalle wird von der Datenlage und der raumlichen Aufl6-
sung bestimmt. Cressie (1993) gibt an, dass mindesten 30 Paare von Daten fir die
Bildung eines empirischen Kovarianzwertes vorhanden sein sollten.

Liegen keine anderen Informationen vor, so wird der homogene Erwartungswert aus
dem Mittelwert der Beobachtungen geschétzt. In diesem Fall kann jedoch auf Bildung
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des Erwartungswertes verzichtet werden, wenn auf das geschétzte empirische Vari-
ogramm 2@ (r) zurtickgegriffen wird:

2

~ 1 o ]
2g(r)——miyj%(r)(y(rj) y(r)) {1.4)

Ausihm kann mit Kenntnis der Varianz 6(0) der Kovarianzwert mit Hilfe von Formel
{0.10} bestimmt werden. Die Verwendung von Variogrammen hat den Vorteil, dasssie
robuster gegentiber einem unbeseitigten Trend in den Daten, d. h. gegentiber einer
Abweichung von der Annahme der Homogenitét, sind (Cressie, 1993, S. 72).

Neben den klassischen’® Schatzungen gibt es robuste Ansétze, die weniger fehlerhaft
auf Ausreil3er und Abweichungen von der Normalverteilung reagieren. Robuste Schét-
zungen der Kovarianz sind mit der folgenden Gleichung mdglich:

S =2 maD{y(r) +y(r)} - MAD{y(r))- v(r,)] {15)

41,i N(R) i\l N(R)

Sie beruhen auf dem Zusammenhang zwischen Kovarianz und Varianz und deren
robuster Schatzung mit der absoluten Medianabweichung (MAD):

Cov(a,b) ={Var(a+b)- Var(a- b)} /4
Var(a) =1.486 MAD(a) {1.6}
MAD © med{|x - med {x,i =1 n}};i =1 n}

Variogrammwerte konnen in gleicher Weise mit Hilfe des Medians robust geschétzt
werden:

~ 1 , 2
29(R) = ——Median{(v(r))- )’} (17

Der Vorfaktor ist die Korrektur des Bias, der durch das Ersetzen des Mittelwertes durch
den Median entsteht”” (Smith, 2001). Die folgende, haufig verwendete robuste Schét-
zung ist auf weiteren theoretischen Argumenten aufgebaut (Cressie, 1993):

4

1 I 1 o :
sG] NG YOy 0

NI

<

29(R) =

on

"6 auch Momentenmethode

" Der Bias ist damit zu erklaren, dass fir eine anndhernd symmetrisch-verteilte GroRe x die GroRe x
nicht symmetrisch ist. Der Median von x? bedarf damit einer Korrektur, wenn er als Schétzung fiir den
Erwartungswert herangezogen wird.
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322 Schétzung klimatischer Kovarianzwerte

3.2.2.1 Filterung der zeitlichen Periodizitéat und Persistenz

Die klimatischen Kovarianzmodelle werden separat fur jede Tagesstunde gewonnen.
Um die notwendige zeitliche Unabhéngigkeit des Ensembles zu erreichen, mul3 nun
noch die Filterung von Jahres- und Wochengang und ,, synoptischer Persistenz” erfol-
gen (siehe Kapitel 2.4.2).

Der Jahresgang wird mit einem Tiefpass geschétzt, der durch einen gleitenden Median-
filter (Wilks, 1995) von 21 Tagen redlisiert wird. Die Abweichung des Jahresganges

vom Median der gesamten Zeitreihe ist die Korrekturgrof3e der Zeitreihe (yg )y fur jede
Tagesstunde h, die dann keinen Jahresgang mehr aufweist:

(8 =~ (e o)+

Der Wochengang al's eine typische Eigenschaft von Immissionsdaten stellt eine perio-
dische aber keine harmonische Schwingung dar. Die Ublichen, auf der spektralen Be-
trachtungswel se aufgebauten Filter sind demzufolge nicht ohne weiteres anwendbar.
Die Beseitigung des Wochengangs erfolgt jedoch prinzipiell nach dem gleichen Vorge-
hen wie beim Jahresgang. Der Wochengang wird ermittelt, in dem fur jeden Wochen-
tag der Median der jahresganggefilterten Zeitreihe der Tagesstundenwerte bestimmt
wird. Die Differenz zum Median der gesamten Zeitreihe bildet die Korrekturgrofie:

(yg)wy - (yg)y ) (d:modr(g?g),sesz{(yg')y}) *

Neben Jahres- und Wochengang hat die Dauer der Wettersituationen eine zeitliche
Korrelation zur Folge. Im Gegensatz zu den durch externe Faktoren bestimmten syste-
matischen Schwankungen ist die Auspragung dieser Erhaltungsneigung variabel. Um
diesen Anteil aus den Daten zu entfernen, wird auf ein autoregressives Modell zurtck-
gegriffen. Autoregressive Modelle bilden die Zeitreihe aus einer Regression zurlicklie-
gender Werte. Aufbauend auf die Erfahrung von Meiring et a. (1998) wurde ein AR-
Modell zweiter Ordnung gewahlt. Die mit diesem AR(2) Modell konstruierte Zeitreihe
wird biaskorrigiert von der urspriinglichen, d. h. der jahres- und wochenganggefilterten
Reihe abgezogen. Somit realisiert sich der Hochpass wiederum durch die Subtraktion

einer tiefpassgefilterten Zeitreihe.
(va) =(va)"- (ARZ((yQ)W) +a§rﬂ5{AR2((yg)W)}g

mit {1.11}
AR2(yt) =m, +al(yt.1)+az(yt-2)

med { yS'}) {1.9)

med {(yg.)y}) {1.10}

d'=1,365
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3.2.2.2 Diskussion der Filterung am Beispid

Die Abbildung 3.2 zeigt die tagliche Zeitreihe der NO,-Konzentration um 7 Uhr fir
die Vorstadt-Station Burg (BB001, U1) und die zugehdrige Autokorrelationsfunktion.
Deutlich sichtbar ist die hohe Persistenz und eine 7-tdgige Schwingung, die durch den
Wochengang bedingt ist.

Abbildung 3.3, Abbildung 3.4 und Abbildung 3.5 zeigen die Anwendung des Jahres-
gangs-, Wochengangs- und AR(2)-Filters auf die Messreihe und die entsprechenden
zeitliche Autokorrelationsfunktionen. Die nacheinanderfolgende Anwendung der drei
Filter fuhrt zu der Zeitreihe in Abbildung 3.6. Die entsprechend dargestellte Autokorre-
lationsfunktion weist fast keine signifikanten zeitlichen Autokorrelationen mehr auf.
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Abbildung 3.2 Tagliche Zeitreihe der NO,-Konzentration um 7 Uhr (MEZ) an der Station Burg

(BB0O01) und Autokorrelationsfunktion (Lag = Anzahl der verschobenen Tage).
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Abbildung 3.3 Tagliche Zeitreihe der NO,-Konzentration um 7 Uhr (MEZ) an der Station Burg
(BB001), jahresganggefiltert, und deren Autokorrelationsfunktion (Lag = Anzahl der verschobe

nen Tage).
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Abbildung 3.4 Tagliche Zeitreihe der NO-Konzentration 7 Uhr (MEZ) an der Station Burg
(BB001), wochenganggefiltert, und deren Autokorrelationsfunktion (Lag = Anzahl der ver schobe-

nen Tage).
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Abbildung 3.5 Téagliche Zeitreihe der NO,-K onzentration um 7 Uhr (MEZ) an der Station Burg
(BB0O01), AR(2)-gefiltert, und deren Autokorrelationsfunktion (Lag = Anzahl der verschobenen

Tage).
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Abbildung 3.6 Té&gliche Zeitreihe der NO,-Konzentration um 7 Uhr (MEZ) an der Station Burg
(BB001), Jahresgang-, Wochengang- und AR(2)-gefiltert, und deren Autokorrelation (Lag =
Anzahl der verschobenen Tage) .
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3.2.2.3 Schétzung stationspaar bezogener Kovarianzwerte

h

Die gefilterten Zeitreihen (xd ) bilden das Ensemble, um fir jede Tagesstunde

h = 1...24 und jedes Stationspaar (r;, rj) einen empirischen Kovarianzwert C (r,ry)zu
schétzen:

C(r.,r,)——agxd) (r)- (%, )(ri)gxd) )~ (6) ()2
h...Stunde des Tages
ri,r, ... Beobachtungsorte

d=1..N ...Tage pro Jahr/Saison

( ) ... jahres- und wochengangsbereinigte Zeitreihe

{1.12}

Analog zur Schétzformel {1.5} kann eine robuste Schatzung C (r;,r;) des stationsbe-

zogenen Kovarianzwerts erfolgen. Die Bildung der empirischen Variogrammwerte 2?
ist nur sinnvoll unter der Annahme intrinsischer Homogenitét (siehe Gleichung {0.9}).
Aus diesen Werten kann ein Variogrammmodell und daraus mit Gleichung {0.10} das
Kovarianzmodell gebildet werden.

3.2.3  Analytische Form des parametrischen Kovarianzmodells

Die Aussage der empirischen Kovarianzwerte C(R) bzw. C(rI ,T;) lasst sich durch die

Approximation mit einer analytischen Funktion erweitern. Die Parameter einer vorge-
gebenen Funktion werden dabei aufgrund der vorliegenden Datenpunkte bestimmt.
Die analytische Form der Funktion stellt sicher, dass das Kovarianzmodell den theore-
tischen Eigenschaften (siehe Kapitel 2.4), d. h. positive Definitét und Konvergenz
gegen Null fur grof3e Abstéande, gentigt. Weiterhin sind durch die Wahl der Funktion
die spektralen Eigenschaften des Feldes bestimmt, falls es sich um eilnen homogenen
Prozess 2. Ordnung handelt’®,

Fir eine umfassende Zusammenstellung von Funktionsklassen, die als Kovarianzmo-
dell fir rédumliche Zufallsfunktionen dienen konnen, sei auf Cressie Cressie (1993)
verwiesen. Verschiedene Kovarianzmodelle fir meteorol ogische Anwendungen und
deren Abhangigkeit von der Art des Backgrounds (Modell oder klimatisches Feld aus
Beobachtungen) werden in Thiebaux (1985) und Daley (1991) vorgestellt. Die vorge-

8 Mit Hilfe des Wiener-Chinchin-Theorems lasst sich das Energiespektrum eines stationdren Prozesses
zweiter Ordnung aus der Fouriertransformierten der Kovarianzfunktion gewinnen. Fir die Anwendung
der spektralen Betrachtungsweise wird aus Griinden der Vereinfachung Homogenitdt und Isotropie fur
den Erwartungswert und den stochastischen Anteil vorrausgesetzt.
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schlagenen K ovarianzmodelle bestehen meist aus der Kombination einer linear” oder
quadratisch abfallenden Exponentia funktion und K osinustermen®. Der Exponential-
term impliziert ein abfallendes Energiespektrum (,, rotes Rauschen*), das aufgrund des
Kosinusterms einen hervortretenden Wellenlangenbereich (, farbiges Rauschen”) be-
sitzt (Schweschnikow, 1965). In den Anwendungen zur Interpolation von Immissions-
beobachtungen ist meist kein Nulldurchgang der empirischen Kurve und somit auch
kein hervortretender Frequenzbereich feststellbar. In vielen Kriging-Anwendungen
werden neben exponentiellen und Gaul3schen Funktionen, Kombinationen von Bessel -
funktionen oder sphérische Variogramme verwendet (Smith, 2001).

Fur die Auswahl einer theoretisch moglichen Funktion ist die Gite der Approximation
der empirischen Werte das entscheidende Merkmal. Im Fall der Immissionsdaten gilt
dies besonders fir geringe Abstande, da meist keine weit entfernten Beobachtungen fir
die Analyse verwendet werden®.. VVon besonderem Interesse ist das Verhalten der
Funktion beim Abstand Null fir die Robustheit der Schéatzung der Varianz des Beo-
bachtungsfehlers (Beobachtungsmethode, siehe Kapitel 3.2.6). Denn fir die Beobach-
tungsmethode wird die Varianz des Backgroundfehlers durch die Extrapolation mit
Hilfe des Kovarianzmodells fir den Abstand Null gewonnen.

Getestet wurden das exponentielle, Gaul3sche und sphérische Kovarianzmodell ({1.13},
{1.14} und {1.15}), da sie augenscheinlich gut der Abstandsabhangigkeit der ermittel-
ten empirischen Kovarianzwerte des Modellfehlers (Background) entsprechen.

Die genannten Funktionen héngen von zwei Parametern ab; es sind dies die geschétzte
Varianz s%s und der raumliche Sklalenparameter (Range) L (Abbildung 3.7). Letzterer
ist ein MalR fur die Grof3e des Gebiets, in dem eine rédumliche Beziehung in Form einer
Kovarianz besteht:

& |ro
fo(r) = S geXpc- U+ {113}
é Lg
, e&r’o
feu(r) = Sg&Xpc- —= {1.14}
g L'g
'|'S§ 1+lw_‘9 - Ew_-gz reL
fen(r) =i 2&L 7 28L% {1.15}
%0 r>L

™ Der Funktion f1 ist aufgrund des linearen Exponentialterms an der Steller = 0 nicht stetig differenzier-
bar. In der Praxis liegen nur diskrete Beobachtungen des Prozesses vor, so dass die Annahme mangeln-
der Differenzierbarkeit kein Hindernis fir die Anwendung dieser Kovarianzfunktion ist. Eine detaillierte
Diskussion ist bei Taubenheim (1969) zu finden.

% Die Lage der Nullstelle der Kovarianzfunktion, bedingt durch den Kosinusterm, korrespondiert mit der
Wellenldnge mit maximaler Spektralenergie.

8 |n meteorologischen Anwendungen gilt das nicht, wenn z. B. tiber dem Meer nur wenige Beobachtun-
gen vorliegen.
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Abbildung 3.7 Exponentielles, Gaul3sches und sphérisches Kovarianzmodell (Gleichung {1.13},
{1.14} und {1.15}), sg*=1.0, L=100

3.24  Approximation des parametrischen Kovarianzmodells

Bei der Approximation des terminbezogenen homogenen Kovarianzmodells existiert
flr jede Abstandsklasse ein Wert. Im Fall der klimatischen Kovarianzmodelleist die
Punktwolke der paarweisen Kovarianzwerte zu approximieren. Das parametrische
Kovarianzmodell stellt eine Kurve durch die Punktwolke dar. Fir jede Abstandsklasse
existieren damit mehrere Werte, deren Streuung die Bandbreite mdglicher Kovarianzen
angibt und auf die Unzulénglichkeit der Annahme von Homogenitét und I sotropie
verweist. Fur die grof3ere Robustheit und um die Anzahl der Normalgleichungen zu
verringern, wird in diesem Fall der Median der Kovarianzwerte als Mal3 fur die Kova-
rianz in dieser Abstandsklasse gebildet.

Nach der Methode der gewichteten kleinsten Quadrate (w.l.s.2%) werden die nichtlinea-
ren Parameter ?; (i=1, k) der Funktion f. durch die Minimierung der folgenden K osten-
funktion gebildet:

2

4 w(CR)- 1o(R.?) @ min, 2={q, ,} {116}

i=1

Die Gewichte w; bestimmen den Einfluss, den der einzelne empirische Kovarianzwert
bei der Approximation erhdlt. Eine statistisch motivierte Wahl der w; ist ein Mal3 fir

die Sicherheit von 6(R) . Bei den klimatischen Kovarianzmodellen wird hierfir der

Quartilabstand |QR® der K ovarianzwerte der Abstandsklasse herangezogen. Die
Streuung der terminbezogenen Kovarianzwerte wird mit einem Ansatz fir Streuung
von Korrelations- bzw. Kovarianzwerten (Taubenheim, 1969) gewonnen. Die geforder-
te Unabhangigkeit der Daten wird vernachl&ssigt. Diese Vertrauensbereiche verringern
sich mit zunehmender Stichprobenanzahl und zunehmender relativer Grofe der Kova-
rianzwerte. Von besonderer praktischer Bedeutung ist das Kovarianzmodell fur kurze

8 \veighted |east squares
8 Differenz zwischen 75%-Perzentil und 25%-Perzentil
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Abstande r (siehe Kapitel 3.2.3). Eine bessere Ubereinstimmung in diesem Bereich
wird mit einer hdheren Wichtung erzwungen:

: —— ... klimatischesKM
. &, -0 1
W =c——+ JN(R) | — {1.17}

M
e vax o i € terminbezogene KM

Im Falle einer linearen Abhangigkeit der Parameter ?; fihrt Gleichung {1.16} zu den
Gauldschen Normalgleichungen. Fir die nichtlineare Abhangigkeit der verwendeten
Kovarianzmodelle {1.13}, {1.14} und {1.15} wird eine Taylorentwicklung der Funkti-
on fchinsichtlich 2, d. h. s?sundL, gebildet, die eine lineare Funktion fur d?, darstellt:

f(R2+d?) =T (R?)+5 R g {118}

i=1 i

Mit dem iterativen Verfahren nach Levenberg-Marquard (Press, 1992) wird das Mini-
mum des Ausdrucks { 1.16} gesucht. Fir die praktische Durchfihrung der Approxima-
tion muissen initiale Werte der Parameter sz und L vorgegeben werden. Die GrofRe der
beiden Parameter wird durch die Schnittpunkte mit der y- und x-Achse einer linearen
Regression der Daten gewonnen.

3.25 Nichtpar ametrischesinhomogenes K ovarianzmodell aus
EOFs

Neben der Methode, die empirischen stationsbezogenen klimatischen Kovarianzwerte
durch eine analytische Funktion zu approximieren, kdnnen auch Ansétze aus dem
Umfeld der Hauptkomponentenanalyse (PCA®*) verwendet werden, um die Kovarianz-
funktion zu modellieren. Die PCA beruht auf einer reduzierten Darstellung eines Da-
tensatzes von Zeitreihen an verschiedenen Orten, und zwar mit Hilfe einer Auswahl
von Eigenvektoren (EOF) der empirischen Kovarianzmatrix und zeitlich variierenden
K oeffizienten (Hauptkomponenten, Zwiers und von Storch, 2000).

Der Gedanke, durch eine Eigenwertaufspaltung die bedeutsamen Anteile der empiri-
schen Kovarianzmatrix zu separieren, findet auch bei der rdumlichen Kovarianzmodel-
lierung Anwendung (siehe Kapitel 3.2.5.2). Ausgangspunkt ist der klimatische Ansatz,
der auf die stationsbezogene Kovarianzmatrix zurtickgreifen kann. Sie wird durch die
Eigenvektorzerlegung komprimiert dargestellt. Neben der Erfassung von inhomogenen
Strukturen sind numerische Aspekte eine wichtige Motivation fur die reduzierende
Eigenvektorzerlegung (SVD®) der empirischen Kovarianzmatrix (siehe Kapitel
3.25.3).

® Principal Component Analysis
8 Singular Value Decomposition
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3.25.1 Matrixapproximation durch SVD

Durch eine Hauptachsentransformation mit der orthogonalen Matrix V kann eine belie-
bige symmetrische Matrix A, wie es alle Kovarianzmatrizen sind, in eine Diagonal mat-
rix ? transformiert werden, deren Diagonalelemente die Eigenwerte ?; von A sind:

2 =VTAV =§: T omit Axg=lx, und VVT=1 {119}

o

Die Spalten der Matrix V sind dabel die zugehorigen Eigenvektoren xq. Gilt fir gewis-
se Eigenwerte 2=0, so ist A singulér. Die Aufteilung der singuldren Anteile einer Mat-
rix mit Hilfe der Eigenwerte wird as singular value decomposition (SVD) bezeichnet.
In umgekehrter Reihenfolge kann A ausV und ? gebildet werden. Die SVD kann man
benutzen, um die Matrix A zu approximieren® (Press, 1992). Dazu werden kleine
Eigenwertein ? gleich Null gesetzt (?’) und die entsprechenden Spalten, d. h. die
zugehorigen Eigenvektoren, in der Matrix V entfernt (V’). Die approximierte Matrix A’
ergibt sich dann aus:

a, - 006
I

nd

A=V'?2'VT {1.20}

Der Rang der Matrix A’ ist geringer alsder von A, dadiesfir ?’ und V' gilt. Basiert
man die rechentechnische Speicherung von A’ auf V' und ?, so verringert sich der
Aufwand zur Speicherung der originalen Matrix A. Dieswird bei der RRSQRT-
Approximation der Kovarianzmatrix ausgenutzt (siehe Kapitel 2.5.8). Hierbel wird die
raumliche Kovarianzmatrix P durch ihre Wurzel dargestellt: P=SS'. Die Matrix S wird
durch S=V’? Y2 approximiert.

3.25.2 Auf SVD basierendesinhomogenes K ovarianzmodell C

Das Kovarianzmodell C ist durch die Implementierung des Kalman-Filtersin der
RRSQR-Form motiviert (Kapitel 2.5.8). Ausgangspunkt ist die Eigenvektorzerlegung
der empirischen Kovarianzmatrix.

Die empirische Kovarianzmatrix C der Beobachtungsinkremente entspricht der Matrix
HBH' + R. Durch sieist bereits ein wichtiger Teil der fiir die Gewinnung der Analyse-
gewichte K notwendigen Kovarianzinformation gegeben (siehe Gleichung { 0.35}).
Unbekannt bleibt noch HB, d. h. die Kovarianz zwischen den Beobachtungsorten und
den Analysepunkten ohne Beobachtung. Grundgedanke des Kovarianzmodells C ist es,
die wichtigen Eigenvektoren der gesamten Kovarianzmatrix B an den Stationsorten, d.
h. furr die Matrix HBHT zu bestimmen und diese dann auf die anderen Analyseorte zu
extrapolieren. Die Elemente eines Eigenvektors der Matrix HBH' sind einem Station-
sort zugeordnet. So kann der Eigenvektor als ein an den Beobachtungsorten vorgege-
benes skalares Feld aufgefasst werden. Mit einer raumlichen Interpolation mit dem
homogenen terminbezogenen Kovarianzmodell A konnen sie fur ale Analysepunkte
bestimmt werden. Damit wird die Kovarianzmodellierung fir die Interpolation der

8 7. B. firr eine effektive Speicherung von groRen Matrizen beim reduced rank square root (RRSR)
Kalman-Filter bzw. fir die eindeutige Singularisierung bei linearen Gleichungssystemen.
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I mmissionsbeobachtung auf eine welitere Interpol ationsaufgabe zuriickgefuhrt. Im
Gegensatz zu den originalen Grof3en kann jedoch bei den Elementen der bedeutsamen
Eigenvektoren von einer grof3eren Glattheit und damit einer einfacheren Interpolation
ausgegangen werden (Smith, 2001). Die Eigenvektoren, mulitipliziert mit den entspre-

chenden Eigenwerten, werden dann zu einer Kovarianzmatrix B fir dle Ortspaare
rekombiniert:

1. empirischeK ovarianzmatrix fur die Stationsorte:

C=HBH' CI R"" n...Anzahl der Beobachtungen
2. Eigenvektoraufspaltung:

C=Vv?V' V=[v,v,-v,] vIR
3. Reduzierung fur |, <1,

V@ V=[v,v,v] k<n {1.21}
4. Interpolation (R"® R"  N...Anzahl der Gitterpunkte):

v®v, vIR"

5. Rekombination der Kovarianzmatrix fur alle Feldpunkte:

/\*

C=vV2vV =B C.BI RV

Die Bestimmung der Eigenvektoren und Eigenwerte der gesuchten Backgroundkovari-
anzmatrix kann nicht direkt auf der Kovarianzmatrix der Beobachtungsinkremente
beruhen, da diese die Beobachtungsfehlervarianz enthalt. Um HBH T zu schatzen, ist
folglich R von der empirischen Kovarianzmatrix zu subtrahieren, d. h. die Hauptdiago-
nalelemente mussen um die Werte der Beobachtungsfehlervarianz (siehe Kapitel 3.2.6)
verringert werden. Nach der Bestimmung der Eigenwerte (Press, 1992) stellt sich die
Frage, ab welchem Eigenwert 2 die zugehorigen Eigenvektoren vernachlassigbar sind.
Hierzu kann der zugehorige Antell an der Gesamtvarianz, der sich durch die Summe
aller Eigenwerte ergibt, verwendet werden. Ist der Anteil grofer als 5%, so wird der
zugehorige Eigenwert a's relevant betrachtet:

'L s 005 {1.22}

Qo=

]
1

Van Egmond und Onderdelinden (1981) verwenden Eigenwerte bis zur Grof3e des
geschétzten Messinstrumentenfehlers. Hier wird die SVD auf die ,kontaminierte®
Kovarianz, d. h. die Schatzung von HBH'+R, angewandt. Die Frage, ob der Beobach-
tungsfehler von den Eigenvektoren mit Eigenwerten in dieser Grol3e erfasst und durch
dieses Vorgehen entfernt wird, bleibt unbeantwortet.
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3.2.5.3 SVD fiur numerische Stabilitat

Wendet man eine Hauptachsentransformation auf die Matrix HBH' an, so werden die
Kovarianzwerte an den Beobachtungsorten linear kombiniert. Diese ,, neuen Beobach-
tungsorte” weisen nun keine Korrelation hinsichtlich der Backgroundfehler auf. Da-
durch vereinfacht sich das Gleichungssystem und seine Losung. Gleichzeitig l&sst sich
anhand der Eigenwerte Uberprifen, ob die Kovarianzmatrix positiv definit oder
schlecht konditioniert™ ist.

Ein lineares Gleichungssystem Ax=b kann hinsichtlich der Eigenvektorbasis V umge-
formt werden, wobel die Matrix A durch ? ersetzt wird:

Ax=b ® Lx =b
. . {1.23}

X =V'x und b =V'b
Befinden sich unter den ausgewahlten Stationen zwei eng benachbarte und haben sie
einen geringen Beobachtungsfehler®®, so hat die Matrix des Gleichungssystems zwei
ahnliche Spalten und Zeilen. Dadurch ist das Gleichungssystem schlecht konditioniert,
was zu numerischen Problemen bei seiner Ldsung fihrt. Die Konditionierung einer
reellen, symmetrischen und positiv definiten Matrix 18sst sich aus dem Verhatnis des
grofiten zum kleinsten Eigenwert ableiten (Kiesewetter und Maess, 1974). In der nume-
rischen Praxis empfiehlt es sich, die Eigenvektoren mit sehr kleinen Eigenwerten zu
vernachlassigen und nur die approximierte Matrix A’ bzw. ?" zu verwenden®. Im
Gegensatz zur SVD bel dem Kovarianzmodell C steht hierbei nicht der Aspekt der
Handhabbarkeit sondern jener der numerischen Stabilitét im Vordergrund. Deswegen
werden hierbel erst Eigenwerte, die das um 10-fache kleiner alsdiein {1.22} sind,
vernachléssigt.

3.26  Schéatzung der Beobachtungsfehlervarianz

Der Beobachtungsfehler wird als eine raumlich nicht korrelierte Komponente der Beo-
bachtung mit verschwindendem Erwartungswert angesehen (siehe Kapitel 2.5.2). Die
Beobachtungsmethode nach Hollingsworth und L6nnberg (1986) benutzt die Beobach-
tungsinkremente™, d. h. die Differenz zwischen Beobachtung und Background (y —
Hxg) zur Schétzung seiner Varianz.

Bildet man die Kovarianzmatrix der Beobachtungsinkremente unter der Annahme, dass
die Fehler des Backgrounds und der Beobachtung nicht korreliert sind, so ergibt sie
sich aus der Kovarianzmatrix der Beobachtungen R und der mit dem linearisierten
Beobachtungsoperator H auf die Variable der Beobachtungen transformierten Matrix
des Backgroundfehlers B (vergleiche Gleichung {0.23} und {0.24} ):

E((y- Hxe)(y- Hxs)') = R+HBH {1.24}

8 Die Matrix ist , fast* singulr.

8 Dje Varianz des Beobachtungsfehlers trégt zur numerischen Stabilitét bei.
 d. h. die Eigenwerte und ihre reziproken Werte gleich Null zu setzen

% die durch die , nahrhafte* Null (HXgue — HXue) Erweitert werden
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Mit der weiteren Annahme, dass die Beobachtungsfehler nicht korreliert sind™ und der
Beobachtungsoperator H eine Verschiebung auf den Ort der Beobachtung ist, folgt fir
einen Kovarianzwert Cij der Beobachtungsinkremente an den Orteni und j:

js2 +sg i=j
C, =E((y,- Hx)(y, - Hxy)) = ib "L {125}
i

Fir verschiedene Ortei und j gleicht der Kovarianzwert der Beobachtungsinkremente
dem der Backgroundfehler, d. h. dem entsprechenden Element aus HBH; fiir gleiche
Orte entspricht der Wert der Summe der Varianzen des Beobachtungsfehlers soi?und
des Backgrounds sg;°.

Der extrapolierte Wert eines Kovarianzmodells fur den Abstand Null wird nun als
Schétzung der Varianz des Backgroundfehlers verwendet. Die Gite der Schétzung wird
sowohl durch die Gultigkeit der statistischen Schdtzung der Kovarianzen als auch durch
die Wah! des Kovarianzmodells bestimmt® (siehe Kapitel 3.2.3). Von Bedeutung ist
dabei analytischen Form des parametrischen Kovarianzmodells.

Die Differenz zur Varianz der Inkremente liefert dann die gesuchte Varianz des Beo-
bachtungsfehlers soi>. Das Prinzip der Schatzung der Varianz des Beobachtungsfehler
mit Hilfe eines Kovarianzmodellsist in Abbildung 3.8 dargestellt.

Fir den homogenen terminbezogenen Ansatz ergibt die Beobachtungsmethode einen
Wert fUr die Varianz des Beobachtungsfehlers aller Stationen. Mit dem klimatischen
Ansatz kdnnen stationsspezifische Fehler ermittelt werden. Fur jede Station ist aus der
Zeitreihenauswertung der Beobachtungsinkremente die Gesamtvarianz bekannt. Die
Aufgabe besteht nun in einer moglichst guten Schatzung der Varianz des Backgrounds
bzw. des glatten Feldes am Stationsort. Hierzu wird ein lokal es homogenes und isotro-
pes Kovarianzmodell auf Basis der empirischen Kovarianzwerte mit der betrachteten
Station in einem Radius von 100 km herangezogen.

Observation error
variance

E stimated smooth scale
variance

Covariance

— —_— Covariance
Model -
» P ~ = with S
e Station S ~
_ |Station S | -
& s N
3 / N
8 / , \
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Abbildung 3.8 Schatzung der Varianz des klimatischen Beobachtungsfehlers (observation error
variance) der Station S mit Hilfe eines Kovarianzmodells nach der Beobachtungsmethode.

°! R ist damit eine Diagonal matrix
%2 \/on besonderer Bedeutung ist die Steigung des K ovarianzmodells in der Nahe des Abstandes Null.
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3.3 Diskussion der Ergebnisse der Kovarianzmodellierung

Dieses Kapitel beinhaltet die Darstellung der Ergebnisse der Kovarianzmodellierung
nach Kapitel 3.2. Es werden im folgenden die Schatzungen der Beobachtungsfehlerva-
rianz, des Modelbias und der raumlichen Kovarianz, einschlielich der Varianz* des
»glatten” Feldes, diskutiert.

Dierdumliche Kovarianz wird fur drel Datenquellen aus Kapitel 3.1.2 geschétzt, d. h.
fUr die Beobachtungsinkremente, die Beobachtungen und die reinen Modelldaten. Die
Kovarianz der Beobachtungsinkremente dient der Analyse, die Kovarianz der Beobach-
tung und Modelldaten wird fUr die klimatol ogische Darstellung und die Modelleval uie-
rung bendtigt. Der Erwartungswert der Beobachtungsinkremente, d. h. der Modellbias,
gibt den systematischen Modellfehler an. Er muss fir die Analyse besaitigt werden.
Haufig wird die Kovarianzmodellierung nur als Zwischenschritt zur Analyse betrachtet
und ihren Ergebnissen keine grof3e Aufmerksamkeit geschenkt. Hier schlief3t sich nun
eine genauere Diskussion der Ergebnisse der Kovarianzmodellierung aus folgenden
Grunden an:

Die Grofle des Beobachtungsfehlers, der hauptséchlich ein Mal3 fir mangelnde
Représentativitét ist, soll veranschaulicht werden

Der Vergleich von Bias und der rdumlichen Kovarianz von Model lrechnung
und Beobachtung ist eine Modellevaluierung, die 1. und 2. statistische Momen-
te berticksichtigt.

Bewertung des Vermodgens der Kovarianzmodelle A, B und C aus Kapitel 3.1.3
die Struktur der raumlichen Kovarianz und deren zeitliche Veranderung wider-
zugeben

Abschétzung der Stérke der Verénderung des Modellfeldes (Background)
durch die Beobachtung bei der Analyse.

Vergleich der Kovarianzmodellierung von passiven und aktiven Verfahren
(Kalman-Filter, aktive Assimilation mit OI)

Die Frage des Erfolgs der Kovarianzmodelle der Beobachtungsinkremente fur die
Analyseist in dem Bericht der Inhalt des néachsten Kapitels 4. Die direkte Interpretation
der Beobachtungsinkremente hat aufgrund des Differenzcharakters und der spezifi-
schen Konfiguration des Chemie-Transport-Modells eine geringere Aussagekraft.
Deshalb wird in diesem Kapitel die r&umliche Struktur der Kovarianzen der ,reinen”
Beobachtungen und der Modellwerte prasentiert und verglichen™ (siehe Kapitel 3.1.2).
Die présentierten Ergebnisse hangen von dem verwendeten Kovarianzmodell und
seinen Annahmen ab. So erzeugt das homogene Modell A einen réaumlich homogenen
Wert der betrachteten Grofen fur jeden Termin. Die klimatischen Kovarianzmodelle
liefern stationsbezogene bzw. rdumlich inhomogene Werte fir jeweils eine Stunde des
Tages Uber einen langen Zeitraum. Sie beruhen auf der empirischen klimatischen Ko-
varianzmatrix der Beobachtungsorte. Die separate Bildung der klimatischen Kovari-
anzmodelle fur jede Tagesstunde erfasst nur die tagesgangabhangige Variabilitéat.

%3 Die Varianzen werden dabei meist durch ihre Wurzel, d. h. die Standardabweichung, dargestellt.

% Firr eine Modellevaluierung hinsichtlich der zweiten raumlichen Momente, d. h. der Kovarianzfunkti-
on, ist es zunéchst empfehlenswerter, die beiden abgeleiteten Kovarianzmodelle zu vergleichen und nicht
das Kovarianzmodell der Abweichungen zu untersuchen.
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Die betrachtete raumliche Variabilitét bezieht sich innerhalb der gewahlten Modellvor-
stellung des Zufallsfeldes (siehe Kapitel 2.4.1) auf die Abweichungen vom Erwar-
tungswert. Hier wird zusétzlich auf den Erwartungswert der Beobachtungsinkremente
eingegangen, da er der Bias zwischen Modell und Beobachtung ist.

Von besonderer praktischer Bedeutung ist der ermittelte Beobachtungsfehler, daer fir
ale Arbeiten zur statistischen Analyse und Datenassimilation sowie fir die Modelleva-
luierung® von grundlegender Bedeutung ist.

Die Auswertung der terminbezogenen homogenen Kovarianzmodelle (A) fir verschie-
dene Termine eignet sich zur Untersuchung der zeitlichen Variabilitét der Kovarianz
und der Stérke der Anisotropie. Die Darstellung der inhomogenen klimatischen Kova-
rianzmodelle (B, C) liefert einen Eindruck von der Auspréagung der Inhomogenitét der
zweiten Momente der Felder bzw. von der M6glichkeit, sie zu erfassen (siehe
Abbildung 3.1). Die Gegentberstellung beider Ansétze kann die Rechtfertigung der
Grundannahmen zur Stichprobenbildung, d. h. Homogenitét oder Stationaritét, des
jeweils anderen Ansatzes Uberprifen.

Die Kovarianzmodellierung erfolgte empirisch unter der Verwendung von Beobach-
tungsdaten. Eine dynamische Form der Kovarianzmodellierung beinhaltet der Kalman-
Filters (siehe Kapitel 2.5.7) fur das Chemie-Transport-Modell REM/Calgrid (Stern,
1994). Ein Vergleich der empirischen Kovarianzmodellierung mit den Kovarianzen des
Kaman-Filterswird in Kapitel 3.3.5 gegeben.

331 Der Beobachtungsfehler

Nach der Definition in Kapitel 2.5.2 ist der Beobachtungsfehler eine raumlich nicht
korrelierte Komponente der Messung. Seine Varianz wird mit der Beobachtungsme-
thode aus Kapitel 3.2.6 geschétzt. Der Umstand der Unkorreliertheit wird von den hier
gewonnenen Ergebnissen bestétigt: Unabhangig davon, ob Beobachtungen oder Beo-
bachtungsinkremente verwendet werden, sind die ermittelten Fehlergrof3en sehr ahn-
lich. Weiterhin hat die Wahl der analytischen Kovarianzfunktion (siehe Kapitel 3.2.3)
keinen erkennbaren Einfluss auf die geschétzten Beobachtungsfehlervarianzen.

In der Literatur wird der Beobachtungsfehler haufig ad hoc als Prozentsatz des Mess-
wertes angenommen oder mit stati stischen Methoden geschétzt (Tilmes und Zimmer-
man, 1998). Die in diesem Forschungsvorhaben gewonnenen Ergebnisse sprechen
insbesondere bei Ozon gegen dieses Vorgehen, dafir alle Regimes ein gleich grof3er
Beobachtungsfehler ermittelt wurde und weil der absolute Beobachtungsfehler am
Nachmittag geringer alsin den Nachstunden® ist.

3.3.1.1 Der stationsbezogene Beobachtungsfehler

Die Gesamtheit der stationsbezogen bestimmten Standardabweichungen, d. h. die
Wurzel der Varianz, der Beobachtungsfehler aller betrachteten Spurenstoffe, ist in
Abbildung 3.9 zu finden. Abbildung 3.12 gibt einen Uberblick tiber die raumliche
Verteilung der Beobachtungsfehler fir Ozon und PM10.

® Die ,perfekte* Modellsimulation muss demzufolge nur im Rahmen der Standardabweichung des
Beobachtungsfehlers mit der Messung Ubereinstimmen.
% Die Ozonwerte sind nachmittags hoher alsin der Nacht
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Fir NO und PM10 sind die geschétzten stationsbezogenen Beobachtungsfehler deutlich
grofder alsfir NO,, Ozon und SO, an allen Tagesstunden. Dies entspricht der Erwar-
tung, dass Messungen fur das kurzlebige NO in der Nahe der Quellen von nur geringer
réaumlicher Reprasentativitét sind. Die stundliche Variabilitédt von PM 10 ist sehr hoch
und dementsprechend werden grol3e Fehler geschétzt. Da PM 10 keinen ausgepragten
Tagesgang aber eine grof3e Tagesschwankung besitzt (Flemming, 2003), ist esim Sinne
der raumlichen Repréasentativitdt empfehlenswert, die stiindlichen Werte durch das
Tagesmittel zu ersetzen. Die zugehorigen Beobachtungsfehler sind dann deutlich ge-
ringer.

Der Zusammenhang zwischen Beobachtungsfehler und dem Immissionsregime, d. h.
der typischen Belastung, ist in Abbildung 3.10 und Tabelle 1 dargestellt. Fur die primér
emittierten Spurenstoffe, d. h. mit Ausnahme von Ozon, steigt der Beobachtungsfehler
mit zunehmender mittlerer Immission an. Bel PM 10, SO, und NO bleibt der relative, d.
h. auf die mittlere Belastung bezogene Fehler, nahezu konstant in allen Regimes; bei
NO, sinkt der relative Fehler leicht mit zunehmender Belastung.

Stoff\Regime: | B R/1 [u1/2 |u2/3 |u3/4 [S/5 |2 Tagesgang
Os (ppb) 8 6 6 6 6 6 schwach
NO (ppb) 3 4 5 6 7 8 schwach
NO (ppb) 3 7 10 15 20 30 8 Uhr-Max
PM 10(ug/m°) 8 8 10 12 15 schwach
SO, (ug/m°) 2 3 4 6 18 schwach

Tabelle 1 Geschéatzte Standar dabweichung des klimatischen Beobachtungsfehlersder stiindlichen
Messung, dargestellt als Median aller Stationen innerhalb der Immissionsregimes nach Flemming
(2003) (B = Berg, R = Land, Ul = Vorstadt, U2 = Stadt, U3 = belastetet Stadt, S= Stralle, S2 =
Stralde extrem)

Bei Ozon ist die Standardabweichung des Beobachtungsfehlers fur ale Regimes mit
Ausnahme der Berg-Stationen nahezu konstant. Die scheinbar geringe raumliche Re-
prasentativitét der Berg-Stationen erkléart sich aus dem hier gewahlten Vorgehen, den
Beobachtungsfehler mit Hilfe der umgebenden Stationen abzuschétzen. In der Tat sind
die Berg-Stationen aufgrund der geringen Deposition in der Nacht nicht reprasentativ
fUr die Verhdtnisse in der Bodenschicht tber Land. Sie entsprechen eher den Verhdlt-
nissen in der zweiten Modellschicht. Der relative Beobachtungsfehler der Berg-
Stationen ist ungefahr von gleicher Grof3e wie der der Land-Stationen. Mit zunehmen-
der Urbanisierung und Verkehrseinfluss steigt der relative Beobachtungsfehler.

Der Ausgangspunkt fur die klimatische Kovarianzmodellierung sind separate Kovari-
anzmodelle fur jede Tagesstunde. Betrachtet man die geschétzten Standardabweichun-
gen des Beobachtungsfehlers fr jede Tagesstunde, so stellt man nur einen geringen
Tagesgang fest (siehe Abbildung 3.11). Bei NO gibt es wahrend des morgendlichen

I mmissionsmaximums einen Anstieg des Fehlers. Interessant ist, dass fir Ozon in der
Zeit der héchsten Konzentrationen eine leichte Abnahme des absoluten und eine grof3e
des relativen klimatischen Beobachtungsfehlers festzustellen ist. Offensichtlichist bel
der nachmittaglichen Ozonbildung und guter Durchmischung die réumliche Représen-
tativitét grof3er alsin den nachtlichen Stunden, wo lokale NO-Immission und Depositi-
onsvorgange die Ozonkonzentration steuern.
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SD of climatic Obs. error 2001 all stations
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Abbildung 3.9 Histogramme der Standar dabweichung des klimatischen Beobachtungsfehlers
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Abbildung 3.10 Standar dabweichung® des klimatischen Beobachtungsfehlersfiir alle Stationen
und alle Tagesstunden, geordnet nach dem Immissionsregime (obere Reihe in ppb, 0=Berg/K Uste,
1=landlich, 2=Vorstadt, 3=Stadt, 4=belastete Stadt, 5=Verkehr, 6=Verkehr extrem, untere Reihein
pg/m?®, Belastungsstufen 1 —5)

% Die grafische Darstellung beschrankt sich auf Werte kleiner als 20 ppb bzw. pg/m®
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Daily Var. of climatic Obs. error (SD)
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Abbildung 3.11 Tagesgang der Standar dabweichung des klimatischen Beobachtungsfehlersfur alle
Stationen (O3, NO2 und NO in ppb, SO2 und PM 10 in pg/m®)
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Abbildung 3.12 Karte der stationsbezogenen Standar dabweichung des Beobachtungsfehlers fir
Ozon um 13 Uhr (links) und der Tagesmittelwerte von PM 10 (rechts)

3.3.1.2 Der homogene terminbezogene Beobachtungsfehler

Im Gegensatz zum stationsbezogenen Beobachtungsfehler liegt der terminbezogene
Beobachtungsfehler als Zeitreihe fir alle Stunden des Jahres vor. Pro Termin fasst ein
Wert den typischen Beobachtungsfehler aller Stationen zusammen, mit Ausnahme der
Stationen der Verkehrs-Regimes (S, S2 bzw. 5, Flemming, 2003). Die Charakteristik



62 UBA F&E Vorhaben 290841 252  Grundlagen von Ol und Kalman Filter

dieses Wertes ist durch die urbanen Stationen gepragt, da sie den groften Anteil der
verwendeten Stationen stellen.

Der terminbezogene Beobachtungsfehler ist auf Basis des terminbezogenen Kovari-
anzmodells A ermittelt worden (siehe Kapitel 3.1.3). Durch die Zusammenschau der
terminbezogenen Kovarianzmodelle fir alle Zeitpunkte kann die zeitliche Variabilitat
der Kovarianzstruktur untersucht werden.

Abbildung 3.13 zeigt analog zu Abbildung 3.9 die Haufigkeitsverteilung der Standard-
abwei chung des homogenen Beobachtungsfehlers fir alle Termine. Die Wertebereiche
sind von dhnlicher GrofRenordnung wie die der individuellen klimatischen Fehler. Fur
NO und PM 10 sind die individuellen Unterschiede grof3er al's die Unterschiede zwi-
schen den homogenen Werten zu verschiedenen Zeitpunkten. Die Darstellung der
Beobachtungsfehler, geordnet nach Tagesstunden, liefert ein @hnliches Bild wieim
klimatischen Fall (siehe Abbildung 3.14 und Abbildung 3.11).

Der Jahresgang, ermittelt durch die monatliche Zusammenfassung des homogenen
Beobachtungsfehlers, enthélt Abbildung 3.15. Fir NO, und PM 10 ergibt sich keine
erkennbare Jahresgangabhéngigkeit, NO und SO, zeigen ein Sommerminimum, wah-
rend Ozon ein leichtes Maximum im Sommer aufweist.

Insgesamt kann festgestellt werden, dass der homogene Beobachtungsfehler keinen
sehr ausgepragten Jahresgang liefert. Dies rechtfertigt das Konzept des klimatischen
Beobachtungsfehlers, da die individuellen Unterschiede grof3er erscheinen as die zeit-
liche Variabilitét.
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Abbildung 3.13 Histogramme der Standar dabweichung des ter minbezogenen homogenen Beo-
bachtungsfehlers (SDOBS) fiir alle Termineim Jahr 2001 (obere Reihein ppb, unterein ug/m?)
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Daily Var. of hom. Obs. error (SD)
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Abbildung 3.14 Tagesgang der Standar dabweichung des homogenen ter minbezogenen Beobach-
tungsfehlersfir alle Stunden des Jahres (03, NO2 und NO in ppb, SO2 und PM10in ug/m?)
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Abbildung 3.15 Jahresgang der Standar dabweichung des homogenen Beobachtungsfehlersfir alle
Termine (fir O3, NO und NO, in ppb, fiir SO, und PM 10 in pg/m®)

332 Der Bias

Der Bias beschreibt die Abweichung der Erwartungswerte von Modell und Beobach-
tung und ist demzufolge von grundlegender Bedeutung fur die Modellevaluierung. Ein
positiver Biasist Anzeichen fir eine Unterschatzung der Beobachtung durch das Che-
mie-Transport-Modell. Fir die Analyse stellt sich zusétzlich die Frage, inwieweit die
Hypothese vom Erwartungswert Null der Beobachtungsinkremente {0.33} Giltigkeit
hat bzw. durch welche Korrektur eine Biasfreiheit erreicht werden kann. Die Gegen-
Uberstellung der zeitlichen Variabilitat innerhalb der Immissionsregimes in Flemming
(2003) gibt einen Einblick in die zeitliche Variabilitdt des Bias. Eine Diskussion des
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Bias-Tagesgangs fur verschiedene chemisch gekoppelte Stoffe liefert weitere Hinweise
zum Modellverstandnis.

Die Histogramme des terminbezogenen und des stationsbezogenen Biassind in
Abbildung 3.16 und Abbildung 3.17 dargestellt. Die Maximalwerte des Bias liegen in
beiden Féllen in der Grol3e der Erwartungswerte selbst. Die individuellen Unterschiede
oder die Unterschiede zu verschiedenen Zeiten haben eine dhnlich grof3e Spannweite.
Wie schon in Kapitel 3.1.1 ausgefihrt, ist die Bewertung des terminbezogenen Bias
zwischen Modell und Beobachtung nicht ohne eine Berticksichtigung der Zusammen-
setzung der Beobachtungen hinsichtlich ihrer Regimezugehorigkeit beantwortbar. Der
stationsbezogene Bias im klimatischen Fall ist in Abbildung 3.18 fiir die verschiedenen
Regimetypen der Beobachtung dargestellt. Bei NO, weisen die landlichen Regimes fast
keinen Bias auf; mit zunehmender Belastung steigt der Bias an. Dieses Verhalten ist
konsistent mit der Annahme, dass diese Regimes nicht die rdumliche Ausdehnung einer
Modellgitterbox haben und damit nicht vom Model| erfasst werden kénnen®. Trotz
einer gewissen Streuung ist die Simulation von SO, in allen Regimes nahezu biasfrel,
d. h. auch die bel asteteren Regimes werden vom Modell richtig erfasst. Bei Ozon und
PM 10 sind die suburbanen bzw. die Stationen der Belastungsstufe 2 biasfrei. Die Werte
der Land-Stationen der Ozonbeobachtung werden im Mittel unterschétzt bzw. bel
PM10 vom Modell tiberschétzt.

Der bisher betrachtete Bias setzt sich gleichmél3ig aus allen Stunden zusammen. Eine
genauere Beurteilung der Ursachen des Bias kann eine Betrachtung seines Tagesganges
ergeben. Der Tagesgang des Bias fur alle Stationen bzw. nur fir die Land-Stationen ist
in Abbildung 3.19 und Abbildung 3.20 dargestellt. ES zeigt sich dabel eine deutliche
Tagszeitabhangigkeit, die vom terminbezogenen und stationsspezifischen Ansatz quali-
tativ gleichwertig wiedergegeben wird.

Am auffdligsten ist der gegenlaufige Tagesgang des Bias fur Ozon und PM10. Die
Ozonsimulation ist nachts deutlich zu gering und tagsiber fir die Gesamtheit der Stati-
onen zu hoch. Letzteres gilt fur die Land-Stationen nur in geringem Umfang. Fir PM 10
gilt der umgekehrte Verlauf mit einer nachtlichen Uberschatzung und einer Unterschét-
zung am Tage. Da beide Stoffe nicht unmittelbar chemisch miteinander gekoppelt sind,
ist die mogliche Ursache dieses Verhatens vorrangig in den vertikalen Austauschpro-
zessen zu vermuten: Stabile Verhaltnisse sind zu stabil und labile zu labil. Der zu ge-
ringe nachtliche Austausch fihrt zu erhdhten PM 10-Werten und zu Uberschétztem
Ozonabbau durch Deposition und Titration mit NO ohne eine Kompensation durch
vertikale Ozoneinmischung in die Bodenschicht. Tagstiber fuhrt der Gberschétzte Aus-
tausch zur Verringerung der PM10-Konzentration und zu Ozoneinmischung von oben
bzw. zu einer sehr starken Verdinnung des NO.

Ozon, NO und NO, sind durch das sich in wenigen Minuten einstellende fotochemische
Gleichgewicht gekoppelt. Die nachmittégliche Uberschatzung von Ozon ist mit unter-
schétzten NO,-Werten verbunden, was fur richtige Ox**-V erhaltnisse sprechen kénnte.
Nachts gilt das nur bei den Land-Stationen, da fur diese eine leichte Unterschétzung
durch das Modell im klimatologischen Fall zu verzeichnen ist.

% Dieser Umstand widerspricht nicht der Tatsache, dass einige Gitterboxen z. B. im Ruhrgebiet as
Gebiete hochster NOx—Belastung simuliert werden.

% 0, ist die Summe aus NO, und Os. Die Untersuchung von O ist sinnvoll, da dadurch die Bilanz tiber
das zwischen beiden Stoffen ausgetauschte O-Radikal gebildet wird. Bei unveranderter Einstrahlung und
konstantem NO, wird das Verhdtnis der beiden Stoffe nur von der meist sehr variablen NO-
Konzentration gesteuert.
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Der Jahresgang des homogenen terminbezogenen Bias fir 2001 auf der Basis von
Monatswerten zeigt grof3e Schwankungen zwischen den verschiedenen Monaten (alle
Stationen in Abbildung 3.21, Land-Stationen in Abbildung 3.22). Frihjahr und Winter
sind Zeiten mit der starksten Unterschétzung von Ozon und mit der stérksten Uber-
schétzung von PM 10. Insbesondere die starke Schwankung von Monat zu Monat in-
nerhalb einer Jahreszeit unterstiitzt die These, dass die Wettersituation sehr wichtig fur
die Entstehung des Bias von Ozon und PM10 ist. Auch hier ergibt sich dasbeim Ta-
gesgang gefundene gegenlaufige Verhalten der jeweiligen Bias.

NO und NO, zeigen einen geordneteren Jahresgang mit einer Unterschétzung der Ge-
samtheit der NO-Beobachtungen im Winter und einer Uberschétzung von NO, im
Sommer. Betrachtet man lediglich die Land-Stationen, so ist nur fir NO, eine leichte
sommerliche Unterschétzung und eine winterliche Uberschétzung zu erkennen. Fir das
landliche Ozon und PM 10 ist die winterliche Unterschitzung bzw. Uberschétzung
besonders ausgepragt.
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Abbildung 3.16 Histogramme des stationsbezogenen Bias zwischen Modell und Beobachtung fur
alle Stationen (obere Reihein ppb, unten in pg/m®)
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Bias of homogeneous Model error 2001 all hours
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Abbildung 3.17 Histogramme des ter minbezogenen homogenen Bias zwischen Modell und Beo-
bachtung fiir alle Termine 2001 (obere Reihein ppb, unten in pg/m?®,
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Abbildung 3.18 Bias zwischen Beobachtung und M odellrechnung fiir alle Stationen, geordnet nach
dem Regime (AQ regime) der Beobachtung (obere Reihein ppb, 0=Berg/K liste, 1=landlich,
2=Vorstadt, 3=Stadt, 4=belastete Stadt, 5=Verkehr, 6=Verkehr extrem, untere Reihein pg/m?,
Belastungsstufen 1-5).
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Abbildung 3.19 Tagesgang des klimatischen Biasfir alle Stationen (links) und des homogenen

terminbezogenen Biasfir alle Stunden des Jahres 2001 (rechts) (O3, NO2 und NO in ppb, SO2
und PM10in pg/m®)
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Abbildung 3.20 Tagesgang des klimatischen Biasfir alle Land-Stationen (links) und des homoge-

nen terminbezogenen Bias der Land-Stationen fur alle Stunden des Jahres (rechts) (O3, NO2 und
NO in ppb, SO2 und PM 10 in ug/m?®)
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Abbildung 3.21 Jahr esgang des homogenen ter minbezogenen Bias aller Stationen fur alle Termine
2001 (O3, NO und NO, in ppb, fiir SO, und PM10in pg/m®)
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Annual Var. of hom. rural Bias
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Abbildung 3.22 Jahr esgang des homogenen ter minbezogenen Bias der L and-Stationen fur alle
Termine 2001 (Oz, NO und NO, in ppb, fiir SO, und PM10in pg/m®)

3.3.3 DieVarianz des, glatten“ Feldes

Waéhrend der Beobachtungsfehler eine singulére Eigenschaft der Messorte ist und der
Bias die Differenz von Erwartungswerten beschreibt, werden nun die Variationen des
glatten, d. h. des rédumlich korrelierten Immissionsfeldes untersucht (siehe Kapitel
2.4.1.1) Die hier untersuchte Varianz ist die Kovarianz fur den Abstand Null, die nicht
durch den Beobachtungsfehler beeinflusst ist.

Die folgende Diskussion der Varianz soll zwel Aufgaben erfillen:

Vergleich der raumlichen Variabilitét von Modellrechnung und Beobachtung
Abschétzen der Stérke des Einflusses der Beobachtungsinkremente auf die Ver-
anderung des Modellfeldes bel der Analyse

3.3.3.1 Varianz von Modell, Beobachtung und Beobachtungsinkrement

Der Vergleich der Varianz des glatten Feldes von Modellrechnung und Beobachtungen
soll Uberprifen, ob die Variabilitét der beiden Quellen Ubereinstimmt. Der Vergleich
der Varianz und Kovarianz gibt erste Hinweise, ob das Modell in der Lage sein konnte,
die Variabilitat'™ des gesuchten , glatten* Immissionsfeldes zu erfassen.

Das generelle Ziel der Modellierung ist es jedoch, nur das ,, glatte“ Beobachtungsfeld
ohne das ,, Rauschen” der Beobachtungsfehler zu ssmulieren. Fir den Vergleich der
Variabilitét ist es demzufolge notwendig, den Varianzanteil des Beobachtungsfehlers
zu entfernen und nur den raumlich korrelierten Teil der Beobachtungen zu betrachten.
Die Schétzung der Varianz des glatten Feldes erfolgt mit einem Kovarianzmodell, da
Beobachtungsdaten und Beobachtungsinkremente durch den réumlich unkorrelierten
Beobachtungsfehler ,, kontaminiert* sind.

100 7. B. kann die abgebildete Variabilitidt des Modells durch eine Erhthung der Auflésung verbessert
werden.
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Wirde die Modellrechnung genau dem Erwartungswertfeld der Beobachtungen ent-
sprechen (siehe Kapitel 2.4.1), dann wére die Varianz des glatten Feldes von Beobach-
tungsinkrementen und Beobachtungsdaten die gleiche. Eine verringerte Varianz der
Beobachtungsinkremente ist demzufolge ein Hinweis darauf, dass das Modell bereits
einen Tell der Variabilitdt wiedergegeben hat. Diesist fir die meisten der hier behan-
delten Stoffe der Fall. Folglich ist die Varianz des glatten Feldes der Beobachtungsin-
kremente kleiner as die der reinen Beobachtungsdaten.

DieVarianz ist ein Mal3 fur die Variabilitét des Feldes jenseits der des Erwartungswer-
tes. Die Stérke der Varianz hangt von der Methode zur Schatzung des Erwartungswer-
tes sowie von der Korrektur des Bias ab. Aus Griinden der Vereinfachung werden hier
nur die klimatischen Varianzen an den Beobachtungsorten untersucht. Der Erwar-
tungswert wird dabel durch den zeitlichen Mittelwert geschétzt.

Abbildung 3.23 zeigt die geschétzten Standardabweichungen, d. h. die Wurzel der
Varianz, fur das glatte Feld der Modellrechnung, der Beobachtung und der Beobach-
tungsinkremente im Tagesgang. Mit Ausnahme der nachmittéglichen Ozonimmission
ist die raumliche Variabilitdt der Modellrechnung deutlich geringer als die des unkon-
taminierten glatten Immissionsfel des aus den Beobachtungen. Dieser Unterschied ist
bei der NO-Immission am grofdten. Durch den Einbezug der Modellrechnung wird
nachmittags bei Ozon, PM 10 und SO, die Variabilitét verringert, da hier die Beobach-
tungsinkremente eine geringere Varianz als die Beobachtung aufweisen. Dieser Um-
stand ist Ausdruck einer sinnvollen Prognoseleistung durch das Modell.
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Abbildung 3.23 Tagesgang der klimatischen Varianz des , glatten* rauschfreien Feldes fir die
Modelldaten (RCG), die Beobachtungsdaten (OBS) und die Beobachtungsinkremente (INC),
dargestellt als Standardabweichung. Der dargestellte Wert ist der Median Uber alle Stationen.

3.3.3.2 Rausch-Signal-Verhéltnis

Die Stérke des lokalen Einflusses der Beobachtung auf die Analyse hangt von dem
Verhdtnis der Varianzen der zugehorigen Fehler ab. Grol3e Beobachtungsfehlervarian-
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zen s’ im Vergleich zu der des Backgrounds bzw. Modells sgfilhren zu einer nur
geringen Anderung des Backgrounds bzw. Modellfeldes am Stationsort nach der Glei-
chung {0.31}. Als Mal3 daflr dient das sogenannte Rausch-Signal-Verhaltnis ?, dass
als das Verhdltnis der Beobachtungsfehlervarianz zur Gesamtvarianz der Beobach-
tungsinkremente definiert ist (Gandin, 1965):

So

h =
So+Se

{1.26}

Fur Geopotentialfelder liegt der Wert des Rausch-Signal-V erhdtnisses im Bereich von
10-15% (Daley, 1991). Nur die nachmittéglichen Ozonbeobachtungen liegen im klima-
tischen Fall in einem &hnlichen GrofRenbereich. Die Werte ? fur den Rest der hier be-
trachteten bodennahen Immissionsfelder sind deutlich groR3er (Gber 50%). Damit ist im
Allgemeinen nicht zu erwarten, dass die analysierten Felder am Messort sehr genau mit
der Beobachtung Ubereinstimmen. Der hohe Rauschanteil tritt sowohl bel den klimati-
schen (Abbildung 3.24) als auch mit den terminbezogenen Kovarianzmodellen auf.

In der Praxis der Analyse kann der Bias haufig nicht felduibergreifend bestimmt und
korrigiert werden. Dadurch werden erhohte Varianzen des Backgroundfeldes sg? ge-
schétzt, woraus sich ein verringertes Rausch-Signal-Verhdltnis ergibt (siehe auch Kapi-
tel 3.1.1).
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Abbildung 3.24 Verhéltnis der Beobachtungsfehlervarianz zur Gesamtvarianz des klimatischen
Kovarianzmodells fiir die Stunden des Tages (hour)
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3.34 Raumliche Strukturen der Kovarianzmodelle A, B und C

Die Heterogenitat der Immissionsfelder ist in diesem Bericht haufig hervorgehoben
worden. Sie betrifft die Erwartungswerte und die davon abweichende réaumlich korre-
lierte stochastische Komponente.

Im Fall der terminbezogenen homogenen Kovarianzmodelle wird die Abweichung von
einem konstanten Erwartungswert betrachtet. Im klimatischen Fall wird die Beziehung
der Abweichungen vom stationsbezogenen Erwartungswert betrachtet. Die rdumliche
Heterogenitat dieser Erwartungswerte, d. h. der mittleren Verhaltnisse der Beobachtun-
gen, wird aus den Betrachtungen zur Regimeklassifikation (Flemming, 2003) deuitlich.
In diesem Kapitel wird nun versucht, die Inhomogenitat und Anisotropie der raumli-
chen Beziehung der Abweichungen, d. h. der Kovarianzfunktion, darzustellen. Die
Darstellung der Inhomogenitét der Kovarianzfunktion ist aufgrund der im Vergleich
zum Feld verdoppelten Dimension keine leichte Aufgabe. Dies gilt sowohl fir die
geschétzte empirische Kovarianzmatrix an den Stationsorten als auch fir die gesamte
Kovarianzfunktion, so wie sie fur die Analyse bendtigt wird. Eine Méglichkeit ware die
Darstellung des Feldes der Varianzen. Eine Veranschaulichung der rdumlichen Bezie-
hungen koénnte fur einen festgel egten Punkt erfolgen, indem man das zughérige Feld
der Kovarianzen abbildet. Eine indirekte Veranschaulichungen des Feldes der Varian-
zen findet sich in Kapitel 0. Eine beispielhafte Darstellung der empirischen Kovarian-
zen hinsichtlich einer Station ist Abbildung 3.36.

Im Gegensatz zu diesen Darstellungsformen wird in diesem Kapitel das Vermogen der
Kovarianzmodelle A, B und C (siehe Kapitel 3.1.3), rdumliche Strukturen wieder-
zugeben, dargelegt. Fir das homogene terminbezogene Kovarianzmodell A beschrankt
sich die Untersuchung der raumlichen Struktur auf die Untersuchung der geometri-
schen Anisotropie in Kapitel 3.3.4.1. Das klimatische Kovarianzmodell B beruht auf
homogenen Kovarianzmodellen fur verschiedene K ombinationen von Regimes (siehe
Kapitel 3.3.4.2). Eine allgemeinere Moglichkeit zur Wiedergabe der Inhomogenitét
liegt in der Darstellung der Eigenvektoren der Kovarianzmatrix in Kapitel 3.3.4.3, was
dem Grundgedanken des Kovarianzmodells C entspricht.

3.3.4.1 Homogene Anisotropie (KM A)

In dem homogenen Ansatz ist die Anisotropie feldibergreifend. Sie aul3ert sichin
ellipsenférmigen Strukturen der Kovarianzfunktion. Durch eine lineare Koordinaten-
transformation'® kann die | sotropie und damit eine reine Abstandsabhangigkeit der
Kovarianzfunktion hergestellt werden (siehe Kapitel 2.4.1.2) Dieses anisotrope Verhal-
ten wird in den meteorol ogischen Stromungsmustern haufig festgestel 1'% und mit
anisotropen Kovarianzmodellen erfasst (Thiebaux, 1976).

Mo6gliche Ursachen fir eine geometrische Anisotropie der Immissionsfelder sind zum
einen in geografischen Faktoren, wie der Lage der Messstationen, der Form des Unter-
suchungsgebiets und der raumlichen Verteillung der Ballungsgebiete in Deutschland zu
suchen. Dem gegentiiber stehen meteorol ogische EinflUsse, wie die mittlere Windrich-
tung und -stérke oder die Temperaturverteilung. Die mit den terminbezogenen Kovari-

194 1 den modernen Formen der Deformationsansétze erfolgt eine nichtlineare Verzerrung des Koordina-
tensystems (siehe Kapitel 2.3.2.3).

192 Dje horizontale Neigung der Achsen der Rossby-Wellen ist z. B. Vorrausetzung fiir den meridionalen
Impulstransport.
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anzmodellen ermittelbare Zeitabhangigkeit der Prozesse kann den Zusammenhang
zwischen der veranderlichen Wettersituation erklaren und damit eine Trennung der
beiden Ursachengruppen ermoglichen.

Windstérke und -richtung scheinen die aussichtsreichsten Kandidaten fur die Erklérung
der witterungsbedingten Anisotropie zu sein. Der zunéchst naheliegenden Erkléarung
der Anisotropie als Wirkung des Transportes durch den Wind in eine Richtung steht
jedoch der Umstand gegentiber, dass mit Zunahme der Windstérke die Verdiinnung
vergrof3ert und somit die,, Stérung” abgeschwacht wird.

Die Uberpriifung der Anisotropie erfolgte nur fiir die Beo-
bachtungsdaten und die Modellrechnung. Dafir wurden
terminbezogene Kovarianzmodelle hinsichtlich eines ho-
mogenen Erwartungswertfeldes fir vier Richtungssektoren
(Nord/Sud, Ost/West, Nordwest/Siidost und Stid-
west/Nordost) mit einem Winkel von 45° gebildet’®. Der
fUr die sphérische Kovarianzfunktion ermittelte raumliche
Skalierungsparameter L (siehe Kapitel 3.2.3) wurde dann
fUr verschiedene Richtungen verglichen. Als Mal3 fir die
Anisotropie wurde die relative Differenz des Rangeparame-
ters zu dem um 90° gedrehten Sektor gewahlt. Die deutli-
chere Anisotropie ergab sich fur Modellrechnung und
Beobachtung hinsichtlich des Sektorenpaars Nord/Siid und Ost/West'® am Mittag.
Abbildung 3.25 und Abbildung 3.26 zeigen Histogramme dieser relativen Differenz fir
die Nord/Sud und Ost/West Sektoren um 13 Uhr fur Beobachtung und Modelldaten.
Auffalig ist die deutliche Anisotropie der Modelldaten mit [&ngeren Kovarianzen in
Ost-West-Richtung fur NO, NO, und SO,. Diese Struktur l&sst sich so in den Beobach-
tungsdaten nicht feststellen. Fir NO existiert sogar die starkere Anisotropie in Nord-
Siid-Richtung.

Nach der Betrachtung der mittleren Anisotropie stellt sich die Frage nach einem Zu-
sammenhang zwischen Anisotropie und meteorologischer Situation. Dafur wurden die
Wettersituationen mit Hilfe der Grol3wetterlagen nach Hess und Brezowsky H. (1977)
klassifiziert. Die Uber 30 Wetterlagen sind weiterhin nach Gerstengarbe und Werner
(1999) in den drei Grundstrémungsmustern ,,Zonal®, , Meridional* und , Ubergang"
zusammengefasst worden. Mit dieser Einteilung konnte kein Zusammenhang zwischen
der Auspragung der Isotropie und der Wetterlage festgestellt werden. Mogliche Ursa
chen fir die systematische Anisotropie sind demzufolge eher in der Form des Untersu-
chungsgebietes und in den unterschiedlichen realen und modellierten réumlichen Emis-
sionsverteilungen zu vermuten.

193 problematisch erschien dabei der Umstand, dass die fiir verschiedene Sektoren geschétzte Varianz
leichte Unterschiede aufwies. Die Frage, ob es sich dabei um Zufélligkeiten oder zu berlicksichtigende
Abwei chungen handelt, konnte nicht beantwortet werden.

1% Fiir die Beobachtungsinkremente tritt die gréRere Anisotropie im Sektorenpaar Nordwest/Siidost und
Siidwest/Nordost auf, d. h. in einem um 45° gegen das geografische gedrehten K oordinatensystem.
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Abbildung 3.25 Relative Differenz (aniso) zwischen dem ter minbezogenen homogenen Range-
Parameter L in Ost-West- und in Nord-Sld-Richtung fir die Beobachtungswerte um 13 Uhr.
Positive Differenzen stehen fir einen gro3eren Kovarianz-Range L in Nord-Siid Richtung
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Abbildung 3.26 Relative Differ enz(aniso) zwischen dem ter minbezogenen homogenen Range-
Parameter L in Ost-West- und in Nord-Sid-Richtung fur die M odellwerte um 13 Uhr. Positive
Differenzen stehen flr einen grof3eren Kovarianz-Range L in Nord-Siid Richtung
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3.3.4.2 Kovarianz fur verschiedene Immissionsregimes (KM B)

Die unabhangigen Variablen fur das Kovarianzmodell B sind neben dem Abstand die
Regimes der beiden Orte der Kovarianz (siehe Kapitel 3.1.3). Die Regimes sind die der
Stationen fiir HBH ' bzw. die des Analysepunkts und der Station fiir HB. Das Regime
des Analysepunkts wird aus der Modellrechnung abgeleitet. Folgerichtig wird die durch
das Kovarianzmodell B wiedergegebene Struktur durch die Verteilung der beobachte-
ten Regimes und die Modellrechnung bestimmt. Die Regimeverteilung der Stationen
wurde bereits in Flemming (2003) beschrieben.

Im Folgenden werden nun die Kovarianzen fir verschiedene Regimes am Beispidl fur
die Beobachtungsi nkremente, Beobachtung und Modellrechung diskutiert. Dazu wird
die entsprechende abstandabhangige empirische Kovarianzfunktion innerhalb des
landlichen und des urbanen Regimes fir Ozon (16 Uhr) und NO; (7 Uhr) prasentiert.
Auffaligstes Merkmal der Kurven ist die Abhangigkeit von der Varianz und damit
gewissermal3en die Skalierung der Kurven. Fur das nachmittégliche Ozon ergeben sich
keine grof3en Unterschiede in der Kovarianzstruktur innerhalb des landlichen und des
urbanen Regimes (Abbildung 3.27). In beiden Féllen ist die Kovarianzfunktion fr
Modellrechnung und Beobachtung von dhnlichem Verlauf. Bei den Beobachtungsin-
krementen ist die Varianz deutlich kleiner (siehe Kapitel 3.3.3). Die Stérke des relati-
ven Abfallsist geringer, was auf einen im Vergleich zu Messung und Beobachtung
grofderen raumlichen Skalierungsparameter L (Range) schlief3en l&sst.

Bel NO, um 7 Uhr sind die Varianzen der Abweichung vom Erwartungswert erwar-
tungsgemal? in urbanen Regimes deutlich hoher alsin den landlichen (Abbildung 3.28).
Im urbanen Regime ist die Form des Abfalls fir M odelldaten, Beobachtungsinkremente
und Beobachtung etwa gleichartig; die Varianz der Beobachtung und der Inkremente ist
jedoch deutlich hoher als die der Modellrechnung. Die Existenz einer beachtlichen
Kovarianz innerhalb des urbanen Regimes fur grof3e Abstande erklart sich durch den
Umstand, dass durch die Regimeunterscheidung bei der Approximation gewissermalen
von einem deutschlandweiten Gebiet mit urbaner Charakteristik ausgegangen wird.
Innerhalb der landlichen Regimesist die Kovarianz deutlich geringer alsin den urba-
nen; der Skalierungsparameter ist aufgrund des geringen Abfalls jedoch hoher.
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Abbildung 3.27 Klimatische K ovarianz (K ovarianzmodell B) fir Ozon um 16 Uhr zwischen den
landlichen (links) und den urbanen Regimes (rechts) der Beobachtung (OBS), der M odellrechnung
(RCG) und der Beobachtungsinkremente (INC). Dargestellt ist der Median aller empirischen

Kovarianzwerte innerhalb einer Abstandsklasse.
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Abbildung 3.28 Klimatische K ovarianz (K ovarianzmodell B) fir NO, um 7 Uhr zwischen den
landlichen Regimes der Beobachtung (OBS), der Modellrechnung (RCG) und der Beobachtungs-
inkremente (INC). Dargestellt ist der Median aller empirischen Kovarianzwerteinnerhalb einer
Abstandsklasse.

3.3.4.3 DieEigenvektoren der Kovarianzmatrix (KM C)

Die Eigenvektoren, multipliziert mit der Wurzel des zugehdrigen Eigenwertes, kdnnen
alsdie die Kovarianzmatrix aufbauenden Felder aufgefasst werden (siehe Kapitel 2.5.8
und 3.2.5.2). Diese Felder besitzen eine , voneinander unabhangige* ' raumliche Vari-
ation. Das Quadrat der Elemente an einem Ort ergibt den Anteil an der Varianz; das
Produkt zwischen zwel Orten ergibt deren Kovarianzantell. Die separat geschétzte
Beobachtungsfehlervarianz wird vor der Eigenvektoraufspaltung von der empirischen
Kovarianzmatrix abgezogen, wenn es die der Beobachtungen oder Beobachtungsin-
kremente ist.

Die prozessorientierte Interpretation der Eigenvektoren (EOF) ist ein viel und kontro-
vers diskutiertes Hilfsmittel in der globalen Klimaforschung (Dommenget und Latif,
2002). Die Eigenvektoren werden dabei as wichtige Moden der Variabilitét interpre-
tiert. Die Interpretation wird jedoch durch den formalen mathematischen Charakter der
Eigenvektoren eingeschrankt. Dies gilt vorrangig fur die Eigenvektoren ab dem zweit-
grofiten Eigenwert, da diese orthogonal zu allen vorangegangenen sein missen. Die
Muster der Eigenvektoren zeigen eine Abhangigkeit von der Form des betrachteten
Gebietes. Weiterhin ergeben sich statistisch motivierte Entartungen, wenn die zugeho-
rigen Eigenwerte von @hnlicher Groéf3e sind (Richman, 1986). Ein L osungsansatz dafir
ist die Drehung der Eigenvektoren, der hier aber nicht verfolgt wird.

195 aufgrund ihrer Orthogonalitat
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Im Folgenden werden fiir Ozon und NO,, bei spiel haft Eigenvektoren der empirischen
klimatischen Kovarianzmatrix aus den Beobachtungsdaten, der M odellrechnung™® und
den Beobachtungsinkrementen miteinander verglichen (siehe Abbildung 3.29 bis
Abbildung 3.34). Die an den Stationsorten vorliegenden Eigenvektoren wurden fir eine
bessere Darstellung analog zum Kovarianzmodell C raumlich interpoliert. Bei der
Interpretation ist aus den dargel egten Griinden Vorsicht geboten. Der Vergleich scheint
jedoch moglich, da die Artefakte fir alle drei Datenbasen gleichwertige Auswirkungen
haben sollten™”.

Fir Ozon um 13 Uhr zeigen Model lrechnung und Beobachtungsdaten eine sehr ahnli-
che Struktur im ersten Eigenvektor (siehe Abbildung 3.29 und Abbildung 3.30). Das
Zentrum des,,Monopols* ist jedoch in der Modellrechnung nach Stiden verschoben.
Der zugehdrige Eigenwert erkléart bei der Beobachtung 44% und fir die Modellrech-
nung 51% der Gesamtvarianz. Die nachsten beiden Eigenvektoren zeigen Ubereinstim-
mend'® einen Dipol mit Nord-Siid und NW-SO Orientierung. Ihr Erkl&rungsanteil liegt
bei 13 % (Modell) und 8 % (Beobachtung) bzw. bei 7 und 6 %. Der erste Eigenvektor
der Beobachtungsinkremente (Abbildung 3.31) hat einen wesentlich geringeren Erkl&
rungsanteil von nur 13 % und zeigt einen SW-NE gelagerten Dipol. Der zweite Eigen-
vektor der Beobachtungsinkremente entspricht in seiner Struktur dem dritten Eigenvek-
tor von Modellrechnung und Beobachtung.

Die Struktur der Eigenvektoren der NO,-Immission um 7 Uhr ist wesentlich heteroge-
ner als bel Ozon um 13 Uhr (Abbildung 3.32 und Abbildung 3.33). Der erste Eigenvek-
tor tragt nur 22 % (Beobachtung) bzw. 29% (Modellrechnung) der Gesamtvarianz. Der
erste Eigenvektor der Beobachtungsinkremente gleicht in seiner Struktur stark dem der
Beobachtung (Abbildung 3.34). In den Beobachtungen sind die Rédume Berlin und
Munchen weitere wichtige Moden der Variabilitét, die in den Modelldaten so nicht zu
finden sind. Hier herrscht die grofdte Variabilitdt in der Nahe der Ruhrgebietes.
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Abbildung 3.29 Die ersten drei Eigenvektoren (interpoliert) der empirischen Kovarianzmatrix der
Beobachtungen fir Ozon um 13 Uhr.

1% Dje Kovarianzmatrix der Modelldaten wird nur fiir die Messorte gebildet, so dass die GréRe und
Bedeutung der Kovarianzmatrix in allen Féllen die gleiche ist.

197 Dje Untersuchung der Frage, ob beim RRSQRT-Ansatz fiir Kalman-Filter degenerierte oder , unphy-
sikalische" Eigenvektoren entstehen und welche Auswirkungen sie haben, scheint lohnenswert.

1%8 Die Struktur der Eigenvektoren ist vom Vorzeichen unabhangig.
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Abbildung 3.30 Die ersten drei Eigenvektoren (interpoliert) der empirischen Kovarianzmatrix der
Modellrechnung fir Ozon um 13 Uhr.
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Abbildung 3.31 Die ersten drei Eigenvektoren (interpoliert) der empirischen Kovarianzmatrix der
Beobachtungsinkremente (Beobachtung minus Modell ) fir Ozon um 13 Uhr.
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Abbildung 3.32 Die ersten drei Eigenvektoren (formal interpoliert) der empirischen Kovarianz-
matrix der Beobachtungen fir NO, 7.00 Uhr.
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Abbildung 3.33 Die ersten drei Eigenvektoren (formal interpoliert) der empirischen Kovarianz-
matrix der Modellrechnung fir NO, 7 Uhr.
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Abbildung 3.34 Die ersten drei Eigenvektoren (formal interpoliert) der empirischen Kovarianz-
matrix der Beobachtungsinkremente fir NO, 7 Uhr.
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3.35  Alternative dynamische Kovarianzmodelle

Im Rahmen dieses Forschungsvorhabens werden vorrangig passive Ansétze der Daten-
assimilation angewendet. Die geschétzten Kovarianzmodel le des Backgrounds sind
demzufolge unabhéngig vom vorhergehenden Verlauf der Datenassimilation. Zusétz-
lich wurden jedoch zwei aktive Verfahren getestet:

1. aktive Ol wahrend des Modelllaufs fir das gesamte Jahr 2001 (siehe 4.1.7)
2. der Kalman-Filter Lauf fur den Juli 2001.

Bei diesen Verfahren erfolgt die Kovarianzmodel lierung wahrend des Modelllaufs,
denn beim aktiven Ansatz beeinflusst das Analyseergebnis zu einem Termin das Back-
groundfeld fur den nachsten Termin. Aus diesem Grund sind klimatische Ansétze
weniger geeignet.

1. Bei der aktiven Ol geschieht die Kovarianzmodellierung empirisch mit dem termin-
bezogenen homogenen Kovarianzmodell A der Beobachtungsinkremente.

Vergleicht man das Rausch-Signal-Verhaltnis der aktiven und passiven Variante, so
stellt man ein um ca. 20% hdheres Verhdltnis bei gleichwertiger Beobachtungsfehlerva-
rianz fest. Dies spricht fir eine geringere Auspragung der Varianz des Background-
bzw. Modellfehlers und damit fir den positiven Effekt der Analyse im vorangehenden
Zeitschritt.

2. Beim Kalman-Filter ist die Prognose der Kovarianzmatrix die grundlegende Eigen-
schaft des Verfahrens (siehe Kapitel 2.5.7). Hier wird ein zeitlich veranderliches und
réumlich inhomogenes Kovarianzmodell prognostiziert. Das Kovarianzmodell des
Kaman-Filters liefert nicht nur die Kovarianz zwischen verschiedenen Punkten eines
Feldes, sondern zwischen allen Elementen des M odellzustandsvektors. Der RRSQRT-
Ansatz des Kaman-Filters beruht auf der Eigenvektoraufspaltung der dynamisch mo-
dellierten Kovarianzmatrix P (siehe Kapitel 2.5.8).

Eine Evaluierung des Kalman-Filters beschréankt sich meist auf den Nachweis seiner
Funktionalitét, d. h. der verbesserten Wiedergabe von Beobachtungen, die nicht an der
Assimilation betelligt waren (van Loon et al., 1999). Die Frage nach einer Verbesse-
rung der Assimilationsleistung kann durch dieses Vorgehen nicht beantwortet werden.
Der Vergleich mit den in Kapitel 3.3.4.3 diskutierten Eigenvektoren und Eigenwerten
der empirischen klimatischen Kovarianzmatrix kann zur Prozessevaluierung des Kal-
man-Filters herangezogenen werden. Dieser Vergleich ist angemessen, da die Stérke
der Beeinflussung des M odell zustandsvektors durch die Beobachtungen mit dem
Rausch-Signal-Verhdtnis abgeschétzt werden kann. Die Beobachtungsfehlervarianz in
der passiven Datenassimilation (Analyse) und der Kalman-Filter-Anwendung ist die-
selbe, so dass auch die Varianzen des Backgrounds bzw. des Modellzustandvektors
vergleichbar sind.

Der hier verwendete Kalman-Filter-Lauf ist eine erste Testversion. Der durchgefiihrte
Vergleich hat demzufolge nur methodischen Charakter. Abbildung 3.35 zeigt beispiel -
haft die mit dem Kovarianzmodell C an den Stationsorten geschétzte empirische Stan-
dardabweichung fur 13 Uhr im Sommerhalbjahr 2001 und den Mittelwert der Stan-
dardabweichung zur selben Zeit aus dem Kalman-Filter Lauf fir den Juli 2001. Die
Standardabwei chungen des Kalman-Filter-Laufes sind um den Faktor 10 geringer.
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Demzufolge ist auch die Méglichkeit der Verénderung des Feldes durch Beobachtun-
gen deutlich herabgesetzt'®.

Ein weiterer Unterschied ist die unterschiedliche Struktur der raumlichen Kovarianz.
Abbildung 3.36 zeigt die Kovarianz zur Station Burg (BB001). Wahrend bei den empi-
rischen geschétzten Werten erwartungsgemald eine Abnahme der Kovarianz mit wach-
sender Entfernung auftritt, ist dies beim Kalman-Filter nicht zu erkennen. Die Stérke
der Kovarianz hangt offensichtlich nicht von der Entfernung ab.

Dieser Umstand lasst sich mit der hier angewandten dynamischen Methode zur Model -
lierung der Kovarianz durch die Modellprognosefehler (model noise, siehe 2.5.7) erkla
ren. Der Modellfehler wird induziert, indem fir das gesamte Modellgebiet eine kon-
stante Anderung von NO,- und V OC-Emission sowie vom vertikalen turbulenten
Austauschkoeffizienten K, angesetzt wird. Folgerichtig sind diese M odellprognosefeh-
ler Uber das gesamte Gebiet raumlich hoch korreliert. Folglich empfiehlt essich, die
Variation der Modellparameter gebietsabhéngig zu machen. Aufgrund des erhohten
numerischen Aufwandes ist dies nur begrenzt moglich. Ansétze zur lokalen Begren-
zung der Kovarianz sind in Builtjes et al. (2000) zu finden. Die in dem vorliegenden
Bericht empirisch modellierten Kovarianzen kdnnen diese Ansétze verbessern, dasie
eine Spezifizierung von Einflussgebieten erméglichen.

Weitere zukiinftige Untersuchungen konnten sich dem Einfluss der formalen Eigenvek-
torzerlegung und Reduktion (RRSQRT, siehe 2.5.8) auf die physikalisch-chemische
Konsistenz der gebildeten Modell zustandsvektoren widmen. Dabei spielt die Frage der
Entartung bzw. Rotation der Eigenvektoren ein Rolle. Die Ergebnisse des Kapitels
3.3.4.3 bilden hierfur eine Arbeitsgrundlage.
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Abbildung 3.35 Standar dabweichung (in ppb) des Fehlers des Backgrounds fur Ozon um 13 Uhr
ausdem Kalman-Filter-Lauf (links, Mittelwert im Juli 2001) und dem empirischen klimatischen
Kovarianzmodell C (Sommer 2001). Die Skalierungist fir die Karten unterschiedlich.

1% Dieser Umstand wird noch verstérkt, dain der gegebenen Implementierung die Analyse mit dem Feld
der Stundenmittelwerte und nicht mit dem prognostizierten Modellfeld erfolgt. Letzteres wird ,, nur* tber
die Kovarianzen zum Feld der Stundenmittelwerte mit der Analyse verandert.
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Abbildung 3.36 Kovarianz (in ppb? zur Station Burg (BB001) (Pfeil) des Fehlers des Backgrounds
far Ozon um 13 Uhr ausder Kalman-Filter-Lauf (links, Mittelwert im Juli 2001) und dem empiri-
schen klimatischen Kovarianzmodell C (Sommer 2001). Die Skalierung ist fur die Karten unter-

schiedlich.
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4 Analyse und Datenassimilation der
|mmissionsfelder

In diesem Kapitel werden die auf Basis der Kovarianzmodelle A, B und C (siehe Kapi-
tel 3.3) erzeugten Immissionsfelder diskutiert. Ausgangspunkt fiir die statistische Ana-
lyse (siehe Kapitel 2.5.4) sind die stiindlichen Beobachtungen in Deutschland und
modellierte Felder des Modells REM/Calgrid (Flemming, 2003) fur das Jahr 2001.

Die stiindlich analysierten Felder werden anhand ihrer Jahresmittelwerte*® zusammen-
gefasst und den reinen Modellrechnungen sowie den Beobachtungen gegentibergestellt.
Die Bewertung des Analyseerfolgs erfolgt mit zwel unterschiedlichen Gutekriterien.
Sie beruhen auf theoretisch abgel eiteten Fehlermal3en und elnem vorraussetzungsfreien
cross-validation-Ansatz.

Die passiven Ansétze der Verbindung von Modell- und Beobachtungsinformation

stehen im Mittel punkt der Betrachtung.

4.1 Verschiedene statistische Analyseverfahren der
lmmission

Vier passive Ansétze fur die Analyse auf Basis der Optimalen Interpolation (Ol, siehe
Kapitel 2.5.5) wurden im Rahmen des Berichtes fir Ozon, NO,, NO, SO, und PM 10
durchgefthrt. Die Analyse erfolgt mit den drei Kovarianzmodellen A, B und C sowie
fr die logarithmisch transformierten Immissionswerte mit Kovarianzmodell A. Zusétz-
lich wird eine aktive Datenassimilation mit Kovarianzmodell A fur eine Modellrech-
nung des Jahres 2001 durchgefuhrt. Fir die Analyse mussen folgende Verfahrens-
merkmal e festgel egt werden:

Transformation der Variablen

Bestimmung und Korrektur des Bias

Festlegung der Beobachtungsfehlervarianz (Matrix R)

Festlegung der Kovarianzen zwischen den an der Interpolation beteiligten

M essstationen (Matrix HBH )

Festlegung der Kovarianz zwischen Beobachtungsort und I nterpol ationspunkt
(Matrix HB)

Art und Grol3e des Background-Feldes

Anzahl der beeinflussenden Stationen

PO PRE

o

No

119 \ware die alleinige Erzeugung von Feldern des Jahresmittelwertes die Aufgabe, so ware unter Um-
sténden die direkte Analyse von Jahresmittelwerten mit einem terminbezogenen Kovarianzmodell ein
ebenfalls vertretbarer Weg. Die stiindlichen Werte werden jedoch fir die Ableitung komplexer Luftglte-
standards wie AOT40 (accumulation over threshold 40 ppb) bendtigt. Dartiber hinaus muss fir die aktive
Datenassimilation die zeitliche Aufldsung der Beobachtung mit der der Modellierung Ubereinstimmen.
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8. Auflosung der Analyse und der parametrischen Kovarianzmodelle
9. mehrmaliges Durchlaufen mit homogenem Ansatz

Eine Diskussion dieser Punkte erfolgt in den Kapiteln 4.1.1 bis 4.1.7. Eine Zusammen-
fassung wichtiger Verfahrensmerkmale wird in Tabelle 2 gegeben.

aktive passiv passiv

Assimilation | terminbezogen & homogen tlimatisch & Inhomogen
Bezeichnung DA A A_log B C
Background Modell DA | Modell Modell Modell Modell
Log-Trafo - + - + +
Biaskorrektur |- Land-Stationen | Land-Stationen | Land-Stationen | Land-Stationen
R+ HBH' hom. sg” hom. sg” hom. sg” B +so C+so”
HB A A A B C
Auflésung 0.5°*0.25° 0.25°*0.125° |0.25°*0.125° |0.25°*0.125° 0.25°*0.125°
Gebiet Mitteleuropa | Deutschland Deutschland Deutschland Deutschland

Tabelle 2 Untersuchte Variante des Ol-Verfahrensfir die Immission von Spurenstoffen

Modell Berechnetes Feld von REM/Calgrid
Modell_DA Berechnetes Feld von REM/Calgrid ausgehend von der Analyse vor 1 Stunde
Land-Station Homogener Bias aus der Differenz der Land-Stationen zum Modellergebnis

A terminbezogenes homogenes K ovarianzmodell A
B klimatisches inhomogenes Kovarianzmodell B

C klimatisches inhomogenes Kovarianzmodell C
Soi individuelle Beobachtungsfehlervarianz

hom. sg” homogene Varianz der Beobachtungsinkremente

4.1.1 Transformation der Variablen

Die Analyse wird zum einem mit den unverénderten und zum anderen mit den loga-
rithmisch transformierten Grof3en durchgeftihrt. Die Transformiert wird, daso die
Haufigkeitsverteilung aller betrachteten Spurenstoffe besser einer Normalverteilung
folgt und dies eine Voraussetzung der Analyseist. Bei der Rucktransformation findet
diein Kapitel 3.1.1, Abschnitt ,, Abweichung von der Normalverteilung®, beschriebene
Korrektur statt. Trotz dieser Korrektur gilt das fur die Analyse grundlegende Prinzip
der Varianzminimierung (siehe Kapitel 2.5.4) fur die logarithmierte Gréf3e. Dadurch
werden die Unterschiede im Bereich der niedrigen Werte hoher bewertet. Dies wider-
spricht den umweltpolitischen Intentionen der Luftreinhaltung, die an der Quantifizie-
rung der hohen Belastung orientiert sind.

Neben diesem praktischen Argument ist die Analyse der unverénderten Variablen
durch den Umstand zu rechtfertigen, dass die Beobachtungsinkremente, d. h. die Ab-
weichungen zwischen Modell und Beobachtungen, betrachtet werden.

4.1.2 Biaskorrektur

Die Korrektur des Bias zwischen Modell und Beobachtungen ist ein Problem, da er fir
unterschiedliche Stationen und Regimes sehr unterschiedlich sein kann (siehe Kapitel
3.3.2). Daraus folgt das Problem seiner sinnvollen und skalengerechten I nterpolation
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Uber das gesamte Feld. Esist besonders bei den aktiven Verfahren relevant, da bei
diesen eine ungerechtfertigte Anderung in Gebieten ohne Messung, z. B. tiber dem
Meer, das Modellergebnis negativ beeinflussen kann. Fir die passiven Verfahren liegt
der Schwerpunkt der Aufmerksamkeit in Deutschland und damit in den Gebieten, fir
die Messungen vorhanden sind. Weiterhin héangt der Bias stark von der Modellkonfigu-
ration ab und hat damit keinen allgemeingultigen Charakter.

Aus diesen Grinden erfolgt fur die passive Analyse im klimatischen wie auch im ter-
minbezogenen Fall eine homogene Korrektur des Bias an den Land-Stationen (R, siehe
Kapitel 3.3.2). Das gesamte Modellfeld wird in den passiven Verfahren um einen kon-
stanten Wert verandert. In den aktiven Verfahren werden die Modellfelder nicht korri-
giert, mit der Annahme, dass der Bias durch die vorangegangene Assimilation stark
verringert ist.

4.1.3 Beobachtungsfehler und raumliche Kovarianz

Fur die homogenen Ansétze mit dem Kovarianzmodell A ergibt sich pro Termin ein
Wert fiir die Gesamtvarianz (s%0s= s%s+ S°0) und ein sektoren- und abstandsabhangi-
ges Kovarianzmodell. Die Gesamtvarianz wird fur die Hauptdiagonal el emente von
HBH '+R verwendet. Mit dem homogenen K ovarianzmodell werden die K ovarianzen
zwischen den beeinflussenden Stationen HBH " und zwischen I nterpol ationspunkt und
den Stationen HB in Abhangigkeit von ihrem Abstand bestimmt.

Bei den klimatischen Ansétzen stehen die empirische Kovarianzmatrix HBHT + R zwi-
schen den Beobachtungsorten i, die daraus abgel eiteten Kovarianzmodelle B und C und

die lokal geschétzte Varianz des Beobachtungsfehlers s/g zur Verfigung.

Die Kovarianz zwischen Beobachtungsort und Interpolationspunkt wird mit Hilfe der
Kovarianzmodelle B und C ermittelt. Der Abstand sowie das Regime der Beobachtung
und des Modellgitterpunktes sind die Kriterien fir die Bildung des K ovarianzwerts fr
das Kovarianzmodell B. Bel Kovarianzmodell C wird die Kovarianz mit Hilfe der aus
den interpolierten Eigenvektoren approximierten Kovarianzmatrix zwischen alen
Gitterpunkten gewonnen (siehe Kapitel 3.1.3).

Die Bereitstellung der Matrix HBH"+R kann alternativ durch direktes Verwenden der
empirischen Kovarianzmatrix oder durch das Kovarianzmodell fir HBH' und die lokal

geschétzte Varianz des Beobachtungsfehlers s/g erfolgen. In ersten Fall ist keine

separate Spezifizierung des Beobachtungsfehlers notwendig. Die Kovarianzen zwi-
schen den Beobachtungen sind gut durch die empirische Kovarianz quantifiziert.
Diesem Vorteil steht die Verschiedenartigkeit in der Bestimmung von HB und HBH '
gegentiber, die mit dem Kovarianzmodell gewonnen werden. Beide V orgehensweisen
wurden hinsichtlich des cross-validation-Analysefehlers getestet. Dabei stellte sich
heraus, dass der zweite Ansatz, d. h. die Bestimmung von HBH " durch das Kovari-
anzmodell und von R durch die lokale Schétzung, bessere Ergebnisse bringt und dem-
zufolge hier angewendet wird.

Hinsichtlich der Eignung von ,, sphérischer”, ,, exponentieller* oder ,, Gauf3scher® Form
des parametrischen Kovarianzmodells (Kapitel 3.2.3) ergab sich in Tests der Approxi-
mationsgiite eine Uberlegenheit der , spharischen* und ,, exponentiellen* Form. Beide
ergeben gleichwertige Resultate hinsichtlich den damit abgeleiteten Beobachtungs- und
Analysefehlern. Aufgrund des robusteren Verhaltens fur sehr kurze Abstande und
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seiner haufigen Anwendung fir Immissionswerte (siehe 2.3.2) wurde dem ,, sphéri-
schen” Kovarianzmodell der Vorrang eingeraumt.

414  Auflosung, Interpolation von Gitter boxmittelwerten

Die Aufldsung des modellierten Feldes betragt 0.5°*0.25° (ca. 25km * 25 km). Demzu-
folgeist sie die angestrebte Auflésung fir die aktive Datenassimilation. Die geringsten
Absténde zwischen den Stationen betragen im urbanen Bereich einige Kilometer. Das
ist damit auch die untere Schranke der Auflésung (siehe auch Kapitel 2.1) fur den lokal
geschétzten Beobachtungsfehler. Um einen grof3eren Anteil der kleinrdumigen Struktu-
ren sichtbar zu machen, wurde in einem Kompromiss die Auflésung der passiven Ana-
lyse auf 0.25°*0.125° (ca. 12km * 12 km) festgelegt. Die Aufldsung der Analyse beein-
flusst die Weite der Abstandsklassen fir die parametrischen Kovarianzmodelle (siehe
3.2.1). Hierfur wird ein Wert von 7 km festgelegt. Bei kleiner Stichprobenanzahl ver-
groRert sich das Intervall, um mindestens 30 Stichprobenelemente pro Abstandsklasse
zu erreichen.

Die Modellfelder bestehen aus Gitterboxmittelwerten; der vorgestellte Ansatz liefert
jedoch zunéchst nur die Interpolation von punktbezogenen Werten. Um dem Mittel-
wertcharakter gerecht zu werden, kdnnte eine Interpolation fir mehrere Punkte in der
Box mit anschlief3ender Mittelwertbildung erfolgen. Es l&sst sich jedoch zeigen, dass
bereits eine Interpolation mit dem Mittelwert von HB, d. h. die Kovarianz zwischen
Beobachtungsort und Analysepunkt, tber dem Mittelungsgebiet den gewiinschten
Mittelwert liefert (, Block-Kriging“, Cressie, 1993).

415 Auswahl der beainflussenden Stationen

Nach Gleichung {0.31} ist jeder Anaysepunkt durch die Gesamtheit aller Stationen
beeinflusst. Die Groéle des zu |6senden Glei chungssystems lasst sich stark verringern,
wenn fir jeden Punkt nur eine Auswahl von umliegenden Stationen zur Interpolation
verwendet wird (siehe Kapitel 2.5.5). Fiir die Analyse wurden die 8 nachsten*'! Beo-
bachtungen ausgewahlt. Mehrere Tests mit einer erhdhten Anzahl von Stationen fihr-
ten zu leicht glétteren Feldern ohne grof3e weitere Unterschiede. Eine geringere Anzahl
erwies sich tellweise als mathematisch instabil, da Artefakte einzelner Beobachtungen
nicht ausreichend gedampft wurden bzw. die Analysegleichung schlecht konditioniert
war (siehe Kapitel 3.2.5.3).

Neben der Anzahl der beeinflussenden Stationen stellt sich die Frage, ob die Kenntnis
des Regimes die Auswahl der Stationen bestimmen soll. Diesist bereit in dem regime-
abhangigen Kovarianzmodell B verwirklicht. Bei ihm sind die Kovarianzen zwischen
sehr verschiedenen Regimes Null gesetzt worden. Es scheint jedoch fir alle Analysen
sinnvoll, die Beobachtungen des Regimes ,, Stral3e" und ,, Stral3e extrem” aus dem Ana-
lyseprozess auszuschlief3en. Ihre raumliche Reprasentativitét ist deutlich kleiner alsdie
gewdahlte Auflosung und ihr Beobachtungsfehler ist systematisch. Er ist deswegen mit
der Varianz nur unvollsténdig erfasst.

" Fir die Analyse von Immissionsmessungen ist eine feste Anzahl von beeinflussenden Stationen
empfehlenswerter, als ale Stationen innerhalb eines Einflussgebietes zu verwenden. Durch letzteres
V orgehen werden die Unterschiede zwischen Stadt und Land zu sehr verwischt.
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4.1.6 Iterative Analyse

Viele Analyseverfahren fur meteorol ogische Ansétze der 60er bis 80er Jahre sind itera-
tiv, d. h. die Analyse wird mehrmals durchgefiihrt, wobei das jewells|etzte Analysefeld
als Background fir die nachste Analyse verwendet wird (Daley, 1991). Da das Back-
groundfeld sich veréndert, ist fir die nachfolgenden Analysen nur ein terminbezogener
Ansatz moglich. Durch die nachfolgenden Analyseschritte wird meist die lokale Uber-
einstimmung mit den Beobachtungen erhoht.

Ob ein weiterer Analyseschritt sinnvoll ist, kann durch das Rausch-Signal-Verhdtnis
entschieden werden (siehe Kapitel 3.3.3.2): ist die Backgroundfehlervarianz im Ver-
gleich zur Beobachtungsfehlervarianz zu gering, so lohnt sich kein weiterer Analyse-
zyklus mehr und es besteht die Gefahr von instabilem Verhalten. Die in diesem For-
schungsvorhaben mit der iterativen Analyse durchgefiihrten Tests ergaben keine

V erbesserung des Analyseergebnisses. In vielen Féllen konnte keine positiv definite
Kovarianzfunktion approximiert werden.

Darauf aufbauend wurde fur die Durchfhrung der Vergleiche verschiedener Ansétze
generell auf ein iteratives Vorgehen verzichtet, da es sich nur mit gréf3erem Aufwand
im Rahmen einer korrekten cross validation einbinden 1&sst.

4.1.7  Aktive Datenassimilation mit Optimaler Interpolation

Die aktive Datenassimilation mit Optimaler Interpolation ergibt sich aus einem Model-
lauf, bei dem jede Stunde die Modellfelder der Bodenschicht an die Beobachtungen
angepasst werden. Dies geschieht, in dem jede Stunde die Analyse aus Modellfeld und
Beobachtungen das Modellfeld ersetzt. Das V orgehen gleicht dem Prinzip des Kalman-
Filters (siehe Kapitel 2.5.7, Abbildung 2.3) mit dem wichtigen Unterschied, dass die
Kovarianz nicht mit Hilfe eines Ensembles von gestorten M odellzustdnden prognosti-
ziert, sondern aus den Beobachtungsinkrementen zum Termin mit Modell A geschétzt
wird. Ein terminbezogener Ansatz wurde gewahlt, da die vorangegangene Assimilation
die Modellfelder verandert.

Die aktive Variante unterscheidet sich von der passiven dadurch, dass hierbei keine
Biaskorrektur durchgefihrt werden kann (siehe Kapitel 4.1.2) und dass die horizontale
Aufldsung des Feldes (siehe Kapitel 4.1.4) nicht erhoht wird.

Da PM10 keine prognostische Model lvariable ist, muss ein Beobachtungsoperator
(siehe Kapitel 2.5.3) fur die Transformation in die PM 10-Bestandteile existieren. Fur
die Auftellung der PM10-Beobachtungen in die Modellvariablen wird hier das vom
Modell gelieferten Massenverhaltnis verwendet. Problematisch ist dabei, dass gewisse
Aerosol bestandteile, wie die organischen, noch nicht in der Modellrechnung bertick-
sichtigt werden. Weitere Untersuchungen sind notwendig, um eine angemessene Kor-
rektur der Modellrechnung auf Grundlage PM 10-Beobachtung zu verwirklichen.
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4.2 Methoden zur Beurtellung der Verfahrensgtte

Eine Eigenheit der statistischen Interpolationsverfahren ist, dass sie neben dem Analy-
seergebnis ein zugehoriges Fehlermali liefern. Diesist die minimierte Varianz, die as
Ausgangspunkt der Analysegleichung {0.31} dient. Die Varianz des Analysefehlers
{0.37} basiert auf den Kovarianzmodellen und kann as ein die Analyse begleitendes
Feld geliefert werden. Der so erfasste Analysefehler ist korrekt, wenn das geschétzte
Kovarianzmodell fehlerfrei ist. Er hangt nur vom geschétzten Kovarianzmodell sowie
dem Beobachtungsfehler ab und l&sst sich im klimatischen Fall im V oraus bestimmen.
Diese Analysefehlervarianz ist ein theoretisches Mal3 und stellt eine untere Schranke
flr den realen Analysefehler dar.

Wegen der Abhangigkeit der theoretischen Analysefehlervarianz vom Kovarianzmodell
besteht die Forderung nach einem voraussetzungsfreien Qualitétstest. Er beruht auf der
|dee der ,,cross validation”: Einzelne Beobachtungen werden vom Analyseprozess
ausgenommen™? und es wird Uberpriift, inwieweit die tibrigen Messungen die ausgelas-
sene Messung reproduzieren konnen. Im Idealfall sollte der durch cross validation
bestimmte Fehler kleiner a's der reale Beobachtungsfehler sein. Dies gilt sowohl fir
seinen Erwartungswert (Bias) als auch fur seine Varianz. Unterschiedliche Schétzungen
der Beobachtungsfehlervarianz fiihren demzufolge zu unterschiedlichen Bewertungen
des Analyseerfolgs. In umgekehrter Schlussfolgerung kann man mit einem vernachl&s-
sigten Beobachtungsfehler eine genaue — aber unrealistische — Ubereinstimmung zwi-
schen Beobachtung und Analyse am Beobachtungsort erzwingen (siehe Kapitel 2.5.5).
Bei der aktiven Datenassimilation beeinflusst das Analyseergebnis eines Termins das
Backgroundfeld fur den ndchsten Analysezeitpunkt. Durch diese Abhangigkeit von
vorangegangenen Analysen |asst sich der cross-validation-Ansatz nur durch Weglassen
einzelner Stationen fUr den gesamten Analyseverlauf realisieren. Es bedarf deswegen
einer Vorauswahl eines ganzen Sets von Teststationen, da ein mehrmaliges Durchlau-
fen des Assimilationszyklus rechentechnisch zu aufwendig wére. Durch das Weglassen
eines grof3en Ensembles von Stationen wird jedoch die Assimilationslestung verringert
bzw. die ermittelten Kovarianzmodelle kdnnen verschiedenartig sein.

12 Fir die Schatzung des Kovarianzmodells wurden jedoch der Vereinfachung wegen alle Stationen
einbezogen, so dass das Kovarianzmodell immer das Gleiche ist.
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5 Zusammenfassung

Der grundlegende methodische Ansatz dieses Teils des Forschungsvorhabensist die

K ombination von Beobachtungen mit Modellrechnungen. Dieses V orgehen nennt man
»Datenassimilation”. Unter dem Begriff ,, Analyse* versteht man eine raumliche Inter-
polation der Beobachtung durch die Kombination mit einem bereits vorgegebenen Feld.
Im Fall dieses Forschungsvorhabensist das ein vom Modell REM/Calgrid (Stern,
2003a) berechnetes Feld. Die Analyseist ein wichtiger Bestandteil der Datenassimilati-
on, da sie die Beobachtungen in das Modellfeld einflgt. Das Modellfeld wird dabel
durch die Analyse zu einem Zeitpunkt ersetzt. Man spricht von ,, passiver Datenassimi-
lation*, wenn die analysierten Felder nicht aktiv in der Modellrechnung weiterverwen-
det werden.

Die Optimale Interpolation ist das im Forschungsvorhaben angewendete Analysever-
fahren. Siewird zur passiven und aktiven Datenassimilation verwendet. Der Kalman
Filter ist eine komplexere Form der aktiven Datenassimilation, die besser die raum-
zeitliche Variabilitat der Immissionsfelder berlicksichtigt.

Im Rahmen des Berichtes werden die bodennahen Spurenstoffimmissionen von Ozon,
NO,, NO, SO, und Feinstaub (PM10) in Deutschland behandelt. Die hier betrachteten
Immissionsdaten stammen zum einen aus den operationellen L uftgitemessnetzen der
Bundeslander, zum anderen wurden sie mit dem Eulerschen Chemie-Transport-Modell
REM/Calgrid (Stern, 2003a) simuliert. Die horizontale Auflésung der Modellfelder
betragt 0.5° geografische Lange mal 0.25° Breite (ca. 25* 25 km?).

In diesem Bericht wird die Methodik von Analyse und Datenassimilation unter dem
Blickwinkel der statistischen Besonderheiten der Immissionsdaten vorgestellt. Dabei
wird auf die in diesem Forschungsvorhaben erstellte Klassifikation von Immissionsre-
gimes (Flemming, 2003) zurtckgegriffen. Ein Schwerpunkt des Berichtes ist die Schét-
zung der statistischen Eigenschaften von Modell- und Beobachtungsfehler mit Hilfe
von statistischen Modellen. Diesist eine notwendige Voraussetzung fir die Anwen-
dung der Analyse- und Datenassimilationsverfahren, da die Gewichtung von Beobach-
tung und Modellrechnung durch die Grof3e des jeweiligen Fehlers festgelegt wird.

Die skalengerechte Kartierung von L uftgitestandards nach der EU-Rahmenrichtline
zur Reinhaltung der Luft und deren Tochterrichtlinien (EU, 1996, 1999, 2000, 2002) ist
die wichtigste Anwendung der Datenassimilation. Die genaue Darstellung der Luftgu-
testandards fir das Jahr 2001 ist jedoch der Bestandteil eines gesonderten Berichtes,
der im Rahmen des FE-V orhabens 201 43 250 ,, Anwendung modellgestiitzter Beurtei-
lungssysteme fUr die bundeseinheitliche Umsetzung der EU-Rahmenrichtlinie Luftqua
litét und ihrer Tochterrichtlinien erstellt werden wird. Eine erste Anwendung der Ol
zur Bewertung der Luftqualitdt 1999 kann in Stern und Flemming (2001) gefunden
werden.

Die Beschreibung der Kalman Filter Anwendung, deren wichtigstes Ergebnis die Op-
timierung von Modellparametern ist, erfolgt im Rahmen des FE-V orhabens 299 43 246
» Entwicklung eines Beurteilungssystems fir das Zusammenspiel von Messung und
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Modellrechnung fur die bundeseinheitliche Umsetzung der EU-Rahmenrichtlinie Luft-
qualitat und ihrer Tochterrichtlinien®.

Ein umfangreicher Literaturtberblick stellt wichtige Arbeiten zur Kartierung von
Immissionsdaten, zur inhomogenen Kovarianzmodellierung und zur Assimilation von

I mmissionsmessungen in Chemie-Transport-Modelle vor. In einem theoretischen Teil
wird auf die Beschreibung von réumlichen Zufallsprozessen und die Schéatzung seiner
Momente aus Raum-Zeit-Daten eingegangen. Weiterhin werden die Gleichungen der
statistischen Analyse und verschiedener Formen der Datenassimilation diskutiert.

Das Grundproblem der statistischen Analyse ist die Bereitstellung der réumlichen
Momente der Beobachtungen, der Modellrechnung bzw. die von deren Differenz (Beo-
bachtungsinkremente). Diesem Problem ist das Kapitel 3 gewidmet. Fur die Schétzung
der Momente aus einer Stichprobe sind vereinfachende Annahmen zur Bildung eines
Kovarianzmodells erforderlich. In diesem Bericht werden ein homogenes terminbezo-
genes (A) und zwei inhomogene klimatische Kovarianzmodelle (B, C) entwickelt und
miteinander verglichen.

Das homogene Kovarianzmodell A beruht auf den Beobachtungen eines Termins und
liefert eine abstandsabhangige homogene Kovarianzfunktion fir verschiedene Rich-
tungssektoren. Es kann gut die zeitliche Variabilitat der réumlichen Kovarianz abbil-
den, daesfir jeden Termin neu ermittelt wird. Dieses Kovarianzmodell wurde fir die
ersten Arbeiten zur Kartierung der Immissionssituation fir das Jahr 1999 verwendet
(Stern und Flemming, 2001). Die neu entwickelten inhomogenen Ansétze werden
separat fur jede Tagesstunde gewonnen; sie kdnnen jedoch die Uber den Tagesgang
hinausgehende zeitliche Variabilitdt nicht erfassen. Sie beruhen auf stationspaarbezo-
genen Kovarianzwerten, die aus gefilterten Zeitreihendaten geschétzt werden. Das
Kovarianzmodell B greift auf die abgeleiteten Regimes zurtick und setzt sich aus ho-
mogenen Kovarianzfunktionen fir jede Kombination von Regimes zusammen. Das
inhomogene Kovarianzmodell C beruht auf einer Interpolation der Eigenvektoren der
empirischen Kovarianzmatrix.

Wichtigstes praktisches Ergebnis der Kovarianzmodellierung ist die Quantifizierung
der Standardabweichung eines unkorrelierten biasfreien Beobachtungsfehlers fir alle
Stationen. Der Beobachtungsfehler ist neben dem Messinstrumentenfehler ein Mal3 fur
die rdumliche Représentativitéat der Messung. Der Betrag der Varianz des klimatischen
Beobachtungsfehlers macht von ca. 20% fir Ozon bis zu ca. 60% fur NO der Gesamt-
varianz der Beobachtungsinkremente aus. Der Bias zwischen Modell und Beobachtung
wurde klimatisch stationsbezogen oder homogen fir alle Stationen zu einem Termin
ermittelt. Er zeichnet sich durch einen ausgeprégten Tagesgang aus, der auf einen zu
schwachen vertikalen Austausch in der Nacht und zu starken Austausch wahrend des
Tages durch die Modellierung schlief3en |8sst.

Weiterhin werden die mit Hilfe der Kovarianzmodelle erfassten réumlichen Strukturen
und deren Anisotropie diskutiert. Die festgestellte Anisotropie der Kovarianz geht eher
auf die Lage der Emissionszentren und der Messnetzanordnung als auf meteorol ogische
Einflussfaktoren zurtick. Fir eine Testanwendung eines Kalman-Filters fur
REM/Calgrid wurde dessen dynamische Kovarianzmodellierung mit der hier durchge-
fUhrten empirischen verglichen. Damit wurde eine Mdglichkeit zur gezielten Verbesse-
rung der Assimilationsleistung mit dem Kaman-Filter aufgezeigt.

Das abschlief3ende Kapitel widmet sich technischen Aspekten der Analyse von stindli-
chen Immissionsfeldern auf der Basis von Beobachtungen und Modellrechnungen. Die
angestrebte horizontale Auflésung betrégt dabel ca. 15 km. Es werden verschiedene
Formen der Implementierung, wie z. B. die Anzahl der beeinflussenden Stationen, die
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Biaskorrektur bzw. die Log-Transformation, diskutiert. Die Analyse erfolgt unter Ver-
wendung der Kovarianzmodelle A, B und C und zusétzlich mit Kovarianzmodell A fir
die logarithmisch transformierten Werte. Um die Glte der Analyseleistung zu ermittelt,
wurde ein cross-validation-Ansatz entwickelt. Er bewertet die Interpolationsgite an den
Stationsorten, ohne dass die zugehorige Beobachtung zur Interpolation verwendet wird.



UBA F&E Vorhaben298 41 252  Grundlagen von Ol und Kalman Filter

91

6 Symbole

M athematische Symbole

{ Kapitel NUMMEr} .........ccoovveriierrcereceecr Gleichungsnummer
Ml s Matrix (fetter Grof3uchstabe)
T et Element der Matrix M

= T USSP TP PPTPRURURRRN Vektor( fetter Kleinbuchstabe)
L et Ortsvektor

L et Abstand
e Diagonamatrix der Eigenwerte
e Eigenwert

N e Matrix der Eigenvektoren
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Statistische Definitionen

r

aumlicher Zufallsprozess

Wahrscheinlichkeitsdichte von X
bedingte Wahrscheinlichkeitsdichte

von X ba Y

0], TS
e AL 2
m(r) =E(X(r))= OX (r)p(X)dX "o

- m(r;)

Erwartungswert (1. statistisches Moment)

Varianz (2. statistisches Moment)

Standardabwei chung

)(X(rz)' m(rz)))

.................................................................................. Kovarianz
O Schétzung von C

e e s et s e s e ee e robuste Schatzung von C
120 1 519 RSP RRRONY Median des Ensembles x
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Definitionen fur diestatistische Analyse

N PR PR PPN Anzahl der Gitterpunkte
/| Elemente des M odel | zustandsvektor
VL ettt p e eap e e e nre e res Anzahl der Beobachtungen
Xa T RN e e Zustandsvektor Analyse
Xg T RN oot Zustandsvektor Modell/Background
X | RN ettt hypothetischer "wahrer" Zustandsvektor
YT R e Beobachtungsvektor
T T T = Beobachtungsoperator, linearisiert
K T RN e Analysegewichte
S = 1 NS Beobachtungsi nkrement
€5 T Y = HXjorrrrererimmminininn s Beobachtungsfehler
€1 T X = Xyyorrerreerersesreremsmsesssinsessssessssssssssssssssssesens Analysefenler
L D Modell- bzw. Backgroundfehler
€ = Xg = Xype = E(B5) i, biasfreier Modell- bzw Backgroundfehler
E(€5) i Bias von Modell- bzw. Backgroundfehler
m .................................................................... Schétzung des Bias

Sy = E(eBZ) ............................................................. Varianz des Modell- bzw. Backgroundfehlers
B= E(eBe;) T RY M s K ovarianzmatrix

des Modell- bzw. Backgroundfehlers
So° = (eoz) ............................................................. Varianz des Beobachtungsfehlers
R= E(eoeg,) T R ™ s Kovarianzmatrix des Beobachtungsfehlers
R= IE(eOZ) ............................................................... R bei unkorreliertem Beobachtungsfehler
E/(e;pTB) = (y/-‘_l_—|x\B) = (T—IB,HT+\R) .................... empirische Kovarianzmatrix der

Beobachtungsinkremente
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Ses = E(eOBZ) =S P HS B s Varianz der Beobachtunginkremente bei
unkorrelierten Beobachtungsfehler
s 2
N = Rausch-Signal-Verhdtnis
So +S 4
s, 2= (eAz) ............................................................. Varianz des Analysefehlers
A= E(eAeL) TRV M s Kovarianzmatrix des Analysefehlers
L e Raumlicher Skalierungsparameter

der parametrsichen Kovarianzmodelle
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