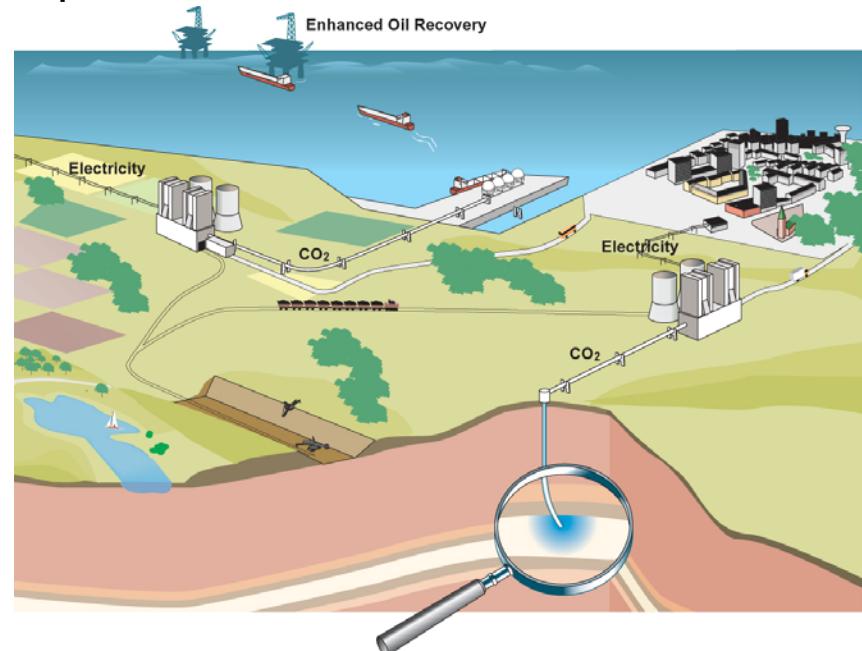


Characteristics of the captured CO₂ gas stream

Workshop On Sub-Seabed
Carbon Dioxide Storage
Umweltbundesamt, Berlin,
17th of June, 2008

Sara Eriksson
Vattenfall Research and Development

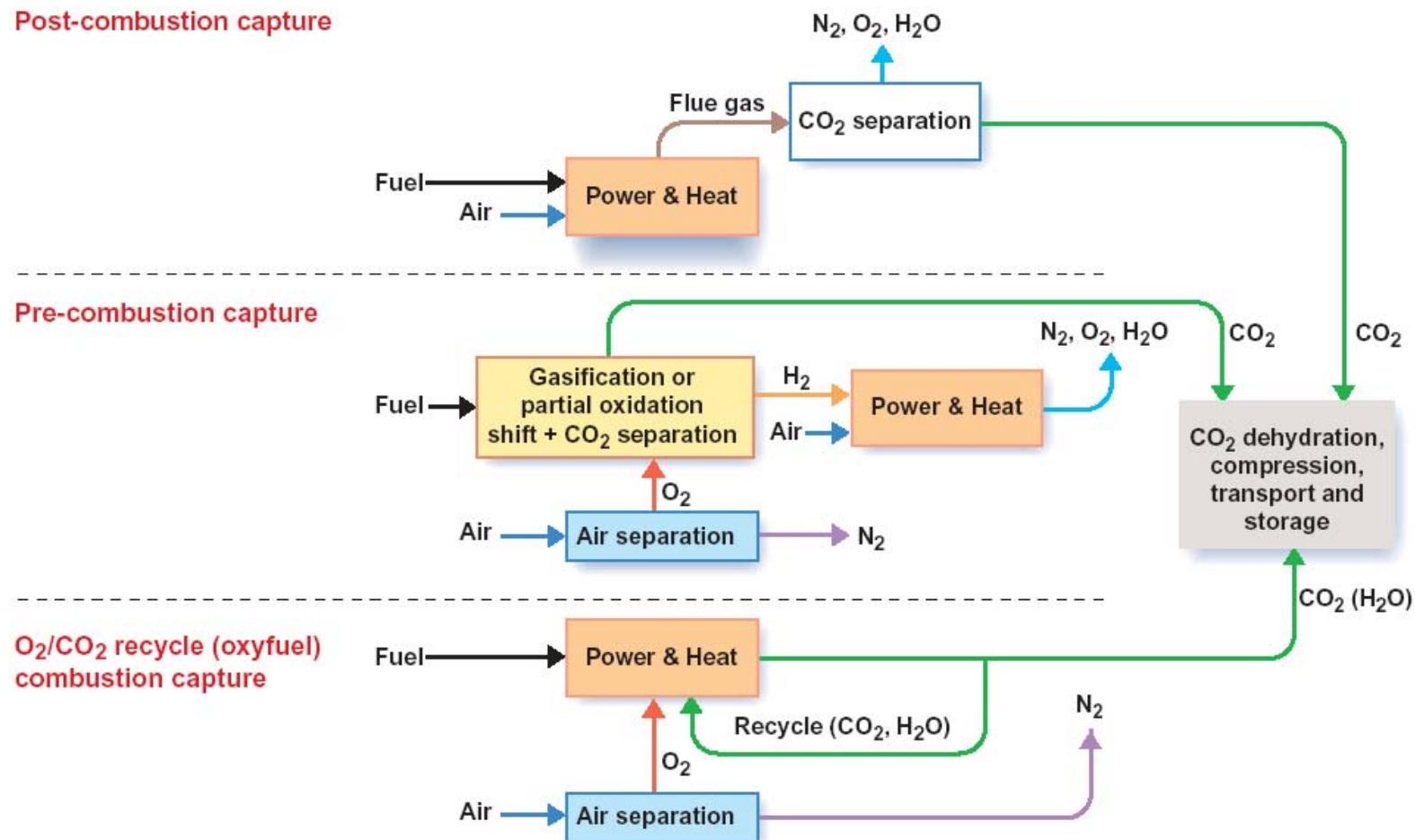
Presentation outline


- Introduction
- Capture technologies
- Gas quality
- Technical issues
- Health, safety and environment
- Concluding remarks

Presentation outline

- Introduction
- Capture technologies
- Gas quality
- Technical issues
- Health, safety and environment
- Concluding remarks

Introduction


- When capturing CO₂ streams from coal-fired power plants for geological storage, the gas stream also contains small amounts of other substances.
- The composition of the captured gas depends on several factors:
 - Fuel characteristics
 - Choice of capture technology
 - Level of flue gas cleaning
- The presence of other components in the CO₂ stream may change the stream characteristics

Presentation outline

- Introduction
- Capture technologies
- Gas quality
- Technical issues
- Health, safety and environment
- Concluding remarks

CO₂ capture technologies

Presentation outline

- Introduction
- Capture technologies
- Gas quality
- Technical issues
- Health, safety and environment
- Concluding remarks

Where do the other substances in the CO₂ come from?

The sources of impurities in the CO₂ stream are:

1. Fuel
 - H₂O, CO, SO_x, NO_x, H₂S, HCl, HF, H₂, CH₄, heavy metals, hydrocarbons, particulates
2. Air or oxidant used for combustion of the fuel
 - O₂, N₂, Ar
3. Entering of air into the CO₂ capture system when it is operating at sub-atmospheric conditions
 - O₂, N₂, Ar
4. The CO₂ capture or CO₂ clean-up process
 - NH₃, solvents

Gas composition and different capture technologies

- The composition of the CO₂ stream after compression (and before flue gas cleaning) depends on the capture technology
- For **oxyfuel** the CO₂ quality is a strong design parameter
 - Inert components from penetration of O₂ and air into the system
 - SOx, NOx removal level
 - Trace elements
 - Corrosive elements
- For **precombustion** the process selection and design requirements strongly influence the quality
 - Reducing components H₂S, CO, H₂
 - hydrocarbons

Can a stream of high purity CO₂ be produced?

The one parameter that has the main influence of the composition of the captured CO₂ gas stream is the designed cleaning level
– We can steer and optimise the gas quality.

- Conventional flue gas cleaning equipment can be used to clean the CO₂ gas stream to "air emission levels"
- A CO₂ stream of very high purity can be produced in theory, but there are consequences:
 - Increased energy consumption for the purification process. More fuel has to be used to produce the same amount of electricity
 - Increased investment and operational costs. The cost of CCS will increase
 - Decreased CO₂ recovery. CO₂ may be lost as a consequence of the clean-up process

Presentation outline

- Introduction
- Capture technologies
- Gas quality
- Technical issues
- Health, safety and environment
- Concluding remarks

Technical issues

Other factors besides health, safety and environmental considerations place restrictions on the gas stream quality.

Technical requirements relating to transport and storage of CO₂ are also important for good operations.

Using the CO₂ gas stream for Enhanced Oil Recovery (EOR), will impose concentration restrictions on some components for technical reasons

Transport related aspects of gas quality

- Corrosion of the pipeline must be minimised

- Done as part of risk management
 - Important to avoid negative impacts on operation
 - Increased maintenance costs

Solution: Limiting the concentration of corrosive components/water content and use low-corrosion materials

Relevant components: H₂O, CO₂, SO_x, NO_x, O₂, H₂S, HCN, HF, HCl

- Hydrate formation

- Operational problems
 - Risk of plugging

Solution: Technical issues can be resolved by

- Operating the system within defined thermodynamic boundary conditions
 - Limiting the content of hydrate forming components

Relevant components: H₂O, CO₂, H₂S, CH₄

Transport related aspects of gas quality

- Two-phase flow
 - Operational problems

Solution: Operating at appropriate thermodynamic conditions will avoid this

Relevant components: Ar, O₂, H₂, H₂S

Other technical aspects of gas quality relating to pipeline transport,

Examples:

- Pipeline fouling by particulates
- using the transport volume efficiently/economically (Ar, N₂, O₂)

The technical issues relating to CO₂ transport can be **resolved** by limiting and optimising the concentrations of relevant components and through appropriate process and pipeline design.

Storage related aspects of gas quality - injection

- The injection well shall be designed to minimise risks during both the operation and the after closure phase:
- Minimise risk of **corrosion**:
 - Difficult to replace damaged parts on the well

Solutions:

 - High-quality steel for exposed parts, limit water content, maintain a good operation regime
- Avoid the formation of **hydrates** (and potential damage):
 - Hydrates form at low temperatures and high pressures, and presence of other gas stream components may also have an influence (hydrates may form at higher temperatures)
 - With H_2S and CH_4 , hydrates can form without presence of free water.

Solutions:

 - Good operating and thermodynamic conditions will help to avoid the formation of hydrates

Storage related aspects of gas quality – storage formation

- Other gas stream components take up **volume** in the reservoir, which may to some extent lead to increased storage costs.
 - ...to be compared with the additional costs of CO₂ processing at the power plant.
- Other components may to a limited extent have effects on chemical reactions in the reservoir (precipitation/dissolution reactions). (These are however present in much lower concentrations than CO₂.)
- The potential and extent of chemical reactions involving other components than CO₂ should be assessed (modelling, experiments, sampling etc.) as part of risk management on a site-specific basis – based on local geology/site conditions
- No impacts on the integrity of the seal due to presence of low concentrations of other gas mixture components than CO₂ in the gas stream is expected.
- Other gas components may increase the viscosity of the gas stream – easier to inject – positive effect

Presentation outline

- Introduction
- Capture technologies
- Gas quality
- Technical issues
- Health, safety and environment
- Concluding remarks

The leakage issue

For capture of CO₂, the main environmental impact - apart from the **positive** effect of the decrease in CO₂ emissions to the atmosphere - is mainly associated with the increased use of energy and resources.

For CO₂ transport and storage, concerns for environmental impacts are to a large extent associated with potential leakage scenarios and risks.

The no-action, or slow-action, alternative is guaranteed to have adverse environmental consequences such as ocean acidification.

Natural leakage of CO₂, from volcanic processes, into a river. (Ribeira Grande, Lombardos Valley, the Azores, Portugal).

Photographed by Sara Eriksson

Health, Safety and Environmental aspects

HSE characteristics of other gas stream components:

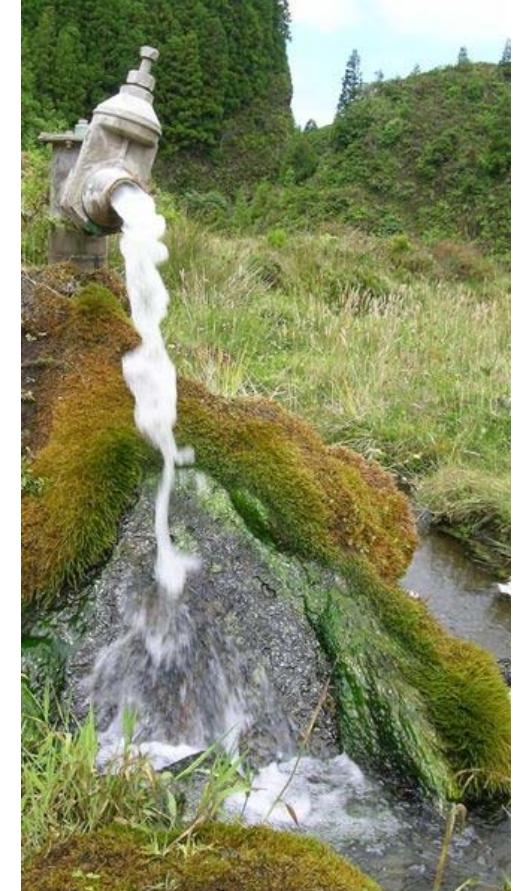
- Acidification
 - components that form stronger acids than CO₂ (SO₂, NO_x, H₂S etc.)
- Components with toxic properties
 - H₂S, SO₂, COS, CO, NO_x, heavy metals (Hg), organic compounds (solvents, mercaptans).
- flammable compounds
 - such as H₂, CH₄
- Nutrients (eutrophication),
 - Some components present are nutrients (such as NO_x, N₂)
(In the context of a leakage into the marine environment, this is not considered to be a major issue.)

Health, Safety and Environmental aspects – cont.

- Potential effects on health, safety and environment are concentration dependant
- We determine the concentrations and design the CO₂ gas stream according to desired specifications, by deciding on the level of cleaning
- Vattenfall's approach is that presence of other components can not lead to significant or unacceptable risks for health, safety and environment.

The CO₂ stream will consist overwhelmingly of CO₂. When considering HSE risks and CO₂ gas stream design - no other component in the gas stream should be present at concentrations that makes it a greater hazard than CO₂ itself.

→ CO₂ should be the limiting component from a HSE perspective!


- This is the same approach used in the study of CO₂ gas quality specifications in the Dynamis EU project.

Assessing the HSE effects in case of a leakage

- In case of a leakage to the marine environment, the impacts will mainly relate to the change in pH levels (due to dissolved CO₂, and to some extent other components).
- The rate at which leaked CO₂ stream is diluted will influence the degree of impact - depends on local factors such as depth, underwater currents, diffusion rate etc.
- Organisms under pH stress may be more susceptible to other forms of pollution.
- Little specialised research is done on impacts on the marine ecosystem in case of leakage of a CO₂ stream containing low concentrations of other compounds.
- There are however locations on the sea floor where naturally occurring seeps of CO₂ mixed with other gases at various proportions occur. These seeps can be seen as natural analogues to a CO₂ leakage, and information can be learnt from studying them.

Natural CO₂ reservoirs occur in the earth crust

- Large CO₂ reservoirs occur natural in the earth crust, and are used as CO₂ sources for enhanced oil recovery in the American oil industry.
- Typical other components that may occur in these natural CO₂ reservoirs are methane, nitrogen, other lighter hydrocarbons and H₂S.
- Such large CO₂ reservoirs can be found in Western U.S., eastern Europe and Indonesia, and in various fields in the mountainous regions of Central and South America.
- There are also several areas in the world where CO₂ of volcanic origin leak to the surface.

Abandoned factory for carbonated water, Lombardos valley, the Azores (Portugal)
Carbonated water from underground natural sources are pouring out of a broken pipe.

Reference: Practical aspects of CO₂ flooding. P.M. Jarrel et al.

SPE Monograph volume 22. USA 2002.

© Vattenfall AB

Experiences from natural analogues

- There are many extreme environments with highly specialised life forms and ecosystems, such as those surrounding deep sea gas vents.
- The marine ecosystem has been found to adapt to the environmental conditions in the vicinity of a gas vent
- There are natural sources of H_2S in the marine environment in many places
→ anoxic sulphide-containing sediments
- Marine ecosystems have evolved that are adapted to an environment with sulphide, and sulphur-oxidizing bacteria are common in the oceans. Presence of H_2S may result in a lowering of local dissolved oxygen levels (impact on organism respiration. (Source: IPCC special report)
- The effect of the gas leaks on the marine environment is very local - limited to the areas surrounding the vents

Presentation outline

- Introduction
- Capture technologies
- Gas quality
- Technical issues
- Health, safety and environment
- Concluding remarks

Conclusions I

- We determine the quality of the captured gas stream
 - the composition is mainly dependent on the designed cleaning level
- CO₂ of high purity can be produced in theory – but at a very high cost
- Co-capture and storage of other components are associated with effects and costs - to be compared to the costs (economical and environmental) of processing and cleaning the CO₂ gas stream at the power plant.

Photo: Sara Eriksson

Conclusions II

- CO₂ is the main gas stream component by far. In case of a leakage, CO₂ rather than the co-contaminants are expected to be the main environmental issue in case of a leakage.
- A site-specific assessment should form the basis for HSE requirements on gas quality
- Local environmental impacts resulting from a release of CO₂ depend on the nature of the release and the ambient conditions, rather than the amount of CO₂ released.

Photo: Sara Eriksson

Conclusions III

- The best way to avoid a leakage and negative environmental consequences is to select a site that will not leak – should be focus
- Providing well-documented site knowledge and studies together with plans for monitoring and safety programmes is essential
- Technical aspects affects the design specifications (minimising corrosion, use for EOR applications, etc.)
- Since we are storing CO₂, it makes sense that CO₂ should be the limiting component from a HSE perspective – no single other substance should pose a greater risk.
- Technical and HSE issues that relate to the quality of the gas stream can all be managed through good process design, site-selection and project management.

Thank you!

Sara Eriksson
Vattenfall Research and Development
sara.eriksson@vattenfall.com

Photo: Sara Eriksson