

2
3

ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs)

4
5

PHENOL (CAS Reg. No. 108-95-2)

6

February 2006

7

PREFACE

8 Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 1972, the
9 National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances
10 (NAC/AEGL Committee) has been established to identify, review and interpret relevant toxicologic and
11 other scientific data and develop AEGLs for high priority, acutely toxic chemicals.

12 AEGLs represent threshold exposure limits for the general public and are applicable to
13 emergency exposure periods ranging from 10 minutes to 8 hours. AEGL-2 and AEGL-3 levels, and
14 AEGL-1 levels as appropriate, will be developed for each of five exposure periods (10 and 30 minutes, 1
15 hour, 4 hours, and 8 hours) and will be distinguished by varying degrees of severity of toxic effects. It is
16 believed that the recommended exposure levels are applicable to the general population including infants
17 and children, and other individuals who may be sensitive or susceptible. The three AEGLs have been
18 defined as follows:

19 AEGL-1 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
20 is predicted that the general population, including susceptible individuals, could experience notable
21 discomfort, irritation, or certain asymptomatic, non-sensory effects. However, the effects are not disabling
22 and are transient and reversible upon cessation of exposure.

23 AEGL-2 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
24 is predicted that the general population, including susceptible individuals, could experience irreversible or
25 other serious, long-lasting adverse health effects, or an impaired ability to escape.

26 AEGL-3 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
27 is predicted that the general population, including susceptible individuals, could experience
28 life-threatening health effects or death.

29 Airborne concentrations below the AEGL-1 represent exposure levels that could produce mild
30 and progressively increasing odor, taste, and sensory irritation, or certain asymptomatic, non-sensory
31 effects. With increasing airborne concentrations above each AEGL level, there is a progressive increase in
32 the likelihood of occurrence and the severity of effects described for each corresponding AEGL level.
33 Although the AEGL values represent threshold levels for the general public, including sensitive
34 subpopulations, it is recognized that certain individuals, subject to unique or idiosyncratic responses,
35 could experience the effects described at concentrations below the corresponding AEGL level.

TABLE OF CONTENTS

37	PREFACE	ii
38	TABLE OF CONTENTS	iii
39	EXECUTIVE SUMMARY	vii
40	1. INTRODUCTION	1
41	2. HUMAN TOXICITY DATA	2
42	2.1. Acute Lethality	2
43	2.1.1. Case Studies	3
44	2.2. Nonlethal Toxicity	6
45	2.2.1. Experimental Studies	6
46	2.2.2. Case Studies	7
47	2.2.3. Occupational Exposure	8
48	2.3. Developmental/Reproductive Toxicity	9
49	2.4. Genotoxicity	9
50	2.5. Carcinogenicity	9
51	2.6. Summary	10
52	3. ANIMAL TOXICITY DATA	11
53	3.1. Acute Lethality	11
54	3.1.1. Rabbits	11
55	3.1.2. Rats	11
56	3.1.3. Guinea pigs	12
57	3.1.4. Mice	12
58	3.2. Nonlethal Toxicity	13
59	3.2.1. Monkeys	13
60	3.2.2. Rabbits	13
61	3.2.3. Rats	13
62	3.2.4. Mice	16
63	3.3. Developmental/Reproductive Toxicity	17
64	3.3.1. Rats	17
65	3.3.2. Mice	18
66	3.4. Genotoxicity	19
67	3.5. Carcinogenicity	19
68	3.6. Summary	20
69		

70	4. SPECIAL CONSIDERATIONS	22
71	4.1. Metabolism and Disposition	22
72	4.2. Mechanism of Toxicity	23
73	4.3. Structure-Activity Relationships	24
74	4.4. Other Relevant Information	25
75	4.4.1. Interspecies Variability	25
76	4.4.2. Intraspecies Variability	25
77	4.4.3. Skin Irritation and Sensitization	26
78	5. DATA ANALYSIS FOR AEGL-1	27
79	5.1. Human Data Relevant to AEGL-1	27
80	5.2. Animal Data Relevant to AEGL-1	27
81	5.3. Derivation of AEGL-1	27
82	6. DATA ANALYSIS FOR AEGL-2	30
83	6.1. Human Data Relevant to AEGL-2	30
84	6.2. Animal Data Relevant to AEGL-2	30
85	6.3. Derivation of AEGL-2	30
86	7. DATA ANALYSIS FOR AEGL-3	32
87	7.1. Human Data Relevant to AEGL-3	32
88	7.2. Animal Data Relevant to AEGL-3	32
89	7.3. Derivation of AEGL-3	32
90	8. SUMMARY OF AEGLs	33
91	8.1. AEGL Values and Toxicity Endpoints	33
92	8.2. Comparison with Other Standards and Criteria	35
93	8.3. Data Adequacy and Research Needs	37
94	9. REFERENCES	38
95	APPENDIX A Time Scaling Calculations for AEGLs	45
96	APPENDIX B Level of Distinct Odor Awareness	48
97	APPENDIX C Derivation Summary for Phenol AEGLs	50
98		

99

LIST OF TABLES

100	TABLE 1: CHEMICAL AND PHYSICAL DATA	2
101	TABLE 2: SUMMARY OF DATA ON LETHAL EFFECTS IN HUMANS	5
102	TABLE 3: SUMMARY OF ACUTE ORAL LETHAL DATA IN ANIMALS	12
103	TABLE 4: SUMMARY OF NON-LETHAL EFFECTS IN ANIMALS AFTER INHALATION EXPOSURE	17
104	TABLE 5: AEGL-1 VALUES FOR PHENOL	29
105	TABLE 6: AEGL-2 VALUES FOR PHENOL	31
106	TABLE 7: AEGL-3 VALUES FOR PHENOL	32
107	TABLE 8: SUMMARY/RELATIONSHIP OF AEGL VALUES FOR PHENOL	33
108	TABLE 9. EXTANT STANDARDS AND GUIDELINES FOR PHENOL	36
109		

110

LIST OF FIGURES

111	FIGURE 1: CATEGORICAL REPRESENTATION OF ALL PHENOL INHALATION DATA	35
-----	--	----

112

EXECUTIVE SUMMARY

113 Phenol is a colorless to pink, hygroscopic solid with a characteristic, sweet, tarry odor. Pure
114 phenol consists of white to clear acicular crystals. In the molten state, it is a clear, colorless liquid with a
115 low viscosity.

116 Human fatalities by phenol have been reported after ingestion and skin contact. Few studies after
117 inhalation of phenol are available: one occupational study reported slight changes in liver and blood
118 parameters (increased serum transaminase activity, increased hemoglobin concentration, increased
119 numbers of basophils and neutrophils and lower levels of monocytes) after repeated exposure to a mean
120 time-weighted average concentration of 5.4 ppm (Shamy et al., 1994). Piotrowski (1971) did not report
121 symptoms or complaints in a toxicokinetic study, in which subjects were exposed at 6.5 ppm for 8 hours.
122 Likewise, Ogata et al. (1974) in a toxicokinetic field study did not mention any effects on workers
123 exposed to mean workshift concentrations of 4.95 ppm. Among persons exposed to >1 mg/l phenol in
124 contaminated drinking water for several weeks, gastrointestinal symptoms (diarrhea, nausea, burning pain
125 in the mouth and sores in the mouth) and skin rashes occurred (Baker et al., 1978). A geometric mean
126 odor detection threshold of 0.060 ppm (range of all critiqued odor thresholds 0.0045-1 ppm) has been
127 reported (AIHA, 1989). Don (1986) reported an odor detection threshold of 0.010 ppm in an
128 EN13725:2003-comparable study.

129 No studies reporting LC₅₀ values for phenol in animals are available. Oral LD₅₀ values were
130 reported as 420 mg/kg for rabbits, 400-650 mg/kg for rats and 282-427 mg/kg for mice. In rats, exposure
131 to a phenol aerosol concentration of 900 mg/m³ for 8 hours resulted in ocular and nasal irritation,
132 incoordination and prostration in one of six rats (Flickinger, 1976). After 4 hours exposure at 211 or 156
133 ppm phenol vapor, a decrease of the number of white blood cells, but no signs of toxicity were reported
134 (Brondeau et al., 1989). After vapor exposure of rats at 0.5, 5 or 25 ppm for 6 hours/day, 5 days/week for
135 2 weeks no clinical, hematological or histopathological effects were found (CMA, 1998; Hoffmann et al.,
136 2001). Continuous exposure at 5 ppm phenol vapor for 90 days caused no hematological or histological
137 effects in rhesus monkeys, rats and mice. A vapor concentration of 166 ppm (for 5 min) resulted in a 50
138 %-decrease of respiration (RD₅₀) in female Swiss OF₁ mice. No teratogenic effects were found in studies
139 using repeated oral gavage and doses of up to 120 mg/kg in CD rats and 140 mg/kg in CD-1 mice. In a
140 two-generation drinking water study in Sprague-Dawley rats, decreased pup survival linked to decreased
141 maternal body weight was observed at the highest dose of 5000 ppm; the NOAEL was 1000 ppm
142 (equivalent to 70 mg/kg/day for males and 93 mg/kg/day for females). In an oral carcinogenicity study
143 B6C3F1 mice and F344 rats received 2500 or 5000 mg/l phenol in drinking water (corresponding to 281
144 and 412 mg/kg/day for mice and 270 and 480 mg/kg/day for rats). No increased incidence of tumors was
145 observed in mice and female rats; a significant incidence of tumors (pheochromocytomas of the adrenal
146 gland, leukemia or lymphoma) occurred in male rats of the low exposure group. Phenol had tumor
147 promoting activity when applied repeatedly on the skin after induction using benzene. It can cause
148 clastogenic and possibly very weak mutagenic effects. IARC evaluated the findings on carcinogenicity
149 and concluded that there is inadequate evidence in both humans and experimental animals for the
150 carcinogenicity of phenol. Consequently, phenol was found "not classifiable as to its carcinogenicity to
151 humans (Group 3)". EPA concluded that, "the data regarding the carcinogenicity of phenol via the oral,
152 inhalation, and dermal exposure routes are inadequate for an assessment of human carcinogenic potential.
153 Phenol was negative in oral carcinogenicity studies in rats and mice, but questions remain regarding
154 increased leukemia in male rats in the bioassay as well as the positive gene mutation data and the positive

155 results in dermal initiation/promotion studies at doses at or above the maximum tolerated dose (MTD).
156 No inhalation studies of an appropriate duration exist. Therefore, no quantitative assessment of
157 carcinogenic potential via any route is possible." Therefore, carcinogenicity was not an endpoint in the
158 derivation of AEGL values.

159 The AEGL-1 was based on a repeat inhalation study of phenol in rats (CMA, 1998; Hoffmann et
160 al., 2001), which found no clinical, hematological or histopathological effects after exposure at 25 ppm
161 phenol (highest concentration used) for 6 hours/day, 5 days/week for 2 weeks. An uncertainty factor of 1
162 was applied for interspecies variability: the toxicokinetic component of the uncertainty factor was reduced
163 to 1 because toxic effects are mostly caused by phenol itself without requirement for metabolism,
164 moreover, possible local irritation effects depend primarily on the phenol concentration in inhaled air with
165 little influence of toxicokinetic differences between species. The starting point for AEGL derivation was a
166 NOAEL from a repeat exposure study and, thus, the effect level was below that defined for AEGL-1. The
167 human experimental and workplace studies (Piotrowski, 1971; Ogata et al., 1986) support the derived
168 values. Based on these reasons, the interspecies factor was reduced to 1. An uncertainty factor of 3 was
169 applied for intraspecies variability because for local effects, the toxicokinetic differences do not vary
170 considerably within and between species. Therefore the toxicokinetic component of the uncertainty factor
171 was reduced to 1 while the factor of 3 for the toxicodynamic component, reflecting a possible variability
172 of the target-tissue response in the human population was retained. The other exposure duration-specific
173 values were derived by time scaling according to the dose-response regression equation $C^n \times t = k$, using
174 the default of $n=3$ for shorter exposure periods and $n=1$ for longer exposure periods, due to the lack of
175 suitable experimental data for deriving the concentration exponent. For the 10-minute AEGL-1 the 30-
176 minute value was applied because the derivation of AEGL values was based on a long experimental
177 exposure period and no supporting studies using short exposure periods were available for characterizing
178 the concentration-time-response relationship.

179 A level of distinct odor awareness (LOA) for phenol of 0.25 ppm was derived on the basis of the
180 odor detection threshold from the study of Don (1986). The LOA represents the concentration above
181 which it is predicted that more than half of the exposed population will experience at least a distinct odor
182 intensity, about 10 % of the population will experience a strong odor intensity. The LOA should help
183 chemical emergency responders in assessing the public awareness of the exposure due to odor perception.

184 The AEGL-2 was based on a combination of the Flickinger (1976) and Brondeau et al. (1990)
185 studies. Aerosol exposure at 900 mg/m³ phenol (equivalent to 234 ppm phenol vapor) for 8 hours resulted
186 in ocular and nasal irritation, slight loss of coordination and spasms of the muscle groups at 4 hours into
187 the exposure, after 8 hours additional symptoms (tremor, incoordination and prostration) were observed in
188 one of the six animals. No deaths occurred. Since the aerosol concentration was below the saturated vapor
189 concentration at room temperature of about 530 ppm, it was assumed that much phenol had evaporated
190 from the aerosol so that a mixed aerosol/vapor exposure prevailed. This study is supported by the study of
191 Brondeau et al. (1990), which did report only slight effects after exposure at 211 ppm phenol vapor for 4
192 hours. Although both studies had shortcomings, i.e., aerosol exposures, nominal concentrations, and no
193 description of toxic signs in one study, taken together, they had consistent results. The derivation of
194 AEGL-2 values was based on an exposure concentration of 234 ppm for 8 hours. An uncertainty factor of
195 3 was applied for interspecies variability because oral lethal data did not indicate a high variability
196 between species (cf. Section 4.4.1.) and because application of a higher uncertainty factor would have
197 resulted in AEGL-2 values below levels that humans can stand without adverse effects (Piotrowski, 1971;

Ogata et al., 1986). An uncertainty factor of 3 was applied for intraspecies variability because the study of Baker et al. (1978) that investigated health effects in members of 45 families (including children and elderly), that were exposed to phenol through contaminated drinking water for several weeks, did not indicate that symptom incidence or symptom severity was higher in any specific subpopulation. Moreover, newborns and infants were not considered more susceptible than adults because of their smaller metabolic capacity to form toxic phenol metabolites (cf. Section 4.4.2.). Based on the small data base and study shortcomings, a modifying factor of 2 was applied. The other exposure duration-specific values were derived by time scaling according to the dose-response regression equation $C^n \times t = k$, using the default of $n=3$ for shorter exposure periods, due to the lack of suitable experimental data for deriving the concentration exponent. For the 10-minute AEGL-1 the 30-minute value was applied because the derivation of AEGL values was based on a long experimental exposure period and no supporting studies using short exposure periods were available for characterizing the concentration-time-response relationship.

Although phenol is a high-production-volume chemical, no acute inhalation studies of adequate quality were available for the derivation of the AEGL-3 value. Therefore, due to insufficient data and the uncertainties of a route-to-route extrapolation, AEGL-3 values were not recommended.

The calculated values are listed in the table below.

SUMMARY TABLE OF AEGL VALUES FOR PHENOL ^a						
Classification	10-Minute	30-Minute	1-Hour	4-Hour	8-Hour	Endpoint (Reference)
AEGL-1 (Nondisabling)	19 ppm (73 mg/m ³)	19 ppm (73 mg/m ³)	15 ppm (58 mg/m ³)	9.5 ppm (37 mg/m ³)	6.3 ppm (24 mg/m ³)	No effects in rats (CMA, 1998; Hoffmann et al., 2001)
AEGL-2 (Disabling)	29 ppm (110 mg/m ³)	29 ppm (110 mg/m ³)	23 ppm (90 mg/m ³)	15 ppm (57 mg/m ³)	12 ppm (45 mg/m ³)	Irritation and CNS depression in rats (Flickinger, 1976; Brondeau et al., 1990)
AEGL-3 (Lethal)	N.R. ^b	N.R.	N.R.	N.R.	N.R.	

^a Skin contact with molten phenol or concentrated phenol solutions should be avoided; dermal penetration is rapid and fatal intoxications have been observed when a small part of the body surface was involved.

^b not recommended due to insufficient data

226 References

227 Baker, E.L., P.J. Landrigan, P.E. Bertozzi, P.H. Field, B.J. Basteyns and H.G. Skinner, 1978. Phenol
228 poisoning due to contaminated drinking water. *Archives of Environmental Health* 33, 89-94.

229 Brondeau, M.T., P. Bonnet, J.P. Guenier, P. Simon and J. de Ceaurriz, 1990. Adrenal-dependent
230 leucopenia after short-term exposure to various airborne irritants in rats. *Journal of Applied Toxicology*
231 10, 83-86.

232 CMA, Chemical Manufacturers Association, 1998. Two-week (ten day) inhalation toxicity and two-week
233 recovery study of phenol vapor in the rat. Huntingdon Life Sciences Study No. 96-6107, CMA Reference
234 No. PHL-4.0-Inhal-HLS. Chemical Manufacturers Association, Phenol Panel, Arlington, VA 22209,
235 USA.

236 Don, J.A., 1986. Odour measurement and control. *Filtration and Separation* 23, 166-169.

237 Flickinger, C.W., 1976. The benzenediols: catechol, resorcinol and hydroquinone - a review of the
238 industrial toxicology and current industrial exposure limits. *American Industrial Hygiene Association
239 Journal* 37, 596-606.

240 Hoffmann, G.M., B.J. Dunn, C.R. Morris, J.H. Butala, S.S. Dimond, R. Gingell and J.M. Waechter, Jr.,
241 2001. Two-week (ten-day) inhalation toxicity and two-week recovery study of phenol vapor in the rat.
242 *International Journal of Toxicology* 20, 45-52.

243 Ogata, M., Y. Yamasaki and T. Kawai, 1986. Significance of urinary phenyl sulfate and phenyl
244 glucuronide as indices of exposure to phenol. *International Archives of Occupational and Environmental
245 Health* 58, 197-202.

246 Piotrowski, J.K., 1971. Evaluation of exposure to phenol: absorption of phenol vapour in the lungs and
247 through the skin and excretion of phenol in urine. *British Journal of Industrial Medicine* 28, 172-178.

248 Shamy, M.Y., R.M. el Gazzar, M.A. el Sayed and A.M. Attia, 1994. Study of some biochemical changes
249 among workers occupationally exposed to phenol, alone or in combination with other organic solvents.
250 *Industrial Health* 32, 207-214.

251 **1. INTRODUCTION**252 Phenol is a colorless to pink, hygroscopic solid with a characteristic, sweet, tarry odor. Pure
253 phenol consists of white to clear acicular crystals. In the molten state, it is a clear, colorless liquid with a
254 low viscosity. A solution with approximately 10 % water is called phenolum liquefactum, as this mixture
255 is liquid at room temperature (WHO, 1994).256 Phenol is produced either by oxidation of cumene or toluene, by vapor-phase hydrolysis of
257 chlorobenzene or by distillation from crude petroleum (WHO, 1994). Worldwide phenol production has
258 been reported at about 500,000 to 1,000,000 metric tons per year (IUCLID, 1996). Newer data report a
259 production of 1,800,000 metric tons per year in Europe (ECB, 2002) and about 1,500,000 metric tons for
260 1994 in the USA (HSDB, 2004).261 Phenol is pumped in molten form (about 50 °C) or in liquefied form (containing 10 % water)
262 through pipes on industrial sites and is also transported in molten form in tank trucks and rail tank cars
263 between industrial sites. Therefore, inhalation exposure during accidental release cannot be ruled out.264 Phenol is principally used in production of various phenolic resins, biphenol A, caprolactam and
265 a wide variety of other chemicals and drugs. It is also used as a disinfectant and in germicidal paints and
266 slimicides (ACGIH, 1996). The TRI database (DHHS, 2004) lists 649 sites in the US where production
267 and/or use of phenol causes emissions to the air.

268 **2. HUMAN TOXICITY DATA**269 **2.1. Acute Lethality**

270 No relevant studies documenting lethal effects in humans after inhalation exposure to phenol
 271 were identified. During the second half of the 19th century, several hundred cases of intoxication
 272 occurred from inhalation, oral or dermal exposure (Lewin, 1992). Contemporary reports concerning
 273 fatalities after oral or dermal exposure are available, however for dermal exposures very often information
 274 about the absorbed dose is not reported (WHO, 1994). Lethality data in humans are summarized in Table
 275 2.

276 **TABLE 1: CHEMICAL AND PHYSICAL DATA**

277 Parameter	278 Value	279 Reference
278 Molecular formula	279 C ₆ H ₅ O; C ₆ H ₅ OH	280 WHO, 1994
279 Molecular weight	280 94.11	281 WHO, 1994
280 CAS Registry Number	281 108-95-2	282 WHO, 1994
281 Physical state	282 solid 283 a solution with approx. 10 % water 284 (phenolum liquefactum) is liquid at room 285 temperature	286 ACGIH, 1996 287 WHO, 1994
282 Color	283 colorless 284 assumes a pink to red discoloration on 285 exposure to air and light	286 ACGIH, 1996
283 Synonyms	284 carbolic acid; hydroxybenzene; phenyl 285 hydroxide; Phenol	286 ACGIH, 1996
284 Vapor pressure	285 0.48 hPa at 20 °C 286 0.357 mm Hg at 20 °C 287 1 mm Hg at 40.1 °C 288 3.5 hPa at 25 °C 289 2.48 mm Hg at 50 °C 285 10 mm Hg at 73.8 °C 286 18.39 hPa at 80.1 °C 287 40 mm Hg at 100.1 °C 288 100 mg Hg at 121.4 °C	289 IUCLID, 1996 285 WHO, 1994 286 Weast, 1984 287 IUCLID, 1996 288 WHO, 1994 289 Weast, 1984 285 IUCLID, 1994 286 Weast, 1984 287 IUCLID, 1994 288 Weast, 1984 289 Weast, 1984
285 Density	286 1.0719 g/cm ³	287 ACGIH, 1996
286 Melting point	287 43 °C	288 Weast, 1984
287 Boiling point	288 181.75 °C	289 Weast, 1984
288 Solubility	289 very soluble in chloroform, alcohol, ether 285 and aqueous alkali hydroxides; 286 67 g/l in water at 16 °C	287 ACGIH, 1996 288 WHO, 1994
289 Odor	285 sweet, tarry odor 286 sweet and acrid	287 ACGIH, 1996 288 IARC, 1999

TABLE 1: CHEMICAL AND PHYSICAL DATA

Parameter	Value	Reference
Explosive limits in air	1.7 % (lower), 8.6 % (upper)	ACGIH, 1996
Conversion factors	1 ppm = 3.84 mg/m ³ 1 mg/m ³ = 0.26 ppm	WHO, 1994

2.1.1. Case Studies

Heuschkel and Felscher (1983) reported death of a newborn (weight 3 kg) that was exposed through a contaminated continuous positive airway pressure system of an incubator. Instead of distilled water, the system contained a disinfection fluid, composed of 2 % formalin (30 % formaldehyde), 1.5 % sodium tetraborate and 0.5 % phenol. This solution was removed after 5-6 hours. However, exposure was continued since disinfection fluid was also used for filling up the reservoir for humectation of the air. The newborn developed severe symptoms after 20 hours of exposure. It showed a gray-pale skin color, edema on the head and legs, tachypnea and died on the fifth day from progressive respiratory insufficiency. On experimental reconstitution of the exposure conditions, about 20 mg/m³ (5.2 ppm) phenol and about 30 mg/m³ (24.9 ppm) formaldehyde were measured in the incubator after 2 hours (with lower concentrations of phenol and formaldehyde after 5 hours, not reported) when disinfection solution was present in the evaporation container, and about 5 mg/m³ (1.3 ppm) phenol, 50 mg/m³ (41.5 ppm) formaldehyde and 350 mg/m³ (267 ppm) methanol were found (with decrease of the formaldehyde and methanol concentrations within the first hour) with disinfection fluid in the water reservoir. It should be noted that concentrations in the incubator were measured using simple solid sorbent test tubes. Autopsy revealed hypoxemia-caused organ alterations. The authors contributed these to two causes: 1) central respiratory depression by the intoxication and 2) congenital pulmonary adaptation disorder, expressed in an immature tissue structure of the lung.

Studies with non-inhalation exposure

A 65-year-old Japanese woman ingested 70 ml of 42-52 % phenol in a suicidal attempt. Upon hospital admission, about 1 hour after ingestion, respiration had arrested and the patient was comatose. The patient survived due to intensive medical care (Kamijo et al., 1999).

Bennett et al. (1950) reported two suicide cases. The first cases involved a 50-year-old morphine addict who swallowed approximately 60 ml of an 88 % aqueous phenol emulsion. Forty-five minutes later, he was stuporous with cold and clammy skin and had a rapid and weak pulse, stertorous breathing with a phenol odor on the breath, constricted pupils which did not react to light (probably due to morphine injection prior to phenol ingestion), and rales in the lungs. An electrocardiogram showed auricular flutter with a variable auriculoventricular block. His urine was greenish with no albumin, but 12 hours later there was a marked albuminuria and cylindruria. Albuminuria persisted for 10 days. The patient responded to medical treatment and recovered in 20 days. The second case involved a 19-year-old woman who had ingested 15 ml liquefied phenol. Ninety minutes later, she complained of severe nausea and burning in the throat and epigastrium. Laryngoscopic examination revealed superficial burns and slight edema of the hypopharynx. Despite gastric lavage with olive oil and intravenous saline administration, she continued to be nauseated. One hour later, she began to vomit blood and to have

326 diarrhea, passing copious amounts of blood with clots. She gradually became cyanotic and stuporous and
327 died 17.5 hours after ingestion.

328 Stajduhar-Caric (1968) described a woman who committed suicide by ingesting 10-20 g of
329 phenol. She became comatose with partial absence of reflexes, pallor of the skin, accelerated respiration,
330 weak and rapid pulse and dilated pupils which did not react to light. Almost one hour after the ingestion,
331 her heart and respiration stopped and, in spite of repeated attempts at resuscitation for two hours, she
332 died. Autopsy revealed marked hyperemia of the tracheal and bronchial mucous membranes. Histological
333 examination revealed pulmonary and liver edema as well as hyperemia of the intestine.

334 Tanaka et al. (1998) reported the case of a 27-year-old male student, who died after ingestion of a
335 DNA extraction fluid containing phenol. He was found in the laboratory the next day lying on the floor
336 with his trousers soaked. At autopsy on the same day, the body surface was grayish in color; the skin in
337 the large area extending from the right arm to both legs had changed color to dark brown, and some parts
338 of its surroundings were chemically burned. There were also blisters in the skin across the burned area.
339 The lips, oral mucous membranes and the walls of the oropharynx, larynx, bronchus, esophagus and
340 stomach were dark brown and inflamed. Histology revealed inflammatory changes in the lungs,
341 interstitial edema and renal tubular hemorrhage in the kidneys, interstitial hemorrhage in the pancreas and
342 adrenal glands. Analysis of free phenol was performed by gas chromatography/mass spectroscopy on
343 ethyl acetate extracts of tissues. The following phenol concentrations were found: 60 mg/l free phenol in
344 the blood, 208 mg/l in urine, 106 mg/l in the brain, 116 mg/l in the lung and 874 mg/l in the kidney.

345 Upon skin contact with liquefied phenol or phenol solutions, symptoms can develop rapidly
346 leading to shock, collapse, coma, convulsions, cyanosis and death (NIOSH, 1976; Lewin, 1992).

347 Horch et al. (1994) described a healthy, 22-year old male worker who was splashed with aqueous
348 phenol (concentration not reported) over his face, chest, one hand and both arms (20.5 % of the body
349 surface). Extensive water showering and topical treatment with polyethylene glycol was carried out
350 before hospital admission. Affected skin areas looked swollen and reddish like partial skin thickness burn
351 wounds. Blood gas analysis revealed that oxygen saturation dropped from 99 % on admission to 72 % 6
352 hours after exposure. During this period cardiac arrhythmia and bradycardia were noted. Serum levels of
353 phenol were 11.4 mg/l at 1 hour, 17.4 mg/l at 4 hours, 6.0 mg/l at 8 hours, 0.37 mg/l at 22 hours, and 0.07
354 mg/l at 28 hours postexposure. The man survived and his skin healed completely within 12 days.

355 Bentur et al. (1998) reported the case of a 47-year-old male who had 90 % phenol spilled over his
356 left foot and shoe (3 % of the body surface). After 4.5 hours of exposure, with no attempt to remove the
357 phenol, confusion, vertigo, faintness, hypotension, ventricular premature beats and atrial fibrillation
358 developed and the affected skin area showed swelling and blue-black discoloration and was diagnosed as
359 a second degree burn. Peak serum phenol was 21.6 mg/l and was eliminated with a half-life of 13.9 hours.

360 Lewin and Cleary (1982) described a 24-year-old male who died shortly after being painted with
361 benzyl benzoate as a scabicide with a brush that had been steeped in 80 % phenol and not thoroughly
362 washed before use.

363 Hinkel and Kintzel (1968) described two newborns having cutaneous contact with phenol-
364 containing disinfectants. A 1-day-old newborn died 11 hours after application of an umbilical bandage

365 which was accidentally soaked with 2 % phenol instead of saline. After 6 hours, the baby developed
 366 severe cyanosis and died at 11 hours from central respiratory depression. Autopsy revealed edematous
 367 swelling of all parenchymal organs. Phenol concentrations of 125 mg/kg blood, 144 mg/kg liver and 202
 368 mg/kg kidney were measured. Another baby, 6 days old, was treated for skin ulcer with Chlumsky's
 369 solution (phenol-camphor complex) and developed life-threatening methemoglobinemia, vomiting,
 370 cyanosis, muscle twitchings and tremors, central circulatory collapse, mimic rigidity, muscular
 371 hypertonia, and tenderness to touch. These symptoms persisted for 3 days. The baby survived following
 372 intensive care and blood-exchange transfusion.

373 Schaper (1981) reported the case of a 19-year-old woman who was accidentally splashed with
 374 molten phenol (80-90 °C) on the face, left arm and left leg (about 35-40 % of the body surface). Five
 375 minutes later the patient lost consciousness and upon hospital admission 15 minutes after the accident she
 376 was comatose. The patient developed bradypnea and tachycardia, brownish necrosis of the affected skin
 377 and massive intravasal hemolysis. After intensive medical care, the patient regained consciousness after 6
 378 hours; cardiac activity normalized after 8 hours. No sign of organ damage was observed and the patient
 379 was discharged after 33 days. The peak phenol concentration in urine was about 600 mg/l 2 days after the
 380 accident; the urinary concentration decreased to 100-150 mg/l during the first week and second weeks.

381 **TABLE 2: SUMMARY OF DATA ON LETHAL EFFECTS IN HUMANS**

382 Subject 383 information	384 Exposure 385 route	386 Exposure 387 information	388 Estimated dose	389 Effect	390 Reference
384 1-day-old 385 newborn	386 inhalation	387 about 5.2 ppm for 5-6 h, subsequently about 1.3 ppm for 14-15 h	388 unknown	389 cyanosis, tachypnea, death 4 days later; additional formaldehyde exposure	390 Heuschkel and Felscher, 1983
386 65-year-old 387 female	388 oral	389 70 ml of 42- 52 % phenol solution	390 490-606 mg/kg assuming a density of 1 g/ml and a body weight of 60 kg	391 after 1 h respiratory arrest, coma, survived due to intensive care	392 Kamijo et al., 1999
386 50-year-old 387 male	388 oral	389 approx. 60 ml of an 88 % phenol emulsion	390 754 mg/kg assuming a density of 1 g/ml and a body weight of 70 kg	391 after 45 min stuporous, tachycardia, stertorous breathing, rales in the lungs, survived with medical treatment	392 Bennett et al., 1959
386 19-year-old 387 female	388 oral	389 15 ml liquefied phenol	390 250 mg/kg assuming a density of 1 g/ml and a body weight of 60 kg	391 90 min later nausea, vomiting, diarrhea, cyanosis, stuporous, death after 17.5 h	392 Bennett et al., 1959
386 adult female	388 oral	389 10-20 g phenol	390 166-333 mg/kg assuming a body weight of 60 kg	391 coma, absence of reflexes, tachypnea, tachycardia, death after 1 h due to cardiac and respiratory arrest	392 Stajduhar- Caric, 1968

	Subject information	Exposure route	Exposure information	Estimated dose	Effect	Reference
393 394	27-year-old male	oral (+ dermal)	unknown	106-874 mg/kg, based on tissue concentration	found dead next day; at autopsy tissue phenol concentrations between 106 and 874 mg/kg, 60 mg/kg in blood	Tanaka et al., 1998
395 396	1-day-old newborn	dermal	2 % phenol solution in umbilical bandage	125-202 mg/kg based on tissue concentration, assuming uniform distribution and no elimination	cyanosis, death after 11 h, at autopsy tissue phenol concentrations between 125 and 202 mg/kg	Hinkel and Kintzel, 1968

397 **2.2. Nonlethal Toxicity**

398 While some studies describe odor thresholds for phenol, no studies are available reporting
399 adverse health effects after single inhalation exposures.

400 **2.2.1. Experimental Studies**

401 Piotrowski (1971) published a toxicokinetic study on phenol. Eight healthy volunteers (7 men
402 aged 25-42 and one woman aged 30) were exposed by face mask to phenol concentrations between 5 and
403 25 mg/m³ (1.3-6.5 ppm) for 8 hours, with two breaks of 0.5 hours each after 2.5 and 5.5 hours. The author
404 did not report any complaints concerning adverse effects of phenol exposure on the subjects neither did
405 he explicitly state the absence of any effects.

406 (Don, 1986) reported an odor detection threshold of 0.010 ppm for phenol in a study which is
407 considered to be equivalent to an EN13725:2003-compliant study. The study methodology has been
408 described in TNO (1985). In this study, the odor threshold for the reference chemical n-butanol was
409 determined as 0.026 ppm.

410 Leonardos et al. (1969) used a combination of a test room and an antechamber, which was held
411 odor-free using an air filter system. A trained panel of four staff members of the Food and Flavor Section
412 of Arthur D. Little, Inc., determined the odor threshold for various compounds. At least 5 different
413 concentrations of phenol were tested. The individual concentrations tested were not reported. An odor
414 recognition threshold of 0.047 ppm phenol was determined for all four subjects.

415 Mukhitov (1964) determined the odor perception threshold in 14 subjects. Each subject was
416 tested between 33 and 43 times over a period of 2-3 days. The odor perception threshold concentration
417 ranged between 0.022-0.14 mg/m³ (0.0057-0.036 ppm); in 11/14 subjects, the odor perception threshold
418 was 0.029 mg/m³ (0.0075 ppm) or lower.

419 The geometric mean of 16 air odor detection thresholds was reported by Amoore and Hautala
420 (1983) to be 0.16 mg/m³ (0.040 ppm, with a standard error of 0.026 ppm). The American Industrial
421 Hygiene Association reported a geometric mean odor detection threshold of 0.060 ppm (the range of all
422 critiqued odor threshold studies was 0.0045-1 ppm) (AIHA, 1989).

423 Ruth (1986) listed an irritation threshold of 182.4 mg/m³ (47 ppm) in humans. The author
424 tabulated odor and irritation threshold for a large number of chemicals, but did not indicate the source for
425 the values.

426 **2.2.2. Case Studies**

427 Spiller et al. (1993) reported a 5-year retrospective review of all exposures to a high
428 concentration phenol disinfectant (26 % phenol) reported to a regional poison control center. Of a total of
429 96 located cases, 16 cases were lost to follow-up, leaving 80 cases for evaluation. Ages ranged from 1 to
430 78 years, with a mean of 10 years; 75 % of the patients were <5 years. There were 60 oral-only exposures,
431 7 dermal-only exposures, 12 oral/dermal exposures and 1 case was inhalation exposure. 52 cases were
432 evaluated in a hospital. 11 patients (all oral exposures) experienced some form of central nervous system
433 depression. Nine patients experienced lethargy (the time to onset was 15 minutes to 1 hour, with a mean
434 time of 20 minutes); lethargy progressed to unresponsiveness within 1 hour. Coma developed in two
435 patients (information on the ingested dose was not available). Burns were noted in 17 patients with oral
436 exposure and 5 patients with dermal exposure. No cardiovascular complications were noted. A distinct
437 change in urine color to dark green/black was noted in 5 patients with oral exposure; oliguria or anuria
438 were not seen. Recovery was complete in all cases. By history, the oral dose of exposure ranged from 2 to
439 90 ml disinfectant (520 mg to 23.4 g phenol). The largest ingested dose without effect was 30 ml (7.8 g
440 phenol) and the smallest dose with any effect was 5 ml (1.3 g phenol). The dose was unknown in 14
441 exposures. No details were provided for the case involving inhalation exposure.

442 Baker et al. (1978) described an incidence in which residents drank contaminated well water for
443 several weeks following an accidental spill of 37,900 liters of phenol. Due to incomplete removal and
444 flushing of the site with water seepage into the underground water system developed. In a retrospective
445 study, the population was divided into three groups based on residential location relative to the spill site
446 and results of water testing: Group 1 (39 persons, mean age 26.5 years) consisted of all those living 120-
447 310 m from the spill site having at least one water test which revealed more than 0.1 mg phenol/l in their
448 drinking water. Group 2 (61 persons, mean age 26.7 years) was composed of families living adjacent to
449 Group 1, i.e. 210-670 m from the spill who had 0.1-0.001 mg phenol/l in their water. Group 3 (58
450 persons, mean age 19.5 years) lived 1.9 km from the spill site in houses where well water testing had
451 detected no phenol in the water. Upon medical evaluation no significant differences were noted in
452 symptom rates between Groups 2 and 3, therefore, the two groups were combined and symptom rates for
453 this group were compared with rates in Group 1. Diarrhea, nausea, burning pain in the mouth and sores in
454 the mouth developed in 17 of the 39 individuals of group 1, 5 individuals of Group 2 and 2 cases in
455 Group 3. In Group 1, affected persons were slightly younger than those not affected (21.7 vs. 30.2 years)
456 and tended to live closer to the spill site. Skin rashes were also increased in Group 1, which might have
457 been caused by dermal exposure to phenol-contaminated water. Ill individuals had significantly more
458 frequent complaints of bad tasting or smelling water during two months after the spill than did their
459 neighbors who were not ill. Routine blood chemistry analyses and urinalysis performed on samples
460 obtained half a year after the spill showed no significant abnormalities in liver function tests or other

461 measured parameters. Mean urinary phenol levels were normal by that time because drinking water was
462 supplied by tanks. Measured concentrations were 12±12 and 12±11 mg/l for Group 1 and the combined
463 control group, respectively. The phenol concentrations in drinking water for the persons in Group 1 who
464 had symptoms were >1 mg/l (the authors estimated an intake of phenol of 10-240 mg/d).

465 **2.2.3. Occupational Exposure**

466 Ogata et al. (1986) carried out a toxicokinetic study in 20 adult male employees engaged in
467 treatment of fibers with phenol. The authors provided no information on age and health status of the
468 employees or on time on the job. The workers were not equipped with protection masks and the
469 workshops were closed rooms with phenol concentrations from 1.22 to 4.95 ppm. The study investigated
470 the correlation between workplace exposure to phenol and the concentration of phenol metabolites in
471 urine. The number of men in each workshop exposed to phenol (time-weighted average concentrations
472 during workshift measured by personal samplers) were: 2 subjects at 1.22±0.52 ppm, 5 at 1.95±0.47 ppm,
473 5 at 2.52±0.49 ppm, 2 at 2.73±0.45 ppm, 2 at 3.81±0.26 ppm and 4 at 4.95±0.23 ppm. The authors neither
474 reported any adverse effects of phenol exposure on the subjects nor did they explicitly state the absence of
475 any effects.

476 Shamy et al. (1994) studied 82 male workers in an oil refining plant. Group I comprised workers
477 (n=20; mean duration of exposure 13.2±6.6 years) exposed to phenol alone, during aromatic extraction
478 from distillates containing aromatics, wax, oil and impurities. The time weighted average exposure was
479 5.4 ppm according to the factory. Group II (n=32; mean duration of exposure 14.3±6.1 years) represented
480 those exposed to mixtures of phenol, benzene, toluene and methyl ethyl ketone (4.7, 0.7, 220 or 90 ppm,
481 respectively). Group III (n=30) comprised employees not exposed to phenol from the administrative
482 departments, located far away from any exposure. Transaminases, total protein, prothrombin time,
483 clotting time, fasting blood sugar, serum creatinine and trace elements were determined in blood. The
484 mean phenol concentrations measured in urine were 11.5 ±4.7 mg/g creatinine in controls (Group III), 54
485 ±27 mg/g creatinine in Group II and 69 ±47 mg/g creatinine in Group I. Groups I and II showed
486 statistically significantly higher levels of serum alanine aminotransferase and serum aspartate
487 aminotransferase, increased clotting time and lower levels of serum creatinine than subjects from the
488 administrative departments. Groups I and II had statistically higher levels of hemoglobin, hematocrit,
489 color index, mean corpuscular hemoglobin content, mean corpuscular volume, basophils and neutrophils
490 and lower levels of monocytes than control subjects. Groups I and II had significantly higher levels of
491 Mg, Mn and Ca. The effects of combined exposure did not differ from that of exposure to phenol alone
492 for the majority of the tested parameters. Only the platelets count, prothrombin time, eosinophils, Co and
493 Fe were affected by combined exposure, but not after exposure to phenol only.

494 **2.3. Developmental/Reproductive Toxicity**

495 No studies evaluating developmental or reproductive effects of phenol in humans were identified
496 (ATSDR, 1998).

497 **2.4. Genotoxicity**498 In tests using cultured human lymphocytes in vitro, phenol caused a weak increase in the
499 frequency of micronuclei (Yager et al., 1990) and induced sister chromatid exchanges (Morimoto and
500 Wolff, 1980). For more information on genotoxicity see Section 3.4.501 **2.5. Carcinogenicity**502 Kauppinen et al. (1986) reported a case-control study on respiratory cancers and chemical
503 exposures in the wood industry. A cohort of 3805 Finnish men who worked in the particle board,
504 plywood, sawmill, or formaldehyde glue industries for at least 1 year between 1944 and 1965 was
505 followed until 1981. From the cohort, 60 cases of respiratory malignant tumors were identified. The tissue
506 locations of these tumors included tongue (1), pharynx (1), larynx or epiglottis (4), and lung or trachea
507 (54). No cases with tumor in the mouth, nose, or sinuses were identified. Among the 60 cases, 2 were
508 rejected due to a false preliminary diagnosis of cancer and 1 was rejected as chronic lymphocytic
509 leukemia. The final size of the group of cases was thus 57. The control group contained three subjects for
510 each case, selected from the cohort and matched by birth year, for a total size of 171. Individual phenol
511 exposures were determined qualitatively as "yes" or "no" and as a function of exposure time. Phenol
512 exposure resulted in a statistically significant odds ratio (OR) of 3.98 or 4.94 for respiratory tumors with
513 or without the adjustment for smoking years, respectively. When the duration of phenol exposure was
514 considered, both exposures <5 years and >5 years resulted in a statistically significant OR of 5.86 or 4.03,
515 respectively (i.e., no duration response). When a provision for a 10-year latency was introduced
516 (excluding exposure during the 10 years immediately preceding the diagnosis of cases), phenol exposure
517 resulted in a nonsignificant OR of 2.86 adjusted for smoking years but a significant or of 3.98 without
518 smoking adjustment. An exclusion of workers exposed to both phenol and pesticides resulted in a change
519 of the OR from a significant 4.9 to a nonsignificant 2.6. Thus, a confounding effect due to exposures to
520 pesticides was very possible.521 In an occupational epidemiology study, Dosemeci et al. (1991) evaluated mortality among 14,861
522 white male workers in five companies that used formaldehyde and phenol. Unfortunately, the phenol
523 exposure was confounded by co-exposure to other compounds, such as formaldehyde, asbestos, urea,
524 melamine, hexamethylenediamine, wood dust, plasticizers, carbon black, ammonia, and antioxidants. On
525 the basis of phenol concentrations obtained from historical monitoring and industrial hygiene surveys, the
526 investigators assigned each job/department/year combination to groups with no, low, medium, or high
527 phenol exposure and then calculated cumulative exposure. Compared with the entire U.S. population, the
528 entire cohort, had no significant increases in standardized mortality ratios (SMRs) for all causes of death
529 or any diseases. The phenol-exposed workers as a group had slightly elevated SMRs for cancers of the
530 esophagus (1.6), rectum (1.4), kidney (1.3), and Hodgkin's disease (1.7); however, none of these
531 increases were statistically significant when compared with those in general population.532 **2.6. Summary**533 Fatalities after gross phenol exposures have been reported in the literature: one neonate died after
534 about 5.2 ppm phenol and 24.9 ppm formaldehyde (concentrations after 2 hours) with a decline in
535 chamber phenol concentrations over 5-6 hours followed by about 1.3 ppm phenol and 41.5 ppm
536 formaldehyde (measured after 1 hour, with decrease over time) for 14-15 hours in an incubator

537 (Heuschkel and Felscher, 1983); a newborn died from dermal phenol exposure with resulting tissue
538 concentrations of 125-202 mg/kg (Hinkel and Kintzel, 1968), lethal percutaneous exposures for which
539 information on dose is lacking; the range of reported acute oral lethal dose in adults is 166-754 mg/kg
540 (Kamijo et al., 1999; Bennett et al., 1959; Stajduhar-Caric, 1968).

541 Very few studies report the consequences in humans after inhaling phenol. One study reported
542 slight increased serum transaminase activity, increased hemoglobin concentration, increased numbers of
543 basophils and neutrophils and lower levels of monocytes after repeat occupational exposure to a mean
544 time-weighted average concentration of 5.4 ppm phenol (Shamy et al., 1994). Piotrowski (1971) did not
545 report any complaints or adverse effects in volunteers exposed to controlled concentrations of phenol at
546 6.5 ppm for 8 hours. Likewise, the field study of Ogata et al. (1986) did not mention the health status of
547 workers exposed to mean workshift concentrations of 1.22-4.99 ppm. Baker et al. (1978) described an
548 incidence in which residents drank contaminated well water for several weeks following an accidental
549 spill of phenol. Among persons exposed to >1 mg/l phenol in contaminated drinking water for several
550 weeks (the authors estimated an intake of phenol of 10 - 240 mg/d), gastrointestinal symptoms (diarrhea,
551 nausea, burning pain in the mouth and sores in the mouth) and skin rashes occurred (Baker et al., 1978).
552 Odor thresholds for phenol were reported as 0.010 ppm (Don, 1986), 0.047 ppm (Leonardos et al., 1969)
553 and 0.060 ppm (mean of evaluated values from the literature) (AIHA, 1989).

554 No studies investigating reproductive/developmental toxic effects in humans were available. In
555 vitro, phenol induced signs of genotoxicity in human cells (Yager et al., 1990; Morimoto and Wolff,
556 1980). Two epidemiological studies (Kauppinen et al., 1986; Dosemeci et al., 1991) evaluating
557 carcinogenic effects in phenol-exposed workers did not show a clear correlation between phenol exposure
558 and increased tumor incidences, but a very weak carcinogenic effect cannot be excluded on basis of the
559 available data.

560 **3. ANIMAL TOXICITY DATA**561 **3.1. Acute Lethality**

562 No studies reporting death after a single inhalation exposure were available. One study evaluated
563 repeated inhalation exposure in guinea pigs. For oral exposure, several studies are summarized in Table 3.

564 **3.1.1. Rabbits**565 *Studies with non-inhalation exposure*

566 Deichmann and Witherup (1944) administered phenol at different concentrations by oral gavage
567 to albino rabbits. The first muscle twitching occurred in the extrinsic eye muscles and those of the eyelids
568 and ears, then spread to isolated bundles of muscles all over the body; the extremities were affected last.
569 Pulse and respiration were increased in rate at first, but later became slow, irregular and weak. The pupils
570 were contracted in the early stages of intoxication, being dilated later. There was some salivation and
571 dyspnea was marked. Lethargy, coma and asphyxial convulsions occurred shortly before death. Death
572 always followed an oral dose of 0.62 g/kg, some deaths were seen after a dose of 0.42 g/kg, but were not
573 observed at a dose of 0.28 g/kg.

574 Flickinger (1976) applied 0.252, 0.500, 1.00 or 2.00 g/kg phenol to the intact skin of male albino
575 rabbits (4 animals/group). The observation period was 14 days. Death was observed in 0/4, 0/4, 3/4 and
576 4/4 rats (all deaths occurred at the day of dosing), respectively. Necrosis of the skin was observed in all
577 exposed rabbits. No internal gross lesions were observed upon autopsy of the sacrificed animals. The
578 authors calculated a LD₅₀ of 0.85 g/kg (95 % C.I. 0.60-1.20 g/kg).

579 **3.1.2. Rats**580 *Studies with non-inhalation exposure*

581 Berman et al. (1995) reported an oral LD₅₀ of 400 mg/kg (95 % C.I. 297-539 mg/kg) in female
582 Fischer 344 rats. In a repeat gavage study (14 exposures; see Section 3.2.3), a dose of 120 mg/kg killed
583 8/10 animals (animals died between days 1 and 11). No deaths occurred at 40 mg/kg.

584 Deichmann and Witherup (1944) administered 2, 5, 10 or 20 % aqueous phenol by oral gavage to
585 Wistar rats. The first muscle twitching occurred in the extrinsic eye muscles and those of the eyelids and
586 ears, then spread to isolated bundles of muscles all over the body; the extremities were affected last. Pulse
587 and respiration were increased in rate at first, but later became slow, irregular and weak. The pupils were
588 contracted in the early stages of intoxication, being dilated later. There was some salivation and dyspnea
589 was marked. Uncoordinated movements of the legs occurred shortly before death. The LD₅₀ values for the
590 different phenol concentrations were 0.53, 0.53, 0.54 and 0.34 g/kg, respectively.

591 Flickinger (1976) dosed groups of 5 male albino rats by gavage at 0.200, 0.398, 0.795 or 1.58
592 g/kg phenol. The observation period was 14 days. Death was observed in 0/5, 0/5, 4/5 and 5/5 rats (all
593 deaths occurred at the day of dosing), respectively. All rats which died revealed hyperemia and distention
594 of the stomach and intestines. None of the surviving rats exhibited any gross lesions. The authors
595 calculated a LD₅₀ of 0.65 g/kg (95 % C.I. 0.49-0.86 g/kg).

Conning and Hayes (1970) reported a dermal LD₅₀ of 0.625 ml/kg in Alderley Park rats using molten phenol (40 °C).

3.1.3. Guinea pigs

Deichmann et al. (1944) exposed 12 guinea pigs to phenol vapor at 100-200 mg/m³ (26-52 ppm), 7 hours/day, 5 days/week for 4 weeks. After 3-5 exposures, the animals became lethargic during exposure. Body weight either decreased or remained stationary. After about 20 exposures over a period of 28 days, some of the animals began to show respiratory difficulties and signs of paralysis affecting primarily the hind quarters. Five animals died on day 28 and the other animals were killed one day later. Autopsy revealed extensive coagulation necrosis of the myocardium with extensive inflammation, lobular pneumonia with occasional abscesses and vascular damage in the lungs, centrolobular degeneration and necrosis in the liver and degenerative lesions in the kidneys.

3.1.4. Mice

For mice, oral LD₅₀ values of 282 mg/kg (Horikawa and Okada, 1975), 300 mg/kg (Von Oettingen and Sharples, 1946) and 427 mg/kg (Kostoveckii and Zholdakova, 1971) have been reported.

TABLE 3: SUMMARY OF ACUTE ORAL LETHAL DATA IN ANIMALS

TABLE 3: SUMMARY OF ACUTE ORAL LETHAL DATA IN ANIMALS					
Species	Dose (mg/kg)	Remarks on administration	Total number of animals used	Datum	Reference
rabbit	420	solutions with different phenol concentrations were used	35	lowest dose that resulted in death	Deichmann and Witherup (1944)
rat	400	gavage	not stated	LD ₅₀	Berman et al. (1995)
rat	530	gavage, 2 % solution	45	LD ₅₀	Deichmann and Witherup (1944)
rat	530	gavage, 5 % solution	45	LD ₅₀	Deichmann and Witherup (1944)
rat	540	gavage, 10% solution	40	LD ₅₀	Deichmann and Witherup (1944)
rat	340	gavage, 20 % solution	45	LD ₅₀	Deichmann and Witherup (1944)
rat	650	gavage	20	LD ₅₀	Flickinger (1976)
mouse	282	not stated	not stated	LD ₅₀	Horikawa and Okada, 1975
mouse	300	not stated	not stated	LD ₅₀	Von Oettingen and Sharples, 1946
mouse	427	not stated	not stated	LD ₅₀	Kostoveckii and Zholdakova, 1971

622 **3.2. Nonlethal Toxicity**623 Studies with single and repeated inhalation exposure are available for monkey, rabbit, rat and
624 mouse. However, several protocols employed concentrations which failed to produce any adverse effects
625 (Table 4).626 **3.2.1 Monkeys**
627 *Studies with repeated inhalation exposure*628 Sandage (1961) exposed groups of 10 male rhesus monkeys at 0 or 5 ppm phenol 24 hours/day
629 for 90 days. The exposure chambers were aluminium-insulated rooms of 10x8x7 feet. Monkeys were
630 exposed in individual cages of 2x2x2 feet. Exposure concentrations were determined by a colorimetric
631 assay [The reliability of the method could not be determined from the study]. An average phenol
632 concentration of 4.72 ppm was measured (according to the authors the allowed range of 4.5-5.5 ppm was
633 not exceeded). No significant effects were found in tests assessing hematology, urine parameters, blood
634 chemistry and renal function. In discussion the authors stated that "pathology ... was essentially negative".
635 Liver and kidney pathology was observed in 30% and 20%, respectively, of the monkeys (compared with
636 0% of the controls). However, the authors did not consider these changes to be significant, and they noted
637 that 6/7 reports of pathology in monkeys were considered "minimal or doubtful." Although the authors
638 concluded that there was no evidence that phenol exposure resulted in significant damage, there is some
639 indication of liver, kidney, and lung pathology in this study, but the inadequate reporting precludes the
640 determination of whether there was a treatment-related effect.641 **3.2.2. Rabbits**
642 *Studies with repeated inhalation exposure*643 Deichmann et al. (1944) exposed 6 rabbits to phenol vapor concentrations of 100-200 mg/m³ (26-
644 52 ppm) for 7 hours/day, 5 days/week for a total of 63 exposures over a period of 88 days. Rabbits did not
645 show any signs of illness or discomfort. Gross and microscopic examinations revealed widespread
646 confluent lobular pneumonia in the lungs, myocardial degeneration with necrosis of muscle bundles and
647 interstitial fibrosis, centrolobular degeneration and necrosis in the liver, cloudy swelling and edema of
648 convoluted tubules, scattered tubular degeneration, atrophy and dilatation as well as glomerular
649 degeneration in the kidney.650 **3.2.3. Rats**651 Flickinger (1976) exposed a group of 6 female Harlan-Wistar rats whole-body for 8 hours to a
652 phenol aerosol at 900 mg phenol/m³. The aerosol was generated using aqueous phenol and a D₁₈
653 Dautrebande aerosol generator operated at 30 psi. The author stated that at this operating pressure, the
654 generator delivers droplet diameters of $\leq 1 \mu\text{m}$. Nominal exposure concentrations were determined by
655 measurement of the volume loss of solution following aerosolization. The weight of the chemical present
656 in that volume was then calculated and related to the total volume of air used in generating the aerosol to
657 obtain the chamber concentration. The postexposure observation period was 14 days. The exposure to an
658 aerosol containing 900 mg phenol/m³ caused no deaths, but ocular and nasal irritation was observed, as
659 well as slight loss of coordination with skeletal muscle spasms within 4 hours. Tremors and prostration
660 developed in 1/6 rats within 8 hours. Rats appeared normal the following day and continued to gain body

661 weight normally over the next 14 days. No lesions attributable to inhalation of the aerosol were seen at
662 gross autopsy. Since the aerosol concentration used was below the vapor pressure at room temperature, it
663 was considered adequate to convert the aerosol concentration of 900 mg/m³ to an equivalent vapor
664 concentration of 234 ppm for calculations and comparison with other studies.

665 Brondeau et al. (1990) exposed Sprague-Dawley rats whole-body at 0, 111, 156 or 211 ppm
666 phenol for 4 hours. At conclusion of exposure, rats were killed and cellular components of the blood were
667 analyzed. No effect on erythrocyte and leukocyte differential counts could be discerned. The total white
668 blood cell count was significantly reduced after exposure at 156 or 211 ppm. Other signs of toxicity were
669 not evaluated. The authors interpreted this finding as a result of increased secretion of corticosteroids as a
670 response to sensory irritation. The authors showed for five other chemicals also causing leukopenia, that
671 this effect did not occur in adrenalectomized rats.

672 *Studies with repeated inhalation exposure*

673 CMA (1998) (published as Hoffman et al., 2001) exposed groups of 20 male and 20 female
674 Fischer 344 rats via flow-past nose-only inhalation protocol to phenol vapor at 0, 0.5, 5 or 25 ppm for 6
675 hours/day, 5 days/week for 2 weeks. HPLC measurement of exposure concentrations determined mean (\pm
676 SD) analytical concentrations of 0.0 ± 0.0 , 0.52 ± 0.078 , 4.9 ± 0.57 and 25 ± 2.2 ppm, respectively; nominal
677 concentrations for the three phenol-treated groups were 0.67 ± 0.051 , 6.6 ± 0.21 and 29 ± 1.3 ppm,
678 respectively. Physical observations were performed once during each exposure for all animals and twice
679 daily, in-cage, for viability (prior to and 30 min after exposure). Detailed physical examinations were
680 conducted on all animals twice pretest and weekly thereafter. Body weight measurements were recorded
681 twice pretest and weekly thereafter, as well as prior to the first exposure. Following 10 exposures, 10
682 animals/sex/group were sacrificed and the remaining animals held for a recovery period of 2 weeks, after
683 which these animals were sacrificed. Food consumption was recorded conducted during the week prior to
684 exposure initiation and weekly thereafter. Hematology and clinical chemistry parameters were collected at
685 termination (10 animals/sex/group) or during recovery (10 animals/sex/group). Complete gross
686 evaluations were conducted on all animals. Microscopic evaluations were conducted on the liver, kidney,
687 nasopharyngeal tissues, larynx, trachea and lungs and gross lesions for animals in the control and high-
688 exposure groups, at termination or during recovery. For histopathology of nasopharyngeal tissues, the
689 skull, after decalcification, was serially sectioned transversely at approximately 3- μ m intervals and
690 routinely, four sections were examined per animal.

691 No differences between control and phenol-exposed animals for clinical observations, body
692 weights, food consumption and clinical pathology were found. The authors stated that "scattered
693 observations of chromodacryorrhea and nasal discharge" were noted during the two weeks of exposure.
694 However, the authors found these changes did not appear treatment-related and mostly abated during the
695 2 week recovery period." While this was true for chromodacryorrhea, the summary tables of in-life
696 physical observations reported the following incidences of red nasal discharge in the control, 0.5-ppm, 5-
697 ppm and 25-ppm groups: 0/20, 0/20, 3/20 and 4/20 males and 0/20, 0/20, 1/20 and 0/20 females in the
698 first week and 0/20, 0/20, 7/20 and 10/20 males and 0/20, 1/20, 3/20 and 0/20 females in the second
699 week. No differences between control and phenol-exposed animals for organ weights and macroscopic
700 and microscopic postmortem examinations were reported. The authors concluded that no adverse effects
701 were seen at phenol concentrations up to 25 ppm.

Dalin and Kristoffersson (1974) exposed rats (males and females, two experiments with 7 phenol-exposed and 12 control animals each; rat strain not stated) whole-body at 100 mg/m³ (26 ppm) phenol vapor 24 hours/day for 15 days (the authors did not state whether the exposure concentration was checked analytically). One day after initiation of exposure the physical activity of the phenol-exposed rats was increased. During the third and fourth days, the animals showed impaired balance and abnormal gait. Involuntary skeletal muscle twitches were observed. The authors stated that these twitches were relatively mild and the external appearance of the animals indicated that they were in relatively good condition. These signs disappeared by day 5 and were replaced by sluggish behavior until the end of the exposure. At termination of phenol exposure, the tilting plane method was used to measure effects on the central nervous system and the phenol-exposed rats showed a significantly reduced sliding angle than before exposure or compared to control.

Mukhito (1964) exposed groups of 15 male "white rats" whole body to phenol at 0, 0.01, 0.1 or 5 mg/m³ (0.0026, 0.026 or 1.3 ppm) for 24 hours/day 61 days. Analytical concentrations were obtained once or twice daily using a colorimetric assay. Analytical concentrations were 0.0112±0.0014 mg/m³ (0.0029±0.00036 ppm), 0.106±0.0324 mg/m³ (0.028±0.0084 ppm) and 5.23±0.44 mg/m³ (1.36±0.11 ppm). While behavior of the rats at the two lower exposure concentrations was not different from controls, animals were "somewhat sluggish and sleepy" in the highest exposure group. Right hind leg muscle antagonists motor chronaxy was measured once every 10 days in 5 rats of each exposure group. A statistically significant motor chronaxy (mostly seen as shortened extensor chronaxy) was observed in rats exposed at 0.1 or 5 mg/m³, starting after 30 days of exposure.

Sandage (1961) exposed groups of 50 male Sprague-Dawley rats whole body at 0 or 5 ppm phenol vapor for 24 hours/day 90 days. Concentrations were determined by a colorimetric assay. An average phenol concentration of 4.72 ppm was measured (the allowed range of 4.5-5.5 ppm was not exceeded according to the authors). No significant effects were found in tests assessing hematology and urine parameters as well as in histopathological examinations.

Deichmann et al. (1944) exposed 15 rats whole body to phenol vapor concentrations of 100-200 mg/m³ (26-52 ppm) for 7 hours/day, 5 days/week for a total of 53 exposures over 74 days. These animals failed to show any signs of illness. No macroscopic or microscopic lesions were observed.

Studies with non-inhalation exposure

Berman et al. (1995) gave groups of 10 female Fischer 344 rats single oral gavage doses of 0, 12, 40, 120 or 224 mg/kg or daily doses of 0, 4, 12, 40 or 120 mg/kg for 2 weeks (14 total gavage doses) phenol in corn oil. Repeated exposure to 120 mg/kg killed 8/10 animals (see Section 3.1.1). Hepatocellular necrosis was observed after a single dose of 40 mg/kg in 1/7 animals and at 120 mg/kg in 2/6, but not after repeated exposure to 40 mg/kg. Renal tubular necrosis, protein casts and papillary hemorrhage developed in 4/6 animals given 224 mg/kg (single) and in 3/8 animals at 40 mg/kg (repeated). Necrosis or atrophy of spleen or thymus were found in 1/8 animals at 12 mg/kg (single and repeated), 2/8 animals at 40 mg/kg (repeated), 1/7 animals at 120 mg/kg and 4/6 animals at 224 mg/kg.

739 **3.2.4. Mice**740 *Studies with repeated inhalation exposure*

741 Sandage (1961) exposed groups of 100 male "general purpose albino mice" at 0 or 5 ppm phenol
742 24 hours/day for 90 days. Exposure concentrations were determined by a colorimetric assay. An average
743 phenol concentration of 4.72 ppm was measured (the allowed range of 4.5-5.5 ppm was not exceeded
744 according to the authors). No significant effects were found in tests assessing hematology and urine
745 parameters as well as in histopathological examinations.

746 De Ceaurriz et al. (1981) determined the phenol vapor concentration associated with a 50 %
747 reduction in the respiratory rate (RD_{50}) in male Swiss OF₁ mice. Analytical exposure concentration
748 measurements were performed by pumping a defined volume of air from the exposure chamber through a
749 glass tube packed with silica gel as a solid sorbent and analyzing the amount of phenol by gas
750 chromatography. The authors used at least 4 different concentrations and 6 mice at each concentration.
751 For measurement of respiration rate, mice were secured in individual body plethysmographs. During
752 phenol exposure, the plethysmographs were inserted through the wall of the exposure chamber; the head
753 of each animal was extended into the inhalation chamber. During 10 minutes, a control level was
754 established, during which time the mice were exposed to room air. The mice were then rapidly placed in
755 the stabilized cell with a predetermined concentration of phenol and were exposed for about 5 minutes.
756 The phenol vapor RD_{50} for mice was calculated as 166 ppm.

757
758
759
760
761
762
763
764
765
766
767
768
769
770

**TABLE 4: SUMMARY OF NON-LETHAL EFFECTS IN ANIMALS AFTER INHALATION
EXPOSURE**

Species	Concentration (ppm)	Exposure duration	Comments	Reference
monkey	5	24 h/d, 90 d	no or minimal hepatic histologic change	Sandage (1961)
rabbit	26-52	7 h/d, 5 d/w, 88 d	pneumonia, histological degeneration in heart, liver and kidney	Deichmann et al. (1944)
rat	900 mg/m ³ as aerosol (equivalent to 234 ppm)	8 h	ocular and nasal irritation, incoordination, prostration	Flickinger (1976)
rat	111, 156 or 211	4 h	reduced leucocyte counts after 211 or 56 ppm; no effects after 111 ppm	Brondeau et al. (1989)
rat	26	24 h/d, 15 d	after one day increased activity; during third and fourth day impaired balance, disordered gait and muscle twitchings; sluggish	Dalin and Kristofferson, 1974
rat	0.5, 5 or 25	6 h/d, 5 d/w, 2 w	no clinical, hematological or histopathological effects	CMA, 1998; Hoffman et al., 2001
rat	0.0026, 0.026 or 1.3	24 h/d, 61 d	significant motor chronaxy starting at 30 d in the two highest exposure groups	Mukhito (1964)
rat	5	24 h/d, 90 d	no hematological or histopathological effects	Sandage (1961)
rat	26-52	7 h/d, 5 d/w, 74 d	no signs of gross or histopathologic change	Deichmann et al. (1944)
mouse	5	24 h/d, 90 d	no hematological or histopathological effects	Sandage (1961)
mouse	166	5 min	RD ₅₀	De Ceaurriz et al. (1981)

771 **3.3. Developmental/Reproductive Toxicity**

772 **3.3.1 Rats**

773 *Studies with repeated non-inhalation exposure*

774 Jones-Price et al. (1983a) exposed groups of 20-22 pregnant CD rats by gavage to phenol at 0, 30,
775 60 or 120 mg/kg on gestational days 6 to 15. The dams were evaluated at sacrifice (day 20) for body
776 weight, liver weight, gravid uterine weight, and status of uterine implantation sites. Live fetuses were
777 weighed, sexed, and examined for gross morphological abnormalities and malformations in the viscera

778 and skeleton. No dose-related signs of maternal toxicity were observed. Although the number of
779 resorptions was increased in all treated groups compared to the control group, this increase was not dose-
780 dependent and was not observed in a previous range-finding study. In the group given 120 mg/kg, fetal
781 body weights were significantly reduced. No other signs of developmental toxicity were observed. Thus,
782 on the basis of decreased fetal body weight, the mid dose in this study of 60 mg/kg/day was a NOAEL for
783 developmental toxicity and the high dose of 120 mg/kg/day was an equivocal LOAEL. The high dose was
784 a maternal NOAEL.

785 In a screening-test validation study, Narotsky and Kavlock (1995) exposed groups of 15-20
786 pregnant F344 rats by gavage to doses of 0, 40 or 53.3 mg/kg on gestational days 6 to 19. In both treated
787 groups, dams showed dyspnea and rales in the lungs. Complete resorptions were found in 1 litter in the
788 low and 2 litters in the high exposure group.

789 Ryan et al. (2001) evaluated the potential reproductive toxicity of phenol in a rat two-generation
790 reproduction study, which included additional study endpoints, such as sperm count and motility,
791 developmental landmarks, histological evaluation of suspect target organs (liver, kidneys, spleen, and
792 thymus), weanling reproductive organ weights, and an immunotoxicity screening plaque assay. Phenol
793 was administered to 30 Sprague-Dawley rats/sex/group in the drinking water at concentrations of 0, 200,
794 1000, or 5000 ppm corresponding to daily intake of phenol of 0, 14, 70, and 310 mg/kg/day for males and
795 0, 20, 93, and 350 mg/kg/day for females. Parental (P1) animals were treated for 10 weeks prior to
796 mating, during mating, gestation, lactation, and until sacrifice. The F1 generation (P1 offspring) was
797 treated using a similar regimen, while the F2 generation was not treated. After mating, 10 P1 males/group
798 were evaluated using standard clinical pathology parameters and an immunotoxicity screening plaque
799 assay. Significant reductions in water and food consumption were observed in the 5000-ppm group in
800 both generations; corollary reductions in body weight/body weight gain were also observed. Mating
801 performance and fertility in both generations were similar to controls, and no adverse effects on vaginal
802 cytology or male reproductive function were observed. Vaginal opening and preputial separation were
803 delayed in the 5000-ppm group, and were considered to be secondary to the reduction in F1 body weight.
804 Litter survival of both generations was reduced in the 5000-ppm group. Absolute uterus and prostate
805 weights were decreased in the F1 generation at all dose levels; however, no underlying pathology was
806 observed and there was no functional deficit in reproductive performance. Therefore, these findings were
807 not considered to be adverse. No evidence of immunotoxicity was noted in the 5000-ppm group. The
808 effects noted at the high concentration were presumed to be associated with flavor aversion to phenol in
809 the drinking water. Based on a comprehensive examination of all parameters, the NOAEL for
810 reproductive toxicity of phenol administered in drinking water to rats is 1000 ppm (equivalent to 70
811 mg/kg/day for males and 93 mg/kg/day for females).

812 3.3.2 Mice

813 *Studies with repeated non-inhalation exposure*

814 Jones-Price et al. (1983b) exposed groups of 22-29 pregnant CD-1 mice in a teratogenicity study
815 by gavage to phenol doses of 0, 70, 140 or 280 mg/kg on gestational days 6 to 15. Maternally toxic
816 effects, such as tremor, ataxia, reduced body weight development and death of 4/36 dams were observed
817 at 280 mg/kg. At 140 mg/kg slight tremor was observed after the first three exposures. Reduced fetal
818 weights were observed in the highest exposure group. An increased incidence of cleft palate was also
819 reported at the highest dose level, although the incidence was not significantly different from that of the

820 other groups and there was no statistically significant increase in the incidence of litters with
821 malformations. There was no other evidence of altered prenatal viability or structural development. Thus,
822 the high dose of 280 mg/kg/day was a maternal frank effect level and also a developmental LOAEL based
823 on decreased fetal body weight (accompanied by a possible increase in the incidence of cleft palate) in the
824 fetuses, an effect that was likely secondary to the severe toxicity in the dams. The study NOAEL for
825 maternal and developmental toxicity was 140 mg/kg/day.

826 **3.4. Genotoxicity**

827 Genotoxicity studies have found that phenol tends not to be mutagenic in *Salmonella*
828 *typhimurium* tester strains either with or without S9-mix (Haworth et al., 1983; Glatt et al., 1989), but
829 positive or equivocal results have been obtained in gene mutation assays in mammalian cells (McGregor
830 et al., 1988a, 1988b; Tsutsui et al., 1997). Increases were larger in the presence of S9 activation.

831 Phenol tended to induce micronuclei in mice when administered intraperitoneally (LOEL 90-160
832 mg/kg injected intraperitoneally daily for 2 or 3 days) (Shelby et al., 1993; Marazzini et al., 1994; Chen
833 and Eastmond, 1995), but it produced negative (or positive only at very high doses) results when
834 administered orally (see Greim, 1998; IARC, 1999; EPA, 2002 for review). This difference is likely due
835 to the first-pass conjugation and inactivation of orally administered phenol in the liver.

836 Using cultured Syrian hamster embryo cells, phenol induced DNA synthesis (starting at 1
837 $\mu\text{mol/l}$), chromosomal aberrations (positive at 100 $\mu\text{mol/l}$) and sister chromatid exchanges (starting at
838 1000 $\mu\text{mol/l}$) and cell transformation (starting at 10 $\mu\text{mol/l}$) (Tsutsui et al., 1997).

839 Phenol was also positive in in vitro micronucleus tests with human lymphocytes (Yager et al.,
840 1990) and CHO cells (Miller et al., 1995), and it caused chromosome aberrations in the presence of S9
841 activation in CHO cells (Ivett et al., 1989).

842 **3.5. Carcinogenicity**

843 No valid inhalation studies evaluating the potential carcinogenic activity were located (BUA,
844 1998; IARC, 1999; EPA, 2002).

845 In an oral bioassay (NCI, 1980), groups of 50 male and female B6C3F1 mice and F344 rats
846 received 0, 2500 or 5000 mg/l phenol in drinking water, leading to estimated doses of 281 or 412
847 mg/kg/day for mice and 270 or 480 mg/kg/day for rats. Rats showed inflammation in the kidneys. No
848 increased incidence of tumors was observed in mice or female rats. A significant incidence of tumors
849 (pheochromocytomas of the adrenal gland, leukemia or lymphoma) occurred in male rats of the low
850 exposure group, but there was no dose-response relationship.

851 Topical phenol has a tumor promoting activity and can induce skin tumors in mice after repeated
852 dermal exposure (2.5 mg in 25 μl benzene, 2 times/week for 40 weeks). However, the promotion was
853 evident only in the presence of skin lesions, which were observed during the first 6 weeks) (Boutwell and
854 Bosch, 1959).

IARC (1999) evaluated the findings on carcinogenicity and concluded that there is inadequate evidence in both humans and experimental animals for the carcinogenicity of phenol. Consequently, phenol was found "not classifiable as to its carcinogenicity to humans (Group 3)". EPA (2002) concluded that, "the data regarding the carcinogenicity of phenol via the oral, inhalation, and dermal exposure routes are inadequate for an assessment of human carcinogenic potential. Phenol was negative in oral carcinogenicity studies in rats and mice, but questions remain regarding increased leukemia in male rats in the bioassay as well as the positive gene mutation data and the positive results in dermal initiation/promotion studies at doses at or above the maximum tolerated dose (MTD). No inhalation studies of an appropriate duration exist. Therefore, no quantitative assessment of carcinogenic potential via any route is possible." Therefore, carcinogenicity was not an endpoint in the derivation of AEGL values.

3.6. Summary

No studies reporting LC₅₀ values for phenol are available. Five of 12 guinea pigs died after 20 exposures at 26-52 ppm phenol for 7 hours/day, 5 days/week (Deichmann et al., 1944). Under the same conditions, rabbits exposed for 88 days showed no clinical signs of overt poisoning, but developed pneumonia and degeneration in heart, liver and kidney. Rats exposed for 74 days showed neither clinical signs nor histological alterations (Deichmann et al., 1944). Oral lethal doses of 420 mg/kg for rabbits, 400-650 mg/kg for rats (Deichmann and Witherup, 1944) and 282-427 mg/kg for mice (Horikawa and Okada, 1975; Von Oettingen and Sharples, 1946; Kostoveckii and Zholdakova, 1971) have been reported.

In 10 rhesus monkeys, exposed 24 hours/day for 90 days at 5 ppm phenol by inhalation, no significant effects were found in hematology, urine parameters, blood chemistry or renal function or at autopsy or histologic examinations (Sandage, 1961).

Rats that inhaled a phenol aerosol at 900 mg/m³ (equivalent to 234 ppm) for 8 hours developed ocular and nasal irritation, incoordination and prostration (Flickinger, 1976). A reduction of the number of circulating leucocytes was observed in rats after 4-hour exposure at 211 or 156 ppm; no effect was seen for 111 ppm (Brondeau et al., 1989). After exposure of rats at 0.5, 5 or 25 ppm for 6 hours/day, 5 days/week for 2 weeks no clinical, hematological or histopathological effects were found (CMA, 1998; Hoffmann et al., 2001). Continuous exposure at 5 ppm phenol for 90 days caused no hematological or histological effects in rats and mice (Sandage, 1961). A concentration of 166 ppm (for 5 min) resulted in a 50 % decrease of respiration (RD₅₀) in mice (De Ceaurriz et al., 1981).

Reduced fetal body weights were found in studies using repeated oral gavage and doses of up to 120 mg/kg in CD rats (on gestational days 6-15) and 140 mg/kg in CD-1 mice (on gestational days 6-19) (Jones-Price et al., 1983a; 1983b). In a two-generation drinking water study in Sprague-Dawley rats, decreased pup survival linked to decreased maternal body weight was observed at the highest dose of 5000 ppm; the NOAEL was 1000 ppm (equivalent to 70 mg/kg/day for males and 93 mg/kg/day for females) (Ryan et al., 2001).

Phenol has weak clastogenic and genotoxic activity both in vitro and in vivo (Shelby et al., 1993; Marazzini et al., 1994, Chen and Eastmond, 1995; Tsutsui et al., 1997). A lifetime oral bioassay of phenol in rats and mice, using exposure through drinking water, found increased numbers of male rats of the low exposure group with pheochromocytoma, leukemia or lymphoma, but not among male rats of the

895 high exposure group, female rats and mice (NCI, 1980). Phenol has tumor promoting and tumorigenic
896 activity when applied dermally (Boutwell and Bosch, 1959). IARC (1999) evaluated the findings on
897 carcinogenicity and concluded that there is inadequate evidence in both humans and experimental animals
898 for the carcinogenicity of phenol. Consequently, phenol was found “not classifiable as to its
899 carcinogenicity to humans (Group 3)”. EPA (2002) concluded that, “the data regarding the
900 carcinogenicity of phenol via the oral, inhalation, and dermal exposure routes are inadequate for an
901 assessment of human carcinogenic potential”.

902 **4. SPECIAL CONSIDERATIONS**903 **4.1. Metabolism and Disposition**

904 Phenol is a normal product of protein catabolism and it is taken up directly from cigarette smoke
905 and food (especially smoked products). Sittig (1980) reported phenol concentrations in human urine
906 between 5-55 mg/l. Dugan (1972) stated that humans eliminate 0.2-6.6 mg/kg/day in urine and up to 3
907 mg/kg/day in feces. Piotrowski (1971) reported 8.7 ± 2.0 mg/day as the daily excretion rate of total phenol
908 (free plus conjugates) in humans with no known exposure to phenol.

909 Inhaled phenol is absorbed readily into systemic circulation. Piotrowski (1971) exposed 8
910 subjects by face mask to phenol concentrations between 5 and 25 mg/m³ (1.3-6.5 ppm) for 8 hours, with
911 two breaks of 0.5 hours each after 2.5 and 5.5 hours. The concentration of phenol in inhaled and exhaled
912 air was determined and urine was analyzed for total phenol (phenol and conjugates). Steady state was
913 achieved within 3 hours. The steady state systemic uptake/absorption was 60-88 %. Urinary recovery of
914 absorbed phenol was 99 % within 24 hours after initial exposure.

915 After a single oral dose of 0.01 mg/kg radiolabeled phenol given to three male subjects (smoker
916 status not reported), 85-98 % of the dose was excreted in the urine in 14 hours (Capel et al., 1972). These
917 data demonstrate that very small concentrations of phenol are readily absorbed by the human
918 gastrointestinal tract. In 18 other mammalian species, mean 24-hour recoveries ranged from 95 % in the
919 rat to 31 % in the squirrel monkey (Capel et al., 1972).

920 Piotrowski (1971) also performed whole-body skin exposures in human subjects (7 men aged 25-
921 42 and one woman aged 30, smoker status not reported). The subjects were exposed to phenol vapor
922 concentrations of 5, 10 or 25 mg/m³ (1.3, 2.6 or 6.5 ppm) for 6 hours; fresh air was supplied through a
923 face mask to preclude pulmonary absorption. The total amount of phenol excreted in urine during and
924 after exposure was used as a measure of absorption. Percutaneous clearance was estimated to be 0.35
925 m³/h, i.e. the amount of phenol contained in 0.35 m³ was taken up per hour.

926 Assuming a ventilation rate of 0.8 m³/h and a pulmonary retention of 70 %, ATSDR (1998)
927 calculated clearance of airborne phenol through the lungs was 0.6 m³/h and concluded percutaneous
928 absorption to be half the pulmonary uptake over the concentration range between 5-25 mg/m³ (1.3-6.5
929 ppm).

930 Topical phenol is absorbed readily. After application of phenol solutions of 2.5-10.0 g/l on the
931 forearm skin of 12 male and female subjects (aged 20-42 not having phenol contact or taking medicines,
932 smoker status not reported), absorption rate increased with concentration (0.079 to 0.301 mg/cm²/h). After
933 30-minute immersion of a whole hand into the same phenol concentrations (with calculated absorbed
934 doses between 15.2 and 62.4 mg), phenol excretion in urine within 24 hours amounted to about 80 % of
935 the absorbed dose. Increasing the phenol solution temperature from 20 °C to 35 °C led to an 1.67fold
936 increase in skin absorption (Baranowska-Dutkiewicz, 1981).

937 At 72 hours after intratracheal instillation of radiolabeled phenol, radioactivity (1-5 % of total
938 dose) was found in rat lungs, skin, blood, muscle, adipose tissue and liver (Hughes and Hall, 1995).
939 Seventy-two hours after oral exposure of rats, radioactivity was distributed mainly in muscle, skin,

940 adipose tissue, liver and blood (Hughes and Hall, 1995). Thirty minutes after oral exposure of rats, the
941 highest concentrations of administered dose were found in liver (29-56 %); approximately 67-85 % was
942 present in the plasma, of which 41-50 % was bound to proteins or other macromolecules (Liao and
943 Oehme, 1981).

944 Three different enzymes participate in phenol metabolism: phenol sulfotransferases catalyze
945 transfer of inorganic sulfate from 3'-phosphoadenosine-5'-phosphosulfate to the hydroxyl group of phenol
946 to form the sulfate conjugate. Uridine diphosphate glucuronosyltransferases (UDP-
947 glucuronosyltransferases) catalyze the transfer of a glucuronic acid moiety to the hydroxyl group of
948 phenol to form an O-glucuronide conjugate. Cytochrome P450 2E1 catalyzes the hydroxylation of phenol
949 to form hydroquinone and to a much lesser extent catechol, which are then conjugated mainly with sulfate
950 and glucuronic acid (Capel et al., 1972; Cassidy and Houston, 1984). In addition, other cytochrome P450
951 isoenzymes, such as 2F2, may also be involved in phenol oxidation (Powley and Carlson, 2001). In vivo
952 conjugation occurs mainly in liver, lung and gastrointestinal tract (Cassidy and Houston, 1984).

953 Since the sulfate conjugation pathway is saturable at lower doses than the glucuronic acid
954 conjugation, the ratio of sulfate/glucuronide conjugates in rats decreased with increasing phenol dose
955 (Koster et al., 1981). The ration of sulfate/glucuronide conjugates shows a species dependency (Capel et
956 al., 1972). With respect to oxidation, at a dose of 25 mg/kg, mice excreted 7fold higher amounts of total
957 hydroquinone than rats (Capel et al., 1972). Kenyon et al. (1995) administered ¹⁴C-phenol to B6 mice of
958 both sexes and observed that, males excreted a greater proportion of hydroquinone glucuronide than did
959 females at all doses; the difference was roughly twofold at a dose of 40 µmol/kg.

960 Phenol, in both free and conjugated forms, is excreted rapidly in urine. Human volunteers,
961 exposed to phenol concentrations between 5 and 25 mg/m³ (1.3-6.5 ppm) for 8 hours excreted 99 ± 8 %
962 of the retained dose in the urine within 24 hours after start of exposure (Piotrowski, 1971). After oral
963 exposure of humans to radiolabeled phenol, the mean 24-hour recovery of radioactivity in the urine was
964 90 % (range 85-90 %) (Capel et al., 1972). In rats, elimination of radioactivity in the urine was 95 %
965 complete 24 hours after intratracheal or oral administration of radiolabeled phenol (Hughes and Hall,
966 1995).

967 The urinary level of total phenol (free phenol and conjugated phenol) increased linearly with
968 phenol concentrations in air in exposed workers (Ohtsuji and Ikeda, 1972).

969 4.2. Mechanism of Toxicity

970 Phenol is an irritant of eyes and nose in rats (Brondeau et al., 1990; Flickinger, 1976). After acute
971 ingestion of high doses by humans, burns, hyperemia and inflammation of mucous membranes and edema
972 and inflammation of the lungs has been found (Bennett et al., 1950; Stajduhar-Caric, 1968; Tanaka et al.,
973 1998). Burns and necrosis develop in humans after skin contact (Spiller et al., 1993; Schaper, 1981).
974 From these findings it can be concluded that phenol causes local tissue damage at the sites of contact. The
975 mechanism of acute irritation of skin and mucous membranes is not known. However, because phenol at
976 higher concentrations precipitates proteins from solution (Lewin, 1992) and dissolves in both water and
977 organic solvents, interference with normal protein, enzyme and membrane function seems likely. Direct
978 toxicity on bone marrow cells in vivo was suggested by Tunek et al. (1981) at high exposure
979 concentrations.

With regard to systemic it has been reported that phenol exposure results in hypotension and arrhythmias in humans and experimental animals (Bennett et al., 1950; Stajduhar-Caric, 1968; Schaper, 1981 Kamijo et al., 1999; Deichmann and Witherup, 1944). Phenol blocks the cardiac sodium channel subtype, with little effect on sodium channels in skeletal muscle (Zamponi et al., 1994). Following ingestion, typical signs in both humans and animals include agitation, muscle tremors, confusion, incoordination, seizures, coma and respiratory arrest (Kamijo et al., 1999; Schaper, 1981; Deichmann and Witherup, 1944). Kamijo et al. (1999) suggested that phenol causes tremors directly by inducing increased acetylcholine release both in the peripheral nervous system at motor nerve endings and within the central nervous system, and that the resultant reduction in brain acetylcholine levels indirectly suppresses the tremor.

Since phenol is rapidly metabolized, systemic toxicity may be due to the combined actions of the parent compound and its metabolites. Eastmond et al. (1987) investigated the role of phenol in benzene-induced myelotoxicity. Treatment of male B6C3F1 mice with intraperitoneal doses as high as 150 mg phenol/kg twice daily or for 12 days caused no suppression of bone marrow cellularity. Only minimal suppression was observed in mice dosed with up to 100 mg hydroquinone/kg. By contrast, significant, dose-related suppression was seen in mice treated with 75 mg/kg phenol and 75 mg/kg hydroquinone under the same conditions. In further in vitro studies, the authors showed that phenol stimulates the horseradish peroxidase-mediated metabolism of hydroquinone, and they hypothesized that similar stimulation of local myeloperoxidase occurs in the bone marrow. Corti and Snyder (1998) evaluated the effects of benzene metabolites on cultured mouse bone marrow cells by measuring colony forming units of erythroid progenitor cells and found that the cytotoxicity of phenol was much lower than that of other hydroquinone and benzoquinone.

It has been hypothesized that the genotoxicity of phenol on the bone marrow result from the following chain of events: phenol is conjugated in the liver to phenylsulfate, this metabolite reaches the bone marrow via the blood stream and is cleaved there by sulfatases yielding phenol again, which can then be oxidized to hydroquinone and benzoquinone, resulting in damage of cells by direct binding to macromolecules and by formation of oxygen radicals (Greim, 1998).

4.3. Structure-Activity Relationships

No clear structure-toxicity relationships between phenol, substituted phenols and benzenediols, cresols or chlorophenols have been published. While IDLH values were based on "an analogy to cresol" (NIOSH, 1996), Deichmann and Keplinger (1981) stressed the considerable differences in toxicity between phenol and other phenolic compounds including cresols.

1012 **4.4. Other Relevant Information**1013 **4.4.1. Interspecies Variability**

1014 Deichmann et al. (1944) found species differences after repeated inhalation exposure: five of 12
1015 guinea pigs died after 20 exposures at 26-52 ppm phenol for 7 hours/day, 5 days/week, while under the
1016 same conditions, rabbits exposed for 88 days showed no signs of overt poisoning, but some histological
1017 degeneration in target tissues and rats exposed for 74 days to the same concentrations developed neither
1018 clinical signs nor histological alterations. No definitive information on the reasons for these species
1019 differences is available.

1020 In contrast to the 1944 inhalation data, oral lethal doses differed little between species (see Table
1021 3) and were 420 mg/kg for rabbits, 400-650 mg/kg for rats (Deichmann and Witherup, 1944) and 282-427
1022 mg/kg for mice (Horikawa and Okada, 1975; Von Oettingen and Sharples, 1946; Kostoveckii and
1023 Zholdakova, 1971).

1024 Overall the available data are not considered a sufficient basis in itself to reduce the default
1025 interspecies uncertainty factor.

1026 **4.4.2. Intraspecies Variability**

1027 Deichmann and Witherup (1944) found some differences in lethality following an oral dose of
1028 phenol between 10-day old and 5-week-old or adult rats. After oral gavage of 600 mg/kg of 5 % aqueous
1029 phenol, 90 % of 10-day-old rats died, while 30 % of 5-week-old rats and 60 % of adult rats died. After
1030 dermal application of 3000 mg/kg mortality was 65, 25 and 45 %, respectively.

1031 There are no studies indicating that newborn babies and infants are more sensitive to phenol than
1032 adults. The death of a newborn after exposure to 5.2 ppm phenol for 5-6 hours and 1.3 ppm for another
1033 14-15 hours (Heuschkel and Felscher, 1983) could not be attributed to a unique susceptibility because the
1034 newborn had a congenital pulmonary disorder. Moreover, the newborn was additionally exposed to
1035 formaldehyde (24.9 ppm (measured at 2 hours) for 5-6 hours and 41.5 ppm (highest concentration, with
1036 decrease over time) for another 14-15 hours). The formaldehyde may have contributed to death. For
1037 example, in rats exposure at 40 ppm formaldehyde for 6 hours/day, 5 days/week was lethal (Maronpot et
1038 al., 1986).

1039 With respect to metabolism, both reduced and increased capacities for sulfate and glucuronic acid
1040 conjugation, depending on the chemical (no data available for phenol), have been described in newborn
1041 and young infants compared to adults (Brashear et al., 1988, Renwick, 1998). Generally cytochrome P450
1042 activity is reduced in newborn and young infants, which reduces the potential of toxic effects caused by
1043 oxidation and protein binding of quinone metabolites. However, elimination via the kidney is reduced for
1044 many chemicals and drugs (low glomerular filtration rate during the first 8 months; Besunder et al., 1988;
1045 Renwick, 1998) and this could lead to an increased half-life of phenol. Nonetheless, no definitive data for
1046 phenol are available.

1047 Overall, while the available data do not point at a large intraspecies variability, they are not
1048 considered a sufficient basis in itself to reduce the default intraspecies uncertainty factor.

1049

4.4.3. Skin Irritation and Sensitization

1050

Application of concentrated phenol to intact human skin resulted in inflammation and necrosis at the site of application (Spiller et al., 1993; Schaper, 1981). Increased skin rash, mouth sores and throat sores have been reported in 17 of 39 humans following repeated contact with phenol (>1 ppm) in drinking water (Baker et al., 1978).

1051

1052

1053

1054

Phenol showed no sensitizing capacity in a human maximization test using 24 subjects and a 2 % phenol solution (Kligman, 1966), a guinea pig maximization test (Itoh, 1982) and a mouse ear swelling test (Descotes, 1988).

1055

1056

1057 **5. DATA ANALYSIS FOR AEGL-1**1058 **5.1. Human Data Relevant to AEGL-1**

1059 Piotrowski (1971) exposed 8 volunteers by face mask to phenol at 5-25 mg/m³ (1.3-6.5 ppm) for
1060 8 hours, with two breaks of 0.5 hours each after 2.5 and 5.5 hours. The author did neither report any
1061 complaints or adverse effects of phenol exposure nor did the report explicitly state the absence of any
1062 effects. In a toxicokinetic field study (Ogata et al., 1986), 20 workers were exposed to mean workshift
1063 concentrations of 1.22-4.95 ppm. The authors neither reported any health effects of phenol exposure on
1064 the subjects nor did they explicitly state the absence of any adverse effects.

1065 Odor thresholds for phenol were reported as 0.0057-0.036 ppm (odor recognition threshold;
1066 Mukhitov, 1964) and 0.047 ppm (odor detection threshold; Leonardos et al., 1969) and 0.060 ppm (mean
1067 odor detection thresholds from the literature) (AIHA, 1989). Don (1986) reported an odor detection
1068 threshold of 0.010 ppm in an EN13725:2003-comparable study.

1069 Ruth (1986) reported an irritation threshold of 182.4 mg/m³ (47 ppm) in humans. The author
1070 tabulated odor and irritation threshold for a large number of chemicals, but did not indicate the source for
1071 the values.

1072 **5.2. Animal Data Relevant to AEGL-1**

1073 After exposure of rats at 0.5, 5 or 25 ppm for 6 hours/day, 5 days/week for 2 weeks no clinical,
1074 hematological or histopathological effects were found (CMA, 1998; Hoffmann et al., 2001). The authors
1075 reported the following incidences of red nasal discharge (chromadacryorrhea) in the control, 0.5-ppm, 5-
1076 ppm and 25-ppm groups: 0/20, 0/20, 3/20 and 4/20 males and 0/20, 0/20, 1/20 and 0/20 females in the
1077 first week (observations for individual exposures were not provided). However, histopathological
1078 analyses revealed no alterations of the epithelium of the nasal turbinates or other respiratory tract tissues.

1079 Sandage (1961) exposed groups of 10 male rhesus monkeys at 5 ppm phenol continuously for 90
1080 days. Exposure concentrations were determined by a colorimetric assay. No adverse effects were found in
1081 tests assessing hematology, urine parameters, blood chemistry and kidney function as well as in
1082 histological examinations.

1083 Mukhito (1964) reported that continuous exposure of rats at 0.026 or 1.3 ppm for 61 days resulted
1084 in significant motor chronaxy (mostly seen as shortened extensor chronaxy) starting after 30 days, while
1085 no effect was found at 0.0026 ppm. The authors described the rats of the highest exposure group as
1086 "somewhat sluggish and sleepy".

1087 **5.3. Derivation of AEGL-1**

1088 Phenol is not a potent irritant; contact with phenol causes local tissue damage in the respiratory
1089 tract (Deichmann et al., 1944). At concentrations higher than 150 ppm, phenol causes irritation in rats
1090 (Flickinger, 1976) and respiratory depression in mice (De Ceaurriz et al., 1981).

1091 The pharmacokinetic study in humans (Piotrowski, 1971) was not used as key study because it
1092 did not report on health effects. The Sandage (1961) study in monkeys was not used because, apparently,
1093 exposure chambers did not allow observation of the animals during the exposure and histopathology was
1094 performed on the lungs, but not on the upper respiratory tract so that possible upper airway irritation was
1095 not adequately evaluated. Therefore, the study by CMA (1998) (published as Hoffmann et al., 2001) was
1096 the only study fulfilling the SOP requirements for a key study and was therefore used for derivation of
1097 AEGL-1 values although it was a repeated exposure study. After exposure of rats for 6 hours/day, 5
1098 days/week for 2 weeks, no histopathological alterations of the epithelium of the nasal turbinates or other
1099 respiratory tract tissues were found. The observation of red nasal discharge in a few male rats of the 5-
1100 ppm and 25-ppm group was not considered a relevant effect, because no clear dose-response relationship
1101 was found and because predominately males, but not females, showed this effect. Moreover, red nasal
1102 discharge occurs at the plexus antebrachii, which is very prominent in the rat, and in the rat extravasation
1103 of red blood cells visible as red nasal discharge is caused easily not only by locally acting chemicals, but
1104 also by stress, dry air or upper respiratory tract infections. The derivation of AEGL-1 values was based on
1105 an exposure concentration of 25 ppm for 6 hours.

1106 Time scaling using the equation $C^n \times t = k$ was carried out to derive exposure duration-specific
1107 values. Due to lack of a definitive data set, a default value for n of 3 was used in the exponential function
1108 for extrapolation from the experimental period (6 hours) to shorter exposure periods and a default value
1109 for n of 1 was used for extrapolation to longer exposure times. For the 10-minute AEGL-1 the 30-minute
1110 value was applied because the derivation of AEGL values was based on a long experimental exposure
1111 period and no supporting studies using short exposure periods were available for characterizing the
1112 concentration-time-response relationship. The calculations of exposure concentrations scaled to AEGL-1
1113 time periods are shown in Appendix A.

1114 A total uncertainty factor of 3 was applied in derivation of the phenol AEGL-1. An uncertainty
1115 factor of 1 was applied for interspecies variability: the toxicokinetic component of the uncertainty factor
1116 was reduced to 1 because toxic effects are mostly caused by phenol itself without requirement for
1117 metabolism. Moreover, possible local irritation effects depend primarily on the phenol concentration in
1118 inhaled air with little influence of toxicokinetic differences between species. The starting point for AEGL
1119 derivation was a NOAEL from a repeated exposure study and, thus, the effect level was below that
1120 defined for AEGL-1. The human experimental and workplace studies (Piotrowski, 1971; Ogata et al.,
1121 1986) support the derived values. Based on these arguments, the interspecies factor was reduced to 1. An
1122 uncertainty factor of 3 was applied for intraspecies variability because for local effects, the toxicokinetic
1123 differences do not vary considerably within and between species. Therefore the toxicokinetic component
1124 of the uncertainty factor was reduced to 1 while the factor of 3 for the toxicodynamic component,
1125 reflecting a possible variability of the target-tissue response in the human population was retained.

1126 The derived AEGL-1 values are supported by the Sandage (1961) results, in which continuous
1127 inhalation by rhesus monkeys of 5 ppm phenol for 90 days failed to result in any sign of phenol toxicity.
1128 Other supporting studies are the pharmacokinetic study by Piotrowski (1971) which exposed subjects at
1129 up to 6.5 ppm and the study by Ogata et al. (1986) that reported an workplace exposure to up to 4.95
1130 ppm.

1131 The values are listed in Table 5 below.

TABLE 5: AEGL-1 VALUES FOR PHENOL						
	AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
	AEGL-1	19 ppm (73 mg/m ³)	19 ppm (73 mg/m ³)	15 ppm (58 mg/m ³)	9.5 ppm (37 mg/m ³)	6.3 ppm (24 mg/m ³)

A level of distinct odor awareness (LOA) for phenol of 0.25 ppm was derived on the basis of the odor detection threshold from the study of Don (1986) (see Appendix B for LOA derivation). The LOA represents the concentration above which it is predicted that more than half of the exposed population will experience at least a distinct odor intensity, about 10 % of the population will experience a strong odor intensity. The LOA should help chemical emergency responders in assessing the public awareness of the exposure due to odor perception

1141 **6. DATA ANALYSIS FOR AEGL-2**1142 **6.1. Human Data Relevant to AEGL-2**

1143 Inhalation data relevant for the derivation of AEGL-2 values are lacking.

1144 Baker et al. (1978) described an incidence in which residents drank contaminated well water for
1145 several weeks following an accidental spill of phenol. Among persons exposed to >1 mg/l phenol in
1146 contaminated drinking water for several weeks (the authors estimated an intake of phenol of 10-240
1147 mg/d), gastrointestinal symptoms (diarrhea, nausea, burning pain in the mouth and sores in the mouth)
1148 and skin rashes occurred (Baker et al., 1978).1149 Ruth (1986) reported an irritation threshold of 182.4 mg/m³ (47 ppm) in humans. The author
1150 tabulated odor and irritation threshold for a large number of chemicals, but did not indicate the source for
1151 the values.1152 **6.2. Animal Data Relevant to AEGL-2**1153 Flickinger (1976) reported that exposure of 6 female Harlan-Wistar rats for 8 hours at a nominal
1154 phenol aerosol at 900 mg phenol/m³ caused no deaths, but resulted in ocular and nasal irritation as well as
1155 in slight loss of coordination with spasms of the muscle groups within 4 hours and tremors and prostration
1156 (in 1/6 rats) within 8 hours. Rats appeared normal the following day. Since the aerosol concentration was
1157 below the vapor pressure at room temperature, it is likely that the animals were actually exposed to
1158 phenol vapor (or an vapor/aerosol mixture) and it is thus considered adequate to convert the aerosol
1159 concentration of 900 mg/m³ to an equivalent vapor concentration of 234 ppm.1160 After exposure of rats at 211 or 156 ppm phenol for 4 hours, a decreased white blood cell count
1161 was observed (Brondeau et al., 1990). The authors did not explicitly state the absence of other effects.1162 Deichmann et al. (1944) found that 5 of 12 guinea pigs died after 20 exposures at 26-52 ppm
1163 phenol for 7 hours/day, 5 days/week. Rabbits exposed under the same conditions for 88 days developed
1164 degeneration and necrosis in heart, liver and kidney. Rats exposed for 74 days showed neither clinical
1165 signs nor histological alterations. It should be noted that these 1940's experiments did not include
1166 concurrent control groups.1167 In the study of Dalin and Kristoffersson (1974), rats continuously exposed at 26 ppm showed
1168 increased activity about one day after exposure, impaired balance, disordered walking, muscle twitches
1169 and involuntary head movements during the third and fourth days. The symptoms passed off during the
1170 fifth day.1171 **6.3. Derivation of AEGL-2**1172 Due to the lack of more adequate studies, a combination of the Flickinger (1976) and Brondeau et
1173 al. (1990) studies were used as the basis for derivation of AEGL-2 values. Aerosol exposure at 900 mg/m³
1174 phenol (equivalent to 234 ppm phenol vapor) for 8 hours resulted in ocular and nasal irritation, slight loss
1175 of coordination and spasms of the muscle groups at 4 hours into the exposure, after 8 hours additional

1176 symptoms (tremor, incoordination and prostration) were observed in one of the six animals. No deaths
1177 occurred. This study is supported by the study of Brondeau et al. (1990), which did report only slight
1178 effects after exposure at 211 ppm phenol vapor for 4 hours. Although both studies had shortcomings, i.e.,
1179 aerosol exposures, nominal concentrations, and no description of toxic signs in one study, taken together,
1180 they had consistent results. Since the aerosol concentration was below the saturated vapor concentration
1181 at room temperature of about 530 ppm, it can be assumed that much phenol had evaporated from the
1182 aerosol so that a mixed aerosol/vapor exposure can be assumed for the Flickinger (1976) study. A
1183 significant difference between vapor and aerosol inhalation toxicity was considered unlikely because
1184 phenol causes systemic effects, i.e., acute CNS depression, and has a high penetration of dermal and
1185 mucosal surfaces. It was therefore considered adequate to calculate and use the phenol vapor
1186 concentration corresponding to an phenol aerosol concentration of 900 mg/m³. The aerosol concentration
1187 of 900 mg/m³ is equivalent to a vapor concentration of 234 ppm. The derivation of AEGL-2 values was
1188 based on an exposure concentration of 234 ppm for 8 hours.

1189 Time scaling using the equation $C^n \times t = k$ was carried out to derive exposure duration-specific
1190 values. Due to lack of a definitive data set, a default value for n of 3 was used in the exponential function
1191 for extrapolation from the experimental period (8 hours) to shorter exposure periods. For the 10-minute
1192 AEGL-2 the 30-minute value was applied because the derivation of AEGL values was based on a long
1193 experimental exposure period and no supporting studies using short exposure periods were available for
1194 characterizing the concentration-time-response relationship. The calculations of exposure concentrations
1195 scaled to AEGL-2 time periods are shown in Appendix A.

1196 A total uncertainty factor of 10 was used. An uncertainty factor of 3 was applied for interspecies
1197 variability because oral lethal data did not indicate a high variability between species (cf. Section 4.4.1.)
1198 and because application of a higher uncertainty factor would have resulted in AEGL-2 values below
1199 levels that humans can stand without adverse effects (Piotrowski, 1971; Ogata et al., 1986). An
1200 uncertainty factor of 3 was applied for intraspecies variability because the study of Baker et al. (1978)
1201 that investigated health effects in members of 45 families (including children and elderly), that were
1202 exposed to phenol through contaminated drinking water for several weeks, did not indicate that symptom
1203 incidence or symptom severity was higher in any specific subpopulation. Moreover, newborns and infants
1204 were not considered more susceptible than adults because of their smaller metabolic capacity to form
1205 toxic phenol metabolites (cf. Section 4.4.2.). Based on the small data base and study shortcomings, a
1206 modifying factor of 2 was applied.

1207 The calculations of AEGL-2 values are shown in Appendix A and the values are values are listed
1208 in Table 6 below.

1209 **TABLE 6: AEGL-2 VALUES FOR PHENOL**

AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-2	29 ppm (110 mg/m ³)	29 ppm (110 mg/m ³)	23 ppm (90 mg/m ³)	15 ppm (57 mg/m ³)	12 ppm (45 mg/m ³)

1212 Comparison of the AEGL-2 values with the RD₅₀ in mice of 166 ppm (De Ceaurriz et al., 1981)
1213 support the derived values.

1214 **7. DATA ANALYSIS FOR AEGL-3**1215 **7.1. Human Data Relevant to AEGL-3**

1216 Case reports described lethal poisonings in adults after ingestion of doses of about 166-874
 1217 mg/kg (see Table 2) (Kamijo et al., 1999; Bennett et al., 1959; Stajduhar-Caric, 1968; Tanaka et al.,
 1218 1998). In a newborn baby, tissue concentrations between 125 and 202 mg/kg were found after lethal
 1219 dermal phenol exposure (Hinkel and Hintzel, 1968).

1220 The study by Heuschkel and Felscher (1983) reporting death of a newborn baby after exposure to
 1221 5.2 ppm phenol for 5-6 hours and 1.3 ppm for another 14-15 hours will not be used for derivation of
 1222 AEGL-3 values because 1) use of solid sorbent test tubes for measurement did not allow accurate
 1223 determination of the exposure concentration, 2) the concomitant exposure to formaldehyde (24.9 ppm
 1224 (measured at 2 hours) for 5-6 hours and 41.5 ppm (highest concentration, with decrease over time; also
 1225 measured using test tubes) has probably contributed to death and 3) the newborn had a congenital
 1226 pulmonary adaptation disorder, which probably rendered it vulnerable to phenol (and formaldehyde)
 1227 inhalation.

1228 **7.2. Animal Data Relevant to AEGL-3**

1229 Deichmann et al. (1944) found that 5 of 12 guinea pigs died after 20 exposures at 26-52 ppm
 1230 phenol for 7 hours/day, 5 days/week, while under the same conditions rabbits exposed for 88 days
 1231 showed no signs of poisoning, but developed degeneration and necrosis in heart, liver and kidney, and
 1232 rats exposed for 74 days showed neither clinical signs nor histological alterations. These experiments
 1233 lacked untreated control groups.

1234 Oral lethal doses of 420 mg/kg for rabbits and 400-650 mg/kg for rats have been reported
 1235 (Deichmann and Witherup, 1944).

1236 **7.3. Derivation of AEGL-3**

1237 The study by Deichmann et al. (1944) was not used as key study due to the uncertainties in the
 1238 exposure concentration and because deaths were observed only after repeated exposure. Although phenol
 1239 is a high-production-volume chemical, no acceptable vapor or aerosol LC₅₀ studies in experimental
 1240 animals or suitable reports on lethality after inhalation exposure in humans were available for the
 1241 derivation of AEGL-3. Therefore, due to insufficient data and the uncertainties of a route-to-route
 1242 extrapolation, AEGL-3 values were not recommended.

1243 **TABLE 7: AEGL-3 VALUES FOR PHENOL**

AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-3	N.R. ^a	N.R.	N.R.	N.R.	N.R.

1246 ^a not recommended due to insufficient data

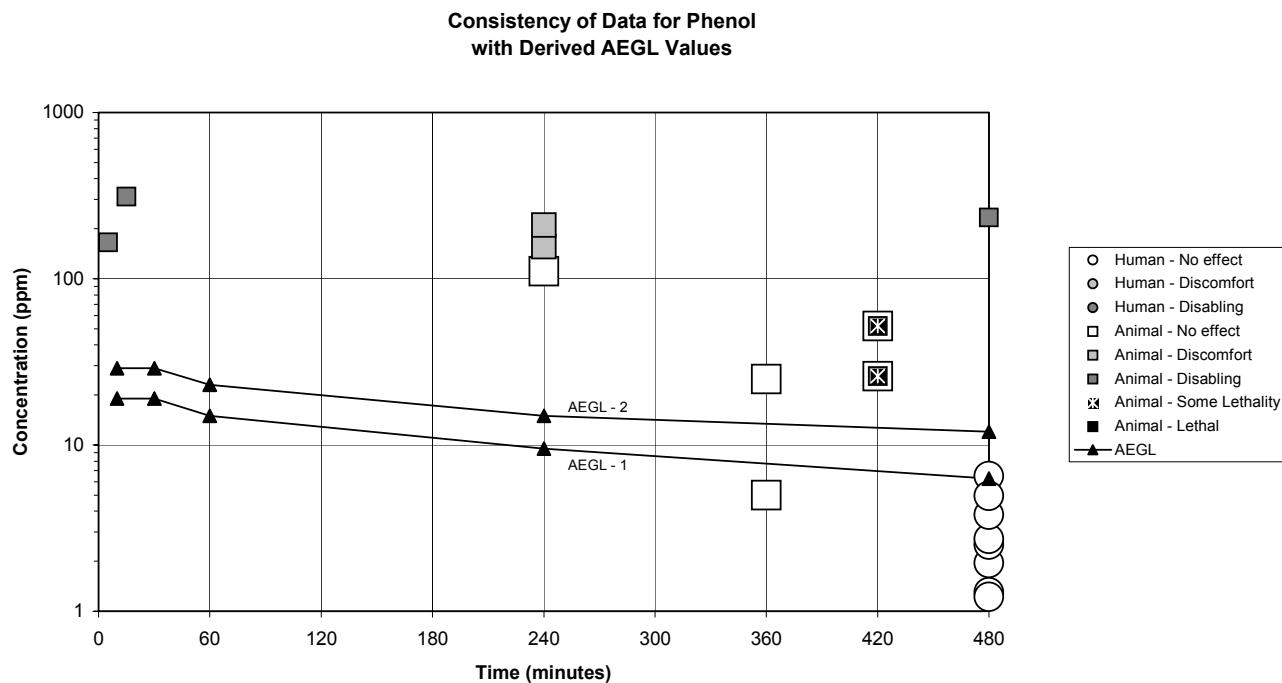
1247 **8. SUMMARY OF AEGLs**1248 **8.1. AEGL Values and Toxicity Endpoints**

1249 The AEGL values for various levels of effects and various time periods are summarized in
 1250 Table 8. They were derived using the following key studies and methods.

1251 The AEGL-1 was based on a repeated inhalation exposure study in rats (CMA, 1998; Hoffmann
 1252 et al., 2001), which found no clinical, hematological or histopathological effects after exposure at 25 ppm
 1253 phenol (highest concentration used) for 6 hours/day, 5 days/week for 2 weeks. A total uncertainty factor
 1254 of 3 was applied. The other exposure duration-specific values were derived by time scaling according to
 1255 the dose-response regression equation $C^n \times t = k$, using the default of $n=3$ for shorter exposure periods and
 1256 $n=1$ for longer exposure periods. For the 10-minute AEGL-1 the 30-minute value was applied.

1257 The AEGL-2 was based on a combination of the Flickinger (1976) and Brondeau et al. (1990)
 1258 studies. Aerosol exposure at 900 mg/m³ phenol (equivalent to 234 ppm phenol vapor) for 8 hours resulted
 1259 in ocular and nasal irritation, slight loss of coordination and spasms of the muscle groups at 4 hours into
 1260 the exposure, after 8 hours additional symptoms (tremor, incoordination and prostration) were observed in
 1261 one of the six animals. No deaths occurred. This study is supported by the study of Brondeau et al.
 1262 (1990), which did report only slight effects after exposure at 211 ppm phenol vapor for 4 hours. The
 1263 derivation of AEGL-2 values was based on an exposure concentration of 234 ppm for 8 hours. A total
 1264 uncertainty factor of 10 was used. A modifying factor of 2 was applied. The other exposure duration-
 1265 specific values were derived by time scaling according to the dose-response regression equation $C^n \times t =$
 1266 k , using the default of $n=3$ for shorter exposure periods. For the 10-minute AEGL-1 the 30-minute value
 1267 was applied.

1268 No relevant studies of adequate quality were available for the derivation of the AEGL-3 value.
 1269 Therefore, due to insufficient data, AEGL-3 values were not recommended.


TABLE 8: SUMMARY/RELATIONSHIP OF AEGL VALUES FOR PHENOL ^a					
Classification	10-Minute	30-Minute	1-Hour	4-Hour	8-Hour
AEGL-1 (Nondisabling)	19 ppm (73 mg/m ³)	19 ppm (73 mg/m ³)	15 ppm (58 mg/m ³)	9.5 ppm (37 mg/m ³)	6.3 ppm (24 mg/m ³)
AEGL-2 (Disabling)	29 ppm (110 mg/m ³)	29 ppm (110 mg/m ³)	23 ppm (90 mg/m ³)	15 ppm (57 mg/m ³)	12 ppm (45 mg/m ³)
AEGL-3 (Lethal)	N.R. ^b	N.R.	N.R.	N.R.	N.R.

1270 ^a Skin contact with molten phenol or concentrated phenol solutions should be avoided; dermal penetration is rapid
 1271 and fatal intoxications have been observed when a small part of the body surface was involved.

1272 ^b not recommended due to insufficient data

1273 All inhalation data are summarized in Figure 1. Data were classified into severity categories
 1274 consistent with the definitions of the AEGL health effects. The category severity definitions are "No

1283 effect"; "Discomfort"; "Disabling"; "Lethal"; "Did not die at a lethal concentration" (at an experimental
1284 concentration in which some of the animals died and some did not, this label refers to the animals which
1285 did not die) and "AEGL". Note that the AEGL values are designated as triangles without an indication to
1286 their level. AEGL-3 values were not recommended. The AEGL-2 values are higher than the AEGL-1
1287 values.

1288 **FIGURE 1: CATEGORICAL REPRESENTATION OF ALL PHENOL INHALATION DATA**

1289 **8.2. Comparison with Other Standards and Criteria**

1290 Standards and guidance levels for workplace and community exposures are listed in Table 9.
 1291 In addition, biological exposure values exist: the ACGIH BEI (biological exposure index) is 250 mg
 1292 phenol per g creatinine in urine at the end of shift (ACGIH, 1996). The German BAT (Biologischer
 1293 Arbeitsstoff-Toleranz-Wert; biological tolerance value) is 300 mg phenol per liter post-shift urine
 1294 (Henschler und Lehnert, 1990).

TABLE 9. EXTANT STANDARDS AND GUIDELINES FOR PHENOL					
Guideline	Exposure Duration				
	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-1	19 ppm	19 ppm	15 ppm	9.5 ppm	6.3 ppm
AEGL-2	29 ppm	29 ppm	23 ppm	15 ppm	12 ppm
AEGL-3	N.R.	N.R.	N.R.	N.R.	N.R.
ERPG-1 (AIHA) ^a			10 ppm		
ERPG-2 (AIHA)			50 ppm		
ERPG-3 (AIHA)			200 ppm		
PEL-TWA (OSHA) ^b					5 ppm
IDLH (NIOSH) ^c		250 ppm			
REL-TWA (NIOSH) ^d					5 ppm [ceiling 15.6 ppm)
TLV-TWA (ACGIH) ^e					5 ppm
MAK (Germany) ^f	The MAK value of 5 ppm and the peak limit of 10 ppm have been withdrawn due to the genotoxic effects of phenol				
MAK Spitzen-begrenzung (Germany) ^g					
MAC (The Netherlands) ^h					2 ppm

^a ERPG (Emergency Response Planning Guidelines, American Industrial Hygiene Association) (AIHA, 1991) The ERPG-1 is the maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to one hour without experiencing other than mild, transient adverse health effects or without perceiving a clearly defined objectionable odor. The ERPG-1 for phenol is based on human data in which no adverse effects were observed after exposure at 6.5 ppm for 8 hours (Ruth, 1986). Also monkeys, rats and mice exposed at 5 ppm continuously for 90 days were not significantly affected (Sandage, 1964). The ERPG-2 is the maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to one hour without experiencing or developing irreversible or other serious health effects or symptoms that could impair an individual's ability to take protective action. The ERPG-2 for phenol is based on the observation that a 1-hour exposure of rats at 312 ppm produced only signs of lacrimation (Flickinger, 1976) and on an occupational study that reported eye, nose and throat irritation after intermittent exposure at 48 ppm phenol and 8 ppm formaldehyde (ACGIH, 1996). The ERPG-3 is the maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to one hour without experiencing or developing life-threatening health effects. The ERPG-3 for phenol is based on the observation that exposure of rats at 235 ppm for 4 hours resulted in ocular and nasal irritation, slight loss of coordination and muscular spasms, but no deaths (Flickinger, 1976).

1333 ^b **OSHA PEL-TWA (Occupational Health and Safety Administration, Permissible Exposure Limits - Time**
1334 **Weighted Average) (OSHA, 1989)**
1335 is defined analogous to the ACGIH-TLV-TWA, but is for exposures of no more than 10 hours/day, 40
1336 hours/week.

1337 ^c **IDLH (Immediately Dangerous to Life and Health, National Institute of Occupational Safety and Health)**
1338 (NIOSH, 1996), is based on acute inhalation toxicity data in animals (Flickinger et al., 1976) and an
1339 analogy to cresol, which has a revised IDLH of 250 ppm.

1340 ^d **NIOSH REL-TWA (National Institute of Occupational Safety and Health, Recommended Exposure Limits**
1341 **- Time Weighted Average) (NIOSH, 1992)**, is defined analogous to the ACGIH-TLV-TWA.

1342 ^e **ACGIH TLV-TWA (American Conference of Governmental Industrial Hygienists, Threshold Limit Value -**
1343 **Time Weighted Average) (ACGIH, 1996)**
1344 The time-weighted average concentration for a normal 8-hour workday and a 40-hour workweek, to which
1345 nearly all workers may be repeatedly exposed, day after day, without adverse effect.

1346 ^f **MAK (Maximale Arbeitsplatzkonzentration [Maximum Workplace Concentration], Deutsche Forschungs-**
1347 **gemeinschaft [German Research Association], Germany) (Greim, 1998)**
1348 is defined analogous to the ACGIH-TLV-TWA.

1349 ^g **MAK Spitzenbegrenzung (Kategorie I) [Peak Limit Category I] (Greim, 1998)**
1350 constitutes the maximum average concentration to which workers can be exposed for a period up to 5
1351 minutes, with no more than 8 exposure periods per work shift; total exposure may not exceed 8-hour
1352 MAK.

1353 ^h **MAC ([Maximum Workplace Concentration], Dutch Expert Committee for Occupational Standards, The**
1354 **Netherlands) (MSZW, 1999)**
1355 is defined analogous to the ACGIH-TLV-TWA.

1356 8.3. Data Adequacy and Research Needs

1357 Definitive studies assessing health effects of phenol in humans after a single inhalation exposure
1358 are not available. Air odor threshold determinations have been published. Older inhalation studies in
1359 animals were often compromised by uncertain quantitation of exposure concentrations. Recent studies in
1360 laboratory animals, however, utilized accurate and reliable methods for characterizing exposure
1361 concentrations, however often exposure concentrations were used that did not lead to any adverse effects.
1362 Therefore, AEGL-1 values were based on a repeated exposure study in rats, in which no effects were
1363 found at the highest exposure concentration tested. AEGL-2 values were derived on the basis of two rat
1364 inhalation studies in which after a single exposure incoordination and prostration, but no death, was
1365 observed, although the number of animals used in the study was very small and data presentation was
1366 incomplete. For derivation of AEGL-3 values, studies reporting LC₅₀ values in animals were lacking.
1367 Therefore, no AEGL-3 values were recommended.

1368 Single inhalation exposure studies that measure duration and concentration dependent lethality in
1369 animals would allow for derivation of an AEGL-3. Quantitative data on the ocular and upper respiratory
1370 tract irritant potential of phenol in air for humans are necessary to more carefully assign an AEGL-1.

1371 **9. REFERENCES**

1372 ACGIH, American Conference of Governmental Industrial Hygienists, 1996. Phenol. Documentation of the
1373 Threshold Limit Values and Biological Exposure Indices. Cincinnati, OH, USA, pp. 1204-1208 and BEI-155-158.

1374 AIHA, American Industrial Hygiene Association, 1989. Odor thresholds for chemicals with established
1375 occupational health standards. American Industrial Hygiene Association, Fairfax, VA, USA, 1989.

1376 AIHA, American Industrial Hygiene Association, 1991. Emergency Response Planning Guidelines, Phenol. AIHA,
1377 Akron, OH, USA.

1378 Amoore, J.E. and E. Hautala, 1983. Odor as an aid to chemical safety: odor thresholds compared with threshold
1379 limit values and volatilities for 214 industrial chemicals in air and water dilution. *J. Appl. Toxicol.* 3, 272-290.

1380 ATSDR, Agency for Toxic Substances and Disease Registry, 1998. Toxicological Profile for Phenol. Update, U.S.
1381 Department of Health and Human Services; Public Health Service.

1382 ATSDR, Agency for Toxic Substances and Disease Registry, 1999. Toxicological Profile for Formaldehyde. U.S.
1383 Department of Health and Human Services; Public Health Service.

1384 Baker, E.L., P.J. Landrigan, P.E. Bertozzi, P.H. Field, B.J. Basteyns and H.G. Skinner, 1978. Phenol poisoning due
1385 to contaminated drinking water. *Arch. Environ. Health* 33, 89-94.

1386 Baranowsky-Dutkiewicz, B., 1981. Skin absorption of phenol from aqueous solutions in men. *Int. Arch. Occup.
1387 Environ. Health* 49, 99-104.

1388 Bennett, I.L., D.F. James and A. Golden, 1950. Severe acidosis due to phenol poisoning - Report of two cases. *Ann.
1389 Intern. Med.* 32, 324-327, cited in NIOSH, 1976.

1390 Bentur, Y., O. Shoshani, A. Tabak, A. Bin-Nun, Y. Ramon, Y. Ulman, Y. Berger, T Nachlieli, and Y. J. Peled,
1391 1998. Prolonged elimination half-life of phenol after dermal exposure. *J. Toxicol. Clin. Toxicol.* 36, 707-711.

1392 Besunder, J.B., M.D. Reed and J.L. Blumer, 1988. Principles of drug biotransposition in the neonate. A critical
1393 evaluation of the pharmacokinetic-pharmacodynamic interface (part I). *Clin. Pharmacokinet.* 14, 189-216, cited in
1394 NLM PubMed database at <http://www.ncbi.nlm.nih.gov>.

1395 Boutwell, R.K. and D.K. Bosch, 1959. The tumor promoting action of phenol and related compounds for mouse
1396 skin. *Cancer Res.* 19, 413-424.

1397 Brashear, W.T. B.R. Kuhnert and R. Wei, 1988. Maternal and neonatal urinary excretion of sulfate and glucuronide
1398 ritodrine conjugates. *Clin. Pharmacol. Ther.* 44, 634-641, cited in NLM PubMed database at
1399 <http://www.ncbi.nlm.nih.gov>.

1400 Brondeau, M.T., P. Bonnet, J.P. Guenier, P. Simon and J. de Ceaurriz, 1990. Adrenal-dependent leucopenia after
1401 short-term exposure to various airborne irritants in rats. *J. Appl. Toxicol.* 10, 83-86.

1402 BUA, Beratergremium für umweltrelevante Altstoffe, 1998. Phenol. BUA-Stoffbericht 209. Hirzel Verlag,
1403 Stuttgart, Germany.

1404 Capel, I.D., M.R. French, P. Milburn, R.L. Smith and R.T. Williams, 1972. The fate of [14C]phenol in various
1405 species. *Xenobiotica* 2, 25-34.

1406 Cassidy, M.K. and J.B. Houston, 1984. In vivo capacity of hepatic and extrahepatic enzymes to conjugate phenol.
1407 *Drug Metab. Dispos.* 12, 619-624.

1408 Chen, H. and D.A. Eastmond, 1995. Synergistic increase in chromosomal breakage within the euchromatin induce
1409 by an interaction of the benzene metabolites phenol and hydroquinone in mice. *Carcinogenesis* 16, 1963-1969.

1410 CMA, Chemical Manufacturers Association, 1998. Two-week (ten day) inhalation toxicity and two-week recovery
1411 study of phenol vapor in the rat. Huntingdon Life Sciences Study No. 96-6107, CMA Reference No. PHL-4.0-Inhal-
1412 HLS. Chemical Manufacturers Association, Phenol Panel, Arlington, VA 22209, USA.

1413 Conning, D.M. and M.J. Hayes, 1970. The dermal toxicity of phenol: an investigation of the most effective first-aid
1414 measures. *Br. J. Ind. Med.* 27, 155-159.

1415 Corti, M. and C.A. Snyder, 1998. Gender- and age- specific cytotoxic susceptibility to benzene metabolites in vitro.
1416 *Toxicol Sci.* 41, 42-48.

1417 Dalin, N.-M. and R. Kristoffersson, 1974. Physiological effects of a sublethal concentration of inhaled phenol on
1418 the rat. *Ann. Zool. Fennici* 11, 193-199.

1419 De Ceaurriz, J.C., J.C. Micillino, P. Bonnet and J.P. Guinier, 1981. Sensory irritation caused by various industrial
1420 airborne chemicals. *Toxicol. Lett.* 9, 137-144.

1421 Deichmann, W. B. K.V. Kitzmiller and S. Witherup, 1944. Phenol studies. Part VII. Chronic phenol poisoning with
1422 special reference to the effects upon experimental animals of the inhalation of phenol vapor. *Am. J. Clin. Pathol.* 14,
1423 273-277.

1424 Deichmann W.B. and M. L. Keplinger, 1981. Phenols and Phenolic Compounds. In Clayton, G. D.; Clayton, F. E
1425 (Eds.), *Patty's Industrial Hygiene and Toxicology*, Vol. 2A, Toxicology, John Wiley & Sons, New York, pp.
1426 2567-2625.

1427 Deichmann W.B. and S. Witherup, 1944. Phenol studies. Part VI. The acute and comparative toxicity of phenol and
1428 o-, m- and p-cresols for experimental animals. *J. Pharmacol. Exp. Ther.* 80, 233-240.

1429 Descotes, J., 1988. Identification of contact allergens: the mouse ear sensitization assay. *J. Toxicol. - Cut. Ocular*
1430 *Toxicol.* 7, 263-272, cited in BUA, 1999.

1431 DHHS, Department of Health and Human Services, 2004 . Toxmap. Specialized Information Services. National
1432 Institutes of Health, DHHS. Available on the internet at <http://toxmap.nlm.nih.gov/toxmap/main/index.jsp>.
1433 Accessed November 2004.

1434 Don, J.A., 1986. Odour measurement and control. *Filtration and Separation* 23, 166-169.

1435 Dosemeci, M., A. Blair, P.A. Stewart, J. Chandler and A. Trush, 1991. Mortality among industrial workers exposed
1436 to phenol. *Epidemiol.* 2, 188-193, cited in Greim, 1998.

1437 Dugan, P.R., 1972. *Biochemical ecology of water pollution*. Plenum Press, New York, London, pp. 61-71, 149-154,
1438 cited in BUA, 1998.

1439 Eastmond, D.A., M.T. Smith and R.D. Irons, 1987. An interaction of benzene metabolites reproduces the
1440 myelotoxicity observed with benzene exposure. *Toxicol. Appl. Pharmacol.* 91, 85-95.

1441 ECB, European Chemicals Bureau, 2002. Risk Assessment Report. Phenol. Draft (environmental part only) dated
1442 12.11.2002. European Chemicals Bureau, Joint Research Centre, Ispra, Italy.

1443 EPA, Environmental Protection Agency, 1988. Recommendations and Documentation of Biological Values for Use
1444 in Risk Assessment. U.S. Environmental Protection Agency, Washington, DC, 1988.

1445 EPA, Environmental Protection Agency, 2002. Toxicological Review of Phenol. In Support of Summary
1446 Information on the Integrated Risk Information System (IRIS). EPA/635/R-02/006. U.S. Environmental Protection
1447 Agency, Washington, DC, 2002. Available on the internet at <http://www.epa.gov/iris/>.

1448 Flickinger, C.W., 1976. The benzenediols: catechol, resorcinol and hydroquinone - a review of the industrial
1449 toxicology and current industrial exposure limits. *Am. Ind. Hyg. Assoc. J.* 37, 596-606.

1450 Glatt, H, R. Padykula, G.A. Berchtold, G. Ludewig, K.L. Platt, J. Klein and F. Oesch, 1989. Multiple activation
1451 pathways of benzene leading to products with varying genotoxic characteristics. *Environ. Health Perspect.* 82, 81-
1452 89, cited in Greim, 1998.

1453 Greim, H. 1998. Phenol. *Gesundheitsschädliche Arbeitsstoffe, Toxikologisch-arbeitsmedizinische Begründungen*
1454 von MAK-Werten, Loseblattsammlung, 27. Lfg., DFG, Deutsche Forschungsgemeinschaft, Wiley-VCH Verlag,
1455 Weinheim, Germany, 41 p.

1456 Haworth, S., T. Lawlor, K. Mortelmans, W. Speck and E. Zeiger, 1983. *Salmonella* mutagenicity test results for 250
1457 chemicals. *Environ. Mutagen* 5, Suppl. 1, 3-42.

1458 Henschler, D. and G. Lehnert, 1990. *Biologische Arbeitsstoff-Toleranz-Werte (BAT-Werte) und*
1459 *Expositionäquivalente für krebserzeugende Arbeitsstoffe (EKA). Arbeitsmedizinisch-toxikologische*
1460 *Begründungen, Band 1, 5. Lieferung.* Deutsche Forschungsgemeinschaft, VCH Verlag, Weinheim.

1461 Heuschkel, H.J. and D. Felscher, 1983. Iatrogene Desinfektionsmittel- [Formalin- (Formaldehyd-, Methanol-),
1462 Phenol-] Inhalation während der Inkubatorpflege und CPAP1-Atemhilfe eines Neugeborenen mit Atemnotsyndrom.
1463 *Z. ärztl. Fortbild.* 77, 88-91.

1464 Hinkel, G.K. and H.-W. Kintzel, 1968. Phenolvergiftungen bei Neugeborenen durch kutane Resorption. *Das*
1465 *Deutsche Gesundheitswesen* 23, 2420-2422.

1466 Hoffmann, G.M., B.J. Dunn, C.R. Morris, J.H. Butala, S.S. Dimond, R. Gingell and J.M. Waechter, Jr., 2001. Two-
1467 week (ten-day) inhalation toxicity and two-week recovery study of phenol vapor in the rat. *Int. J. Toxicol.* 20, 45-
1468 52.

1469 Horch, R., G. Spilker and G.B. Stark, 1994. Phenol burns and intoxications. *Burns* 20, 45-50.

1470 Horikawa, E. and T. Okada, 1975. Experimental study on acute toxicity of phenol camphor. *Shika Gakuho (j.*
1471 *Dentistry)* 75, 934-939, cited in BUA, 1998.

1472 Hughes, M.F. and L.L. Hall, 1995. Disposition of phenol in rat after oral, dermal, intravenous and intratracheal
1473 administration. *Xenobiotica* 25, 873-883, cited in ATSDR, 1998.

1474 HSDB, Hazardous Substances Databank. Accessed November 2004. NLM, U.S. National Library of Medicine.
1475 Available on the internet at <http://toxnet.nlm.nih.gov>.

1476 IARC, International Agency for Research on Cancer, 1999. Phenol. In IARC Monographs on the Evaluation of
1477 Carcinogenic Risks to Humans. Vol. 71. Re-Evaluation of some Organic Chemicals, Hydrazine and Hydrogen
1478 Peroxide (Part 1-3). WHO, World Health Organization, Geneva, Switzerland, pp. 749-768.

1479 Itoh, M., 1982. Sensitization potency of some phenolic compounds - with special emphasis on the relationship
1480 between chemical structure and allergenicity. *J. Dermatol.* 9, 223-233, cited in BUA, 1998.

1481 IUCLID (International Uniform Chemical Information Database) CD-ROM (1996). Phenol. European Commission,
1482 European Chemicals Bureau, Joint Research Centre, Ispra, Italy.

1483 Ivett, J.L., B.M. Brown, C. Rodgers, B.E. Anderson, M.A. Resnick, and E. Zeiger, 1989. Chromosomal aberration
1484 and sister chromatid exchange tests in Chinese hamster ovary cells in vitro IV: Results for 15 chemicals. *Environ.*
1485 *Mol. Mutagen.* 14. 165-187; cited in EPA (2002).

1486 Jones-Price, C., T.A. Ledoux, J.R. Reel, P.W. Fisher, L. Langhoff-Paschke and M.C. Marr, 1983a. Final Report.
1487 Teratologic evaluation of phenol in CD rats. Laboratory study 10.07.1980-19.12.1980. Research Triangle Institute,
1488 Research Triangle Park, NC, NTIS PB 83-247726.

1489 Jones-Price, C., T.A. Ledoux, J.R. Reel, L. Langhoff-Paschke, M.C. Marr and C.A. Kimmel, 1983b. Teratologic
1490 evaluation of phenol in CD-1 mice. Laboratory study 18.09.1980-12.01.1981. Research Triangle Institute, Research
1491 Triangle Park, NC, NTIS PB 85-104461.

1492 Kamijo, Y., K. Soma, M. Fukuda, Y. Asari and T. Ohwada, 1999. Rabbit syndrome following phenol ingestion. *J.*
1493 *Toxicol. Clin. Toxicol.* 37, 509-511.

1494 Kauppinen, T.P., T.J. Partanen, M.M. Nurminen, J.I. Nickels, S.G. Hernberg, T.R. Hakulinen, E.I. Pukkala and E.T.
1495 Savonen, 1986. Respiratory cancers and chemical exposures in the wood industry a nested case-control study. *Br. J.*
1496 *Ind. Med.* 43, 84-90.

1497 Kenyon, E.M., M.E. Seeley, D. Janszen and M.A. Medinsky, 1995. Dose-, route-, and sex-dependent urinary
1498 excretion of phenol metabolites in B6C3F1 mice. *J. Toxicol. Environ. Health.* 44, 219-233.

1499 Kligman, A.M., 1966. The identification of contact allergens by human assay. Part III. The maximization test: a
1500 procedure for screening and rating contact sensitizers. *J. Invest. Dermatol.* 47, 393-409, cited in BUA, 1998.

1501 Koster, H.J., I. Halsema, E. Scholtens, M. Knippers and G.J. Mulder, 1981. Dose-dependent shifts in the sulfation
1502 and glucuronidation of phenolic compounds in the rat in vivo and in isolated hepatocytes. *Biochem. Pharmacol.* 30,
1503 2569-2575.

1504 Kostoveckii, Y.A. and Z. Zholdakova, 1971. [On hygienic norm-setting in waterbodies] (in Russian). *Gig. I.*
1505 *Sanit.* 7, 7-10, cited in WHO, 1994.

1506 Liao, T.F. and F.W. Oehme, 1981. Tissue distribution and plasma protein binding of [¹⁴C] phenol in rats. *Toxicol.*
1507 *Appl. Pharmacol.* 57, 220-225, cited in ATSDR, 1998.

1508 Leonardos, G., D. Kendall, N. Barnard, 1969. Odor threshold determinations of 53 odorant chemicals. *J. Air*
1509 *Pollution Control Assoc.* 19, 991-995.

1510 Lewin, L., 1992. Karbolsäure. In "Gifte und Vergiftungen", 6. Ed., Karl F. Haug Verlag, Heidelberg, Germany,
1511 1992, pp. 350-357.

1512 Lewin, J.F. and W.T. Cleary, 1982. An accidental death caused by the absorption of phenol through skin. A case
1513 report. *Forensic Sci. Int.* 19, 177-179.

1514 Maronpot, R.R., R.A. Miller, W.J. Clarke, R.B. Westerberg, J.R. Decker and O.R. Moss, 1986. Toxicity of
1515 formaldehyde vapor in B6C3F1 mice exposed for 13 weeks. *Toxicol.* 41, 253-266, cited in ATSDR, 1999.

1516 Marazzini, A., L. Chelotti, I. Barrai, N. Loprieno and R. Barale, 1994. In vivo genotoxic interactions among three
1517 phenolic benzene metabolites. *Mutation Res.* 341, 29-46.

1518 McGregor, D.B., A. Brown, P. Cattanach, I. Edwards, D. McBride, C. Riach, and W.J. Caspary, 1988a. Responses
1519 of the L5178Y TK+/TK- mouse lymphoma cell forward mutation assay. 3. 72 Coded Chemicals. *Environ. Mol.*
1520 *Mutagen.* 12, 85-154; cited in EPA (2002).

1521 McGregor, D.B., C.G. Riach, A. Brown, I. Edwards, D. Reynolds, K. West, and S. Willington, 1988b. Reactivity of
1522 catecholamines and related substances in the mouse lymphoma L5178Y cell assay. *Environ. Molec. Mutagen.* 11,
1523 523-544; cited in EPA (2002).

1524 Miller, B.M., E. Pujadas and E. Gocke. 1995. Evaluation of the micronucleus test in vitro using Chinese hamster
1525 cells: results of four chemicals weakly positive in the in vivo micronucleus test. *Environ. Mol. Mutagen.* 26,
1526 240-247; cited in EPA (2002).

1527 Morimoto, K. and S. Wolff, 1980. Increase of sister chromatid exchange and perturbations of cell division kinetics
1528 in cultured human lymphocytes. *Cancer Res.* 40, 1189-1193, cited in WHO, 1994.

1529 MSZW, Ministerie van Sociale Zaken en Werkgelegenheid, 1999. Nationale MAC-lijst 2000. Sdu Vitgeers, Den
1530 Haag, 1999.

1531 Mukhitov, B., 1964. The effect of low phenol concentrations on the organism of man or animals and their hygienic
1532 evaluation. In Levine, B.S. (Ed.), USSR Literature on Air Pollution and Related Occupational Diseases. Vol. 9;
1533 Catalogue No. TT 64-11574. U.S. Department of Commerce, Springfield, VA, pp. 195-198.

1534 Narotsky, M.G. and R.J. Kavlock, 1995. A multidisciplinary approach to toxicological screening: II. Developmental
1535 toxicity. *J. Toxicol. Environ. Health* 45, 145-171.

1536 NCI, National Cancer Institute, 1980. Bioassay of phenol for possible carcinogenicity. U.S. National Cancer
1537 Institute, Bethesda, MD. U.S. Department of Health and Human Services. Technical Report Series No. NCI-CG-
1538 TR-203, cited in BUA, 1998.

1539 NIOSH, National Institute of Occupational Safety and Health, 1976. Criteria for a recommended standard....
1540 Occupational exposure to phenol. HEW Publication No. (NIOSH) 76-196. U.S. Department of Health, Education
1541 and Welfare, Public Health Service, Center for Disease Control, National Institute of Occupational Safety and
1542 Health.

1543 Notariani, L.J., H.G. Oldham and P.N. Bennett, 1987. Passage of paracetamol into breast milk and its subsequent
1544 metabolism by the neonate. *Br. J. Clin. Pharmacol.* 24, 63-67, cited in NLM PubMed database at
1545 <http://www.ncbi.nlm.nih.gov>.

1546 Ogata, M., Y. Yamasaki and T. Kawai, 1986. Significance of urinary phenyl sulfate and phenyl glucuronide as
1547 indices of exposure to phenol. *Int. Arch. Occup. Environ. Health* 58, 197-202.

1548 Ohtsuji, H. and M. Ikeda, 1972. Quantitative relationship between atmospheric phenol vapour and phenol in the
1549 urine of workers in bakelite factories. *Br. J. Ind. Med.* 29, 70-73.

1550 OSHA, Occupational Health and Safety Administration, 1989. Code of Federal Regulations 29, Part 1910,
1551 1910.1000.

1552 Piotrowski, J.K., 1971. Evaluation of exposure to phenol: absorption of phenol vapour in the lungs and through the
1553 skin and excretion of phenol in urine. *Br. J. Ind. Med.* 28, 172-178.

1554 Powley, M.W. and G.P. Carlson, 2001. Cytochrome P450 isozymes involved in the metabolism of phenol, a
1555 benzene metabolite. *Toxicol. Lett.* 125, 117-123.

1556 Renwick, A.G., 1998. Toxicokinetics in infants and children in relation to the ADI and TDI. *Food Additives
1557 Contaminants* 15, 17-35.

1558 Ruth, J.H., 1986. Odor thresholds and irritation levels of several chemical substances: a review. *Am. Ind. Hyg.
1559 Assoc. J.* 47, A142-A151.

1560 Ryan B.M., R. Selby, R. Gingell, J. M. Waechter Jr, J.H. Butala, S.S. Dimond, B.J. Dunn, R. House, and R.
1561 Morrissey, 2001. Two-generation reproduction study and immunotoxicity screen in rats dosed with phenol via the
1562 drinking water. *Int. J. Toxicol.* 20, 121-142.

1563 Sandage C., 1961. Tolerance criteria for continuous inhalation exposure to toxic material. Part I. Effects on animals
1564 of 90-day exposure to phenol, CCl_4 and a mixture of indole, skatole, H_2S and methyl mercaptan. U.S. Air Force
1565 Systems Command, Aeronautical Systems Division, Technical Report 61-519, NTIS, Springfield, VA, Publication
1566 AD-268783.

1567 Schaper, K.-A., 1981. Akute Phenolintoxikation - ein klinischer Erfahrungsbericht. *Anaesthesiol. Reanimat.* 6, 73-
1568 79.

1569 Shamy, M.Y., R.M. el Gazzar, M.A. el Sayed and A.M. Attia, 1994. Study of some biochemical changes among
1570 workers occupationally exposed to phenol, alone or in combination with other organic solvents. *Ind. Health* 32, 207-
1571 214.

1572 Shelby, M.D., G.L. Exrexson, G.J. Hook, and R.R. Tice, 1993. Evaluation of a three-exposure mouse bone marrow
1573 micronucleus protocol: results with 49 chemicals. *Environ. Mol. Mutagen.* 21, 160-179, cited in Greim, 1998.

1574 Sittig, M., 1980. Phenol. In Priority toxic pollutants - health impacts and allowable limits. *Environ. Health Series*
1575 No. 1, Noyes Data Corp., Park Ridge, N.J., pp. 300-304.

1576 Spiller, H.A., D.A. Quadrani-Kushner and P. Cleveland, 1993. A five year evaluation of acute exposures to phenol
1577 disinfectant (26%). *J. Toxicol. Clin. Toxicol.* 31, 307-313.

1578 Stajduhar-Caric, Z., 1968. Acute phenol poisoning. *J. Forensic Med.* 15, 41-42, cited in NIOSH, 1976.
1579 Tanaka, T., K. Kasai, T. Kita and N. Tanaka, 1998. Distribution of phenol in a fatal poisoning case determined by
1580 gas chromatography/mass spectrometry. *J. Foren. Sci.* 43, 1086-1088.

1581 TNO, 1985. Standaardisatie von olfactometers. TNO report No. 85-03661. TNO, Apeldoorn, the Netherlands.

1582 Tunek, A., T. Olofsson and M. Berlin, 1981. Toxic effects of benzene and benzene metabolites on granulopoietic
1583 stemm cells and bone marrow cellularity in mice. *Toxicol. Appl. Pharmacol.* 59, 149-156, cited in Greim, 1998.

1584 Von Oettingen, W.F. and N.E. Sharples, 1946. The toxicity and toxic manifestation of 2,2-bis-(p-chlorophenyl)-
1585 1,1,1-trichloroethane (DDT) as influenced by chemical changes in the molecule. *J. Pharmacol. Exp. Ther.* 88, 400-
1586 413, cited in WHO, 1994.

1587 Weast, R.C. (Ed.), 1984. CRC Handbook of Chemistry and Physics. 64th Ed., CRC Press Inc., Boca Raton, FL,
1588 1983-1984.

1589 WHO, World Health Organization, 1994. Phenol, Environmental Health Criteria 161. IPCS, International
1590 Programme on Chemical Safety, World Health Organization, Geneva, Switzerland.

1591 Yager, J.W., D.A. Eastmond, M.L. Robertson, W.M. Paradisn and M.T. Smith, 1990. Characterization of
1592 micronuclei induced in human lymphocytes by benzene metabolites. *Cancer Res.* 50, 393-399.

1593 Zamponi, G.W., D. Ing and R.J. French, 1994. Arrhythmias during phenol therapies: a specific action on cardiac
1594 sodium channels? *Circulation* 89, 914, cited in ATSDR, 1998.

1595

APPENDIX A

1596

Time Scaling Calculations for AEGLs

1597 **AEGL-1**

1598 Key study: CMA, (1998); Hoffmann et al. (2001)

1599 Toxicity endpoint: Exposure of rats at 0.5, 5 or 25 ppm for 6 hours/day, 5 days/week for 2 weeks did
 1600 not cause clinical, hematological or histopathological effects. A concentration of
 1601 25 ppm for 6 hours was used as the basis for derivation of AEGL-3 values.

1602 Scaling: $C^3 \times t = k$ for extrapolation to 4 hours, 1 hours and 30 minutes
 1603 $k = 25^3 \text{ ppm}^3 \times 6 \text{ h} = 93750 \text{ ppm}^3 \text{ h}$
 1604 $C^1 \times t = k$ for extrapolation to 8 hours
 1605 $k = 25^1 \text{ ppm} \times 6 \text{ h} = 150 \text{ ppm h}$
 1606 The AEGL-2 for 10 minutes was set at the same concentration as the 30-minute
 1607 value.

1608 Uncertainty factors: Combined uncertainty factor of 3
 1609 1 for interspecies variability
 1610 3 for intraspecies variability

1611 Calculations:

1612 10-minute AEGL-1 $10\text{-min AEGL-1} = 19 \text{ ppm (73 mg/m}^3\text{)}$

1613 30-minute AEGL-1 $C^3 \times 0.5 \text{ h} = 93750 \text{ ppm}^3 \text{ h}$
 1614 $C = 57.24 \text{ ppm}$
 1615 $30\text{-min AEGL-1} = 57.24 \text{ ppm/3} = 19 \text{ ppm (73 mg/m}^3\text{)}$

1616 1-hour AEGL-1 $C^3 \times 1 \text{ h} = 93750 \text{ ppm}^3 \text{ h}$
 1617 $C = 45.43 \text{ ppm}$
 1618 $1\text{-hour AEGL-1} = 45.43 \text{ ppm/3} = 15 \text{ ppm (58 mg/m}^3\text{)}$

1619 4-hour AEGL-1 $C^3 \times 4 \text{ h} = 93750 \text{ ppm}^3 \text{ h}$
 1620 $C = 28.62 \text{ ppm}$
 1621 $4\text{-hour AEGL-1} = 28.62 \text{ ppm/3} = 9.5 \text{ ppm (37 mg/m}^3\text{)}$

1622 8-hour AEGL-1 $C^1 \times 8 \text{ h} = 150 \text{ ppm h}$
 1623 $C = 18.75 \text{ ppm}$
 1624 $8\text{-hour AEGL-1} = 18.75 \text{ ppm/3} = 6.3 \text{ ppm (24 mg/m}^3\text{)}$

1625

AEGL-2

1626

Key study: Flickinger (1976) and Brondeau et al. (1990)

1627

Toxicity endpoint: Aerosol exposure at 900 mg/m³ phenol (equivalent to 234 ppm phenol vapor) for 8 hours resulted in ocular and nasal irritation, slight loss of coordination and spasms of the muscle groups at 4 hours into the exposure, after 8 hours additional symptoms (tremor, incoordination and prostration) were observed in one of the six animals. No deaths occurred. This study is supported by the study of Brondeau et al. (1990), which did report only slight effects after exposure at 211 ppm phenol vapor for 4 hours. The derivation of AEGL-2 values was based on an exposure concentration of 234 ppm for 8 hours

1635

Scaling: $C^3 \times t = k$ for extrapolation to 4 hours, 1 hours and 30 minutes

1636

$$k = 234^3 \text{ ppm} \times 8 \text{ h} = 1.025 \times 10^8 \text{ ppm}^3 \text{ h}$$

1637

The AEGL-3 for 10 minutes was set at the same concentration as the 30-minute value.

1638

1639

Uncertainty/ Combined uncertainty factor: 10

1640

modifying factors: 3 for interspecies variability

1641

3 for intraspecies variability

1642

Modifying factor: 2

1643

Calculations:

1644

10-minute AEGL-3 = 29 ppm (110 mg/m³)

1645

30-minute AEGL-3 = $C^3 \times 0.5 \text{ h} = 1.025 \times 10^8 \text{ ppm}^3 \text{ h}$

1646

$$C = 589.64 \text{ ppm}$$

1647

$$30\text{-min AEGL-3} = 589.64 \text{ ppm}/20 = 29 \text{ ppm (110 mg/m}^3\text{)}$$

1648

1-hour AEGL-3 = $C^3 \times 1 \text{ h} = 1.025 \times 10^8 \text{ ppm}^3 \text{ h}$

1649

$$C = 468.00 \text{ ppm}$$

1650

$$1\text{-hour AEGL-3} = 468.00 \text{ ppm}/20 = 23 \text{ ppm (90 mg/m}^3\text{)}$$

1651

4-hour AEGL-3 = $C^3 \times 4 \text{ h} = 1.025 \times 10^8 \text{ ppm}^3 \text{ h}$

1652

$$C = 294.82 \text{ ppm}$$

1653

$$4\text{-hour AEGL-3} = 294.82 \text{ ppm}/20 = 15 \text{ ppm (57 mg/m}^3\text{)}$$

1654

8-hour AEGL-3 = $234 \text{ ppm}/20 = 12 \text{ ppm (45 mg/m}^3\text{)}$

1655

APPENDIX B

1656

Level of Distinct Odor Awareness

1657

Derivation of the Level of Distinct Odor Awareness (LOA)

1658 The level of distinct odor awareness (LOA) represents the concentration above which it is
1659 predicted that more than half of the exposed population will experience at least a distinct odor intensity,
1660 about 10 % of the population will experience a strong odor intensity. The LOA should help chemical
1661 emergency responders in assessing the public awareness of the exposure due to odor perception. The
1662 LOA derivation follows the guidance given by van Doorn et al. (2002).

1663 For derivation of the odor detection threshold (OT_{50}), a study (Don, 1986) is available which is
1664 considered to be equivalent to an EN13725:2003-compliant study. The study methodology has been
1665 described in TNO (1985). In this study, the odor threshold for the reference chemical n-butanol (odor
1666 detection threshold 0.04 ppm) has also been determined:

1667 Don (1986):

1668 odor detection threshold for phenol: 0.0102 ppm

1669 odor detection threshold for n-butanol: 0.026 ppm

1670 corrected odor detection threshold (OT_{50}) for phenol: $0.0102 \text{ ppm} * 0.04 \text{ ppm} / 0.026 \text{ ppm} = 0.016 \text{ ppm}$

1671 The concentration (C) leading to an odor intensity (I) of distinct odor detection (I=3) is derived
1672 using the Fechner function:

$$I = k_w * \log (C / OT_{50}) + 0.5$$

1673 For the Fechner coefficient, the default of $k_w = 2.33$ will be used due to the lack of chemical-specific data:

$$3 = 2.33 * \log (C / 0.013) + 0.5 \quad \text{which can be rearranged to}$$

$$\log (C / 0.013) = (3-0.5) / 2.33 = 1.07 \quad \text{and results in}$$

$$C = (10^{1.07}) * 0.016 = 11.8 * 0.016 = 0.19 \text{ ppm}$$

1678 The resulting concentration is multiplied by an empirical field correction factor. It takes into
1679 account that in every day life factors, such as sex, age, sleep, smoking, upper airway infections and
1680 allergy as well as distraction, increase the odor detection threshold by a factor of 4. In addition, it takes
1681 into account that odor perception is very fast (about 5 seconds) which leads to the perception of
1682 concentration peaks. Based on the current knowledge, a factor of 1/3 is applied to adjust for peak
1683 exposure. Adjustment for distraction and peak exposure lead to a correction factor of $4 / 3 = 1.33$

$$1684 \quad LOA = C * 1.33 = 0.19 \text{ ppm} * 1.33 = 0.25 \text{ ppm}$$

1685 The LOA for phenol is 0.25 ppm.

1686

APPENDIX C

1687

Derivation Summary for Phenol AEGLs

ACUTE EXPOSURE GUIDELINES FOR PHENOL (CAS NO. 108-95-2)

AEGL-1 VALUES				
10 minutes	30 minutes	1 hour	4 hours	8 hours
19 ppm	19 ppm	15 ppm	9.5 ppm	6.3 ppm

Reference: CMA, Chemical Manufacturers Association, 1998. Two-week (ten day) inhalation toxicity and two-week recovery study of phenol vapor in the rat. Huntingdon Life Sciences Study No. 96-6107, CMA Reference No. PHL-4.0-Inhal-HLS. Chemical Manufacturers Association, Phenol Panel, Arlington, VA 22209, USA; Hoffmann, G.M., B.J. Dunn, C.R. Morris, J.H. Butala, S.S. Dimond, R. Gingell and J.M. Waechter, Jr., 2001. Two-week (ten-day) inhalation toxicity and two-week recovery study of phenol vapor in the rat. *International Journal of Toxicology* 20, 45-52.

Test Species/Strain/Number: Rats / Fischer 344 / 20/sex/group

Exposure Route/Concentrations/Durations: Inhalation / 0, 0.5, 5 or 25 ppm / 6 hours/day, 5 days/week for 2 weeks (half of the animals were killed for analysis at the end of the exposure period and the other half after a 2-week recovery period)

Effects:

No differences between controls and phenol-exposed animals for clinical observations, body weights, food consumption and clinical pathology were found. The authors stated that "scattered observations of chromodacryorrhea and nasal discharge were noted during the two weeks of exposure. However, they did not appear in a clearly treatment-related pattern and mostly abated during the 2 week recovery period." While this was true for chromodacryorrhea, the summary tables of in-life physical observations reported the following incidences of red nasal discharge in the control, 0.5-ppm, 5-ppm and 25-ppm groups: 0/20, 0/20, 3/20 and 4/20 males and 0/20, 0/20, 1/20 and 0/20 females in the first week and 0/20, 0/20, 7/20 and 10/20 males and 0/20, 1/20, 3/20 and 0/20 females in the second week. No differences between controls and phenol-exposed animals for organ weights and macroscopic and microscopic postmortem examinations were reported. Complete macroscopic evaluations were conducted on all animals. Microscopic evaluations were conducted on the liver, kidney, respiratory tract tissues (examined organs were nasopharyngeal tissues, larynx, trachea and lungs) and gross lesions for animals in the control and high-exposure groups, at termination and recovery. For histopathology of nasopharyngeal tissues, the skull, after decalcification, was serially sectioned transversely at approximately 3- μ m intervals and routinely, four sections were examined per animal.

1719	Endpoint/Concentration/Rationale:
1720	Although phenol does not seem to be a strong irritant, it causes local tissue damage in the respiratory tract as evidenced by the histopathological findings after repeated exposure described by Deichmann et al. (1944) for guinea pigs and rabbits. At higher concentrations, phenol causes irritation in rats (Flickinger, 1976) and respiratory depression in mice (De Ceaurriz et al., 1981).
1721	
1722	
1723	
1724	The pharmacokinetic study in humans (Piotrowski, 1971) was not used as key study because it did not report on health effects. The Sandage (1961) study was not used because, apparently, exposure chambers did not allow observation of monkeys during the exposure and histopathology was performed on the lungs, but not on the upper respiratory tract so that possible upper airway irritation was not adequately evaluated. Therefore, the study by CMA (1998) (published as Hoffmann et al., 2001) was the only study fulfilling the SOP requirements for a key study and was therefore used for derivation of AEGL-1 values although it was a repeated exposure study. After exposure of rats for 6 hours/day, 5 days/week for 2 weeks, no histopathological alterations of the epithelium of the nasal turbinates or other respiratory tract tissues were found. The observation of red nasal discharge in a few male rats of the 5-ppm and 25-ppm group was not considered a relevant effect, because no clear dose-response relationship was found and because predominantly males, but not females, showed this effect. Moreover, red nasal discharge occurs at the plexus antebrachii, which is very prominent in the rat, and in the rat extravasation of red blood cells visible as red nasal discharge is caused easily not only by locally acting chemicals, but also by stress, dry air or upper respiratory tract infections. The derivation of AEGL-1 values was based on an exposure concentration of 25 ppm for 6 hours.
1725	
1726	
1727	
1728	
1729	
1730	
1731	
1732	
1733	
1734	
1735	
1736	
1737	
1738	
1739	Uncertainty Factors/Rationale:
1740	Total uncertainty factor: 3
1741	Interspecies: 1 - the toxicokinetic component of the uncertainty factor was reduced to 1 because toxic effects are mostly caused by phenol itself without requirement for metabolism, moreover, possible local irritation effects depend primarily on the phenol concentration in inhaled air with little influence of toxicokinetic differences between species. The starting point for AEGL derivation was a NOAEL from a repeated exposure study and, thus, the effect level was below that defined for AEGL-1. The human experimental and workplace studies (Piotrowski, 1971; Ogata et al., 1986) support the derived values. Therefore, the interspecies factor was reduced to 1.
1742	
1743	
1744	
1745	
1746	
1747	
1748	
1749	Intraspecies: 3 - because for local effects, the toxicokinetic differences do not vary considerably within and between species. Therefore the toxicokinetic component of the uncertainty factor was reduced to 1 while the factor of 3 for the toxicodynamic component, reflecting a possible variability of the target-tissue response in the human population was retained
1750	
1751	
1752	
1753	
1754	Modifying Factor: Not applicable
1755	Animal to Human Dosimetric Adjustment: Not applicable

1756
1757
1758
1759
1760
1761
1762
1763

Time Scaling:

The equation $C^n \times t = k$ was used to derive exposure duration-specific values. Due to lack of a definitive data set, a default value for n of 3 was used in the exponential function for extrapolation from the experimental period (6 hours) to shorter exposure periods and a default value for n of 1 was used for extrapolation to longer exposure times. For the 10-minute AEGL-2 the 30-minute value was applied because the derivation of AEGL values was based on a long experimental exposure period and no supporting studies using short exposure periods were available for characterizing the concentration-time-response relationship.

1764
1765
1766
1767
1768
1769
1770

Data Adequacy:

No study assessing irritative effects in humans was available. However, in two toxicokinetic studies, no statement was made on the presence or absence of effects in humans exposed experimentally at up to 6.5 ppm for 8 hours (with 2 x 30 min breaks) (Piotrowski, 1971) or exposed at the workplace to a mean workshift concentration of up to 4.95 ppm (Ogata et al., 1986).

The derived AEGL-1 values are supported by the study of Sandage (1961), in which continuous exposure of rhesus monkeys at 5 ppm phenol for 90 days did not result in any signs of toxicity.

ACUTE EXPOSURE GUIDELINES FOR PHENOL (CAS NO. 108-95-2)

AEGL-2 VALUES							
10 minutes	30 minutes	1 hour	4 hours	8 hours			
29 ppm	29 ppm	23 ppm	15 ppm	12 ppm			
Reference: a) Flickinger, C.W., 1976. The benzenediols: catechol, resorcinol and hydroquinone - a review of the industrial toxicology and current industrial exposure limits. <i>American Industrial Hygiene Association Journal</i> 37, 596-606. b) Brondeau, M.T., P. Bonnet, J.P. Guenier, P. Simon and J. de Ceaurriz, 1990. Adrenal-dependent leucopenia after short-term exposure to various airborne irritants in rats. <i>Journal of Applied Toxicology</i> 10, 83-86.							
Test Species/Strain/Sex/Number:		a) Rat / Wistar / 6 females b) Rat / Sprague-Dawley / not stated					
Exposure Route/Concentrations/Durations:		a) Inhalation / 900 mg phenol/ m ³ aerosol / 8 hours b) Inhalation / 111, 156 or 211 ppm / 4 hours					
Effects:							
a) Ocular and nasal irritation were observed, as well as slight loss of coordination with spasms of the muscle groups within 4 hours and tremors and prostration (in 1/6 rats) within 8 hours. Rats appeared normal the following day and had normal 14-day weight gains. No deaths occurred. No lesions attributable to inhalation of the aerosol were seen at gross autopsy. b) The total white blood cell count was significantly decreased after exposure to 156 or 211 ppm, no effect was observed at 111 ppm. Other signs of toxicity were not evaluated. The authors interpreted this finding as a result of increased secretion of corticosteroids as a response to sensory irritation.							
Endpoint/Concentration/Rationale:							
Due to the lack of more adequate studies, a combination of the Flickinger (1976) and Brondeau et al. (1990) studies were used as the basis for derivation of AEGL-2 values. Aerosol exposure at 900 mg/m ³ phenol (equivalent to 234 ppm phenol vapor) for 8 hours resulted in ocular and nasal irritation, slight loss of coordination and spasms of the muscle groups at 4 hours into the exposure, after 8 hours additional symptoms (tremor, incoordination and prostration) were observed in one of the six animals. No deaths occurred. This study is supported by the study of Brondeau et al. (1990), which did report only slight effects after exposure at 211 ppm phenol vapor for 4 hours. Although both studies had shortcomings, i.e., aerosol exposures, nominal concentrations, and no description of toxic signs in one study, taken together, they had consistent results. It was considered adequate to calculate and use the phenol vapor concentration corresponding to an phenol aerosol concentration of 900 mg/m ³ . The aerosol concentration of 900 mg/m ³ is equivalent to a vapor concentration of 234 ppm. The derivation of AEGL-2 values was based on an exposure concentration of 234 ppm for 8 hours.							

1807	Uncertainty Factors/Rationale:
1808	Total uncertainty factor: 10
1809	Interspecies: 3 - because oral lethal data did not indicate a high variability between species (cf. Section 4.4.1.) and because application of a higher uncertainty factor would have resulted in AEGL-2 values below levels that humans can stand without adverse effects (Piotrowski, 1971; Ogata et al., 1986).
1810	
1811	
1812	
1813	Intraspecies: 3 - because the study of Baker et al. (1978) that investigated health effects in members of 45 families (including children and elderly), that were exposed to phenol through contaminated drinking water for several weeks, did not indicate that symptom incidence or symptom severity was higher in any specific subpopulation. Moreover, newborns and infants were not considered more susceptible than adults because of their smaller metabolic capacity to form toxic phenol metabolites (cf. Section 4.4.2.).
1814	
1815	
1816	
1817	
1818	
1819	
1820	Modifying Factor: 2 - because of the small data base and study shortcomings
1821	Animal to Human Dosimetric Adjustment: Not applicable, local irritative effect
1822	Time Scaling:
1823	The equation $C^n \times t = k$ was used to derive exposure duration-specific values. Due to lack of a definitive data set, a default value of n of 3 was used in the exponential function for extrapolation from the experimental period (8 hours) to shorter exposure periods. For the 10-minute AEGL-2 the 30-minute value was applied because the derivation of AEGL values was based on a long experimental exposure period and no supporting studies using short exposure periods were available for characterizing the concentration-time-response relationship.
1824	
1825	
1826	
1827	
1828	
1829	Data Adequacy:
1830	Both studies used for the AEGL-2 derivation had shortcomings, i.e., aerosol exposures, nominal concentrations, and no description of toxic signs in one study. Nevertheless, the studies had consistent results and the derived values are supported by the overall toxicity profile of phenol.
1831	
1832	

ACUTE EXPOSURE GUIDELINES FOR PHENOL (CAS NO. 108-95-2)

AEGL-3 VALUES				
10 minutes	30 minutes	1 hour	4 hours	8 hours
N.R.	N.R.	N.R.	N.R.	N.R.
Reference: Not applicable				
Test Species/Strain/Sex/Number: Not applicable				
Exposure Route/Concentrations/Durations: Not applicable				
Effects: Not applicable				
Endpoint/Concentration/Rationale: The study by Deichmann et al. (1944) was not used as key study due to the uncertainties in the exposure concentration and because deaths were observed only after repeated exposure. No acceptable vapor or aerosol LC ₅₀ studies in experimental animals or suitable reports on lethality after inhalation exposure in humans were available for the derivation of AEGL-3. Therefore, due to insufficient data and the uncertainties of a route-to-route extrapolation, AEGL-3 values were not recommended.				
Uncertainty Factors/Rationale: Not applicable				
Modifying Factor: Not applicable				
Animal to Human Dosimetric Adjustment: Insufficient data				
Time Scaling: Not applicable				
Data Adequacy: Adequate animal data relevant for the derivation of AEGL-3 values are not available.				