

1
2

INTERIM 1: 1/2003
INTERIM 2: 2/2005

3
4

INTERIM ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs)

5
6

METHANOL (CAS Reg. No. 67-56-1)

7
8

For
NAS/COT Subcommittee for AEGLs

9

February 2005

10

PREFACE

11 Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 1972, the
12 National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances
13 (NAC/AEGL Committee) has been established to identify, review and interpret relevant toxicologic and
14 other scientific data and develop AEGLs for high priority, acutely toxic chemicals.

15 AEGLs represent threshold exposure limits for the general public and are applicable to emergency
16 exposure periods ranging from 10 minutes to 8 hours. AEGL-2 and AEGL-3 levels, and AEGL-1 levels as
17 appropriate, will be developed for each of five exposure periods (10 and 30 minutes, 1 hour, 4 hours, and
18 8 hours) and will be distinguished by varying degrees of severity of toxic effects. It is believed that the
19 recommended exposure levels are applicable to the general population including infants and children, and
20 other individuals who may be sensitive or susceptible. The three AEGLs have been defined as follows:

21 AEGL-1 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
22 is predicted that the general population, including susceptible individuals, could experience notable
23 discomfort, irritation, or certain asymptomatic, non-sensory effects. However, the effects are not disabling
24 and are transient and reversible upon cessation of exposure.

25 AEGL-2 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
26 is predicted that the general population, including susceptible individuals, could experience irreversible or
27 other serious, long-lasting adverse health effects, or an impaired ability to escape.

28 AEGL-3 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
29 is predicted that the general population, including susceptible individuals, could experience
30 life-threatening health effects or death.

31 Airborne concentrations below the AEGL-1 represent exposure levels that could produce mild and
32 progressively increasing odor, taste, and sensory irritation, or certain asymptomatic, non-sensory effects.
33 With increasing airborne concentrations above each AEGL level, there is a progressive increase in the
34 likelihood of occurrence and the severity of effects described for each corresponding AEGL level.
35 Although the AEGL values represent threshold levels for the general public, including sensitive
36 subpopulations, it is recognized that certain individuals, subject to unique or idiosyncratic responses, could
37 experience the effects described at concentrations below the corresponding AEGL level.

TABLE OF CONTENTS

39	PREFACE	ii
40	TABLE OF CONTENTS	iii
41	EXECUTIVE SUMMARY	viii
42	1. INTRODUCTION	1
43	2. HUMAN TOXICITY DATA	2
44	2.1. Acute Lethality	2
45	2.2. Nonlethal Toxicity	6
46	2.2.1. Experimental Studies	7
47	2.2.2. Occupational Exposure	9
48	2.2.3. Case Studies	11
49	2.3. Developmental/Reproductive Toxicity	12
50	2.4. Genotoxicity	13
51	2.5. Carcinogenicity	13
52	2.6. Summary	13
53	3. ANIMAL TOXICITY DATA	14
54	3.1. Acute Lethality	14
55	3.1.1. Non-human Primates	14
56	3.1.2. Cats	15
57	3.1.3. Rats	15
58	3.1.4. Mice	15
59	3.2. Nonlethal Toxicity	17
60	3.2.1. Non-human Primates	17
61	3.2.2. Dogs	19
62	3.2.3. Cats	19
63	3.2.4. Rats	19
64	3.2.5. Mice	20
65	3.3. Developmental/Reproductive Toxicity	21
66	3.3.1. Nonhuman Primates	22
67	3.3.2. Rats	23
68	3.3.3. Mice	24
69	3.4. Genotoxicity	25

70	3.5.	Carcinogenicity	26
71	3.6.	Summary	26
72	4.	SPECIAL CONSIDERATIONS	27
73	4.1.	Metabolism and Disposition	27
74	4.1.1.	Absorption, Distribution and Elimination	27
75	4.1.2.	Metabolism	28
76	4.1.3.	Pharmacokinetic Models	30
77	4.2.	Mechanism of Toxicity	35
78	4.3.	Pharmacokinetics and Toxic Effects in Normal and Folate-Deficient Animals	37
79	4.4.	Structure-Activity Relationships	39
80	4.5.	Other Relevant Information	40
81	4.5.1.	Species Variability	40
82	4.5.2.	Intraspecies Variability	40
83	4.5.3.	Combination Effects	40
84	4.5.4.	Role of Folate in Human Birth Defects	40
85	5.	RATIONALE AND PROPOSED AEGL-1	41
86	5.1.	Human Data Relevant to AEGL-1	41
87	5.2.	Animal Data Relevant to AEGL-1	42
88	5.3.	Derivation of AEGL-1	42
89	6.	RATIONALE AND PROPOSED AEGL-2	43
90	6.1.	Human Data Relevant to AEGL-2	43
91	6.2.	Animal Data Relevant to AEGL-2	44
92	6.3.	Derivation of AEGL-2	45
93	7.	RATIONALE AND PROPOSED AEGL-3	47
94	7.1.	Human Data Relevant to AEGL-3	47
95	7.2.	Animal Data Relevant to AEGL-3	49
96	7.3.	Derivation of AEGL-3	50
97	8.	SUMMARY OF PROPOSED AEGLS	52
98	8.1.	AEGL Values and Toxicity Endpoints	52
99	8.2.	Comparison with Other Standards and Criteria	54
100	8.3.	Data Adequacy and Research Needs	57
101	9.	REFERENCES	58

102	APPENDIX A Time Scaling Calculations for AEGLs	69
103	AEGL-1	70
104	AEGL-2	71
105	AEGL-3	72
106	APPENDIX B Pharmacokinetic Calculations	73
107	Calculation of Exposure Concentrations for Humans	74
108	Comparison of the Perkins et al. (1995a) and Bouchard et al. (2001) models	76
109	APPENDIX C Level of Distinct Odor Awareness	78
110	APPENDIX D Derivation Summary for Methanol AEGLs	80
111	AEGL-1 VALUES	81
112	AEGL-2 VALUES	84
113	AEGL-3 VALUES	88

114

LIST OF TABLES

115	TABLE 1: CHEMICAL AND PHYSICAL DATA	1
116	TABLE 2: ACUTE ORAL METHANOL INTOXICATIONS IN HUMANS	5
117	TABLE 3: SUMMARY OF EFFECTS ON HUMANS AFTER INHALATION OF METHANOL	12
118	TABLE 4: SUMMARY OF ACUTE LETHAL INHALATION DATA IN LABORATORY ANIMALS	16
119		
120	TABLE 5: SUMMARY OF NON-LETHAL EFFECTS IN LABORATORY ANIMALS	20
121	TABLE 6: METABOLISM OF METHANOL AND ENZYMES INVOLVED	29
122	TABLE 7: KINETIC PARAMETERS OF METHANOL METABOLISM	30
123	TABLE 8: BLOOD METHANOL CONCENTRATIONS IN HUMANS AND ANIMALS AFTER A SINGLE EXPOSURE TO METHANOL	31
124		
125	TABLE 9: AEGL-1 VALUES FOR METHANOL	43
126	TABLE 10: AEGL-2 VALUES FOR METHANOL	47
127	TABLE 11: AEGL-3 VALUES FOR M	51
128	TABLE 12: SUMMARY/RELATIONSHIP OF PROPOSED AEGL VALUES	53
129	TABLE 13. EXTANT STANDARDS AND GUIDELINES FOR METHANOL	55
130	TABLE 14: PARAMETERS OF PHARMACOKINETIC MODEL	74
131	TABLE 15: CALCULATION OF CONCENTRATIONS FOR INHALATION EXPOSURE I	75
132	TABLE 16: CALCULATION OF CONCENTRATIONS FOR INHALATION EXPOSURE II	75
133	TABLE 17: CALCULATION OF METHANOL CONCENTRATIONS RESULTING IN A BLOOD CONCENTRATION OF 30 mg/l	76
134		
135	TABLE 18: CALCULATION OF METHANOL CONCENTRATIONS RESULTING IN A BLOOD CONCENTRATION OF 100 mg/l	76
136		
137	TABLE 19: CALCULATION OF METHANOL CONCENTRATIONS RESULTING IN A BLOOD CONCENTRATION OF 250 mg/l	77
138		

139

LIST OF FIGURES

140	FIGURE 1: BLOOD CONCENTRATIONS OF METHANOL IN DIFFERENT SPECIES	34
141	FIGURE 2: MEASURED BLOOD METHANOL CONCENTRATIONS IN HUMAN FATALITIES	
142	49
143	FIGURE 3: CATEGORICAL REPRESENTATION OF ALL METHANOL INHALATION DATA ...	54

144

EXECUTIVE SUMMARY

145 Methanol (also known as wood alcohol) is a clear, colorless, volatile, flammable liquid with a
146 sweet odor. It is used in paint removers, windshield washer fluid, automotive fuel, and antifreeze; as an
147 industrial solvent; and as a raw material in the production of many commercially important organic
148 compounds. Small amounts of methanol are produced over the course of normal body metabolism and are
149 found in the exhaled air.

150 Methanol is rapidly absorbed after ingestion or inhalation. Percutaneous absorption is also
151 considerable. Acute methanol toxicity varies greatly between species, primarily as a result of differential
152 metabolism. At very high inhaled concentrations rodents exhibit much higher blood methanol
153 concentrations than do primates. Primates accumulate greater amounts of the important toxic metabolite
154 formic acid (found in equilibrium in plasma with its anion, formate). Primates are more susceptible than
155 rodents because of the greater accumulation of formates in primates. Clinical experience with those who
156 ingested methanol (often under the mistaken assumption that they were consuming ethanol) demonstrates
157 marked variations in individual susceptibility and delayed onset of severe, overt toxicity. The initial phase
158 of inebriation is similar to that seen after ethanol but is usually mild and transient and is generally
159 followed by an uneventful initial recovery. The most important clinical consequences develop between 6
160 and 30 hours after the initial exposure.

161 Wide individual variations in response are most likely due to individual rates of formate
162 production from methanol in the liver. People with pre-existing liver disease (e.g., cirrhosis) often appear
163 resistant to methanol poisoning because of their relatively inefficient conversion of methanol to formic
164 acid. Accumulation of formate in primates leads to depletion of the normal bicarbonate buffering capacity
165 of the body, delayed-onset metabolic acidosis and death with acute cerebral edema, CNS depression, and
166 coma. The severity of the poisoning and the patient's prognosis are related directly to the extent of formate
167 and lactate formation, which account largely for this metabolic acidosis. Among victims who survive the
168 initial phase, vision can become severely impaired and permanent bilateral blindness can follow
169 formate-induced retinal edema, demyelination of the temporal retina, hemorrhagic necrosis in the basal
170 ganglia, and nerve head pallor. Pancreatitis has been associated with acute abdominal pain. Occupational
171 methanol exposures in confined spaces or in workrooms with inadequate ventilation have been associated
172 with recurrent giddiness (mild inebriation), headache, nausea, insomnia, blurred or dim vision, and
173 conjunctivitis. The delayed onset of symptoms, the potent ocular degeneration, and the metabolic acidosis
174 seen in primates poisoned with methanol are not observed in rodents. In rodents, methanol can cause
175 fetotoxic and teratogenic effects. Preliminary studies provided some evidence of developmental effects in
176 monkeys..

177 The AEGL-1 was based on a study in which human volunteers inhaled 800 ppm methanol for 8
178 hours (Batterman et al., 1998). As this was a pharmacokinetic study, health effects were not formally
179 evaluated. In a personal communication the coauthor Dr. Alfred Franzblau stated that individual
180 symptoms were asked of some subjects, other subjects were only asked generally if they had symptoms,
181 and that in some exposure sessions subjects might not have been queried. According to Dr. Franzblau,
182 none of the subjects reported symptoms. NIOSH (1980) and Frederick et al. (1984) reported significantly
183 higher frequencies of headaches, dizziness, blurred vision after occupational exposure at 1060 ppm (mean
184 concentration). NIOSH (1981) reported eye irritation in a worker after exposure at 1025 ppm for 25
185 minutes. Since the 1000-ppm level was considered already a discomfort level, the 800 ppm for 8 hour

exposure from the Batterman et al. (1998) study was chosen as a starting point for AEGL-derivation. Since the local irritation effects are determined by the concentration of methanol in air and not to the blood methanol level, calculation of AEGL-1 values was not done using a pharmacokinetic model (as done for AEGL-2 and -3) based on the end-of-exposure blood methanol level of 30.7 mg/l reported by Batterman et al. (1998). Instead, exposure to 800 ppm for 8 hours was used as the basis for AEGL-1 derivation. A factor of 3 was applied for intraspecies variability because interindividual variability with regard to slight central nervous system effects (e.g. headache) is likely to exist (although it cannot be quantified exactly from the existing experimental and epidemiological studies) and because subpopulations with a less than optimal folate status may be more susceptible to the health effects of methanol. The value was scaled to appropriate exposure periods according to the dose-response regression equation $C^n \times t = k$, using the default of $n=3$ for shorter exposure periods, due to the lack of suitable experimental data for deriving the concentration exponent. For the 10-minute AEGL-1, the 30-minute value was applied because no studies were available that demonstrated the absence of notable discomfort (with respect to irritation) in the general population, including susceptible subpopulations, at 970 ppm (which would be the extrapolated value for the 10-minute period).

A level of distinct odor awareness (LOA) for methanol of 8.9 ppm was derived on the basis of the odor detection threshold reported by Hellman and Small (1974). The LOA represents the concentration above which it is predicted that more than half of the exposed population will experience at least a distinct odor intensity, about 10 % of the population will experience a strong odor intensity. The LOA should help chemical emergency responders in assessing the public awareness of the exposure due to odor perception.

The AEGL-2 values were based on developmental toxic effects. In mice, repeated 7-hour/day exposures during gestational days 6 to 15 caused a dose-related, significant increase in cervical ribs at 2000 ppm or higher; other malformations, such as exencephaly and cleft palate occurred concentration-dependently at 5000 ppm or higher (Rogers et al., 1993). The same type of malformations was found after a single 7-hour exposure at 10000 ppm (no other concentrations tested) (Rogers et al., 1997). In another study, which has not been formally published up until now, Rogers and coworkers (Rogers et al. 1995, abstract; Rogers, 1999, personal communication) exposed mice on gestational day 7 to different concentration-time combinations. The most sensitive endpoint was cervical rib induction, which occurred at concentration-time products greater than or equal to 15000 ppm · h, but not at concentration-time products below 15000 ppm · h (i.e. no effects were observed at 2000 ppm for 5 h, 2000 ppm for 7 h or 5000 ppm for 2 h; authors expressed data only as CxT values). Thus, while 2000 ppm for 7 hours was a LOEL in the repeated exposure study (Rogers et al., 1993), it was a NOEL after single exposure. Although the single exposure study had shortcomings in the reporting, it was very consistent with the well-documented repeated exposure study. It was therefore considered adequate to use an exposure at 2000 ppm for 7 hours as a starting point for AEGL-2 derivation. At the NOEL of 2000 ppm for 7 hours (Rogers et al. 1995, abstract; Rogers, 1999, personal communication), the corresponding end-of-exposure blood methanol concentration was measured as 487 mg/l (Rogers et al., 1993). A total uncertainty factor of 10 was used. An uncertainty factor of 1 was applied for interspecies variability because a sensitive species was used for derivation of AEGL-2 values and because toxicokinetic differences between species were accounted for by using a pharmacokinetic model for calculating exposure concentrations. An uncertainty factor of 10 was used for intraspecies variability because no information on developmental toxic effects of methanol on humans is available and because also for other chemicals the variability in susceptibility of humans for developmental toxic effects is not well characterized. Moreover, pregnant women are a subpopulation with a less than optimal folate status and, thus, may be more susceptible to the health

230 effects of methanol. Using a total uncertainty factor of 10, a blood methanol concentration of 48.7 mg/l
231 was derived as the basis for calculation of exposure concentrations. Application of the uncertainty factor
232 to the blood methanol concentration was preferred because the calculated exposure concentrations in air
233 stayed better in the concentration range for which the pharmacokinetic model was validated and the effect
234 of methanol metabolism for longer exposure periods was more adequately taken into account. In contrast,
235 first calculating exposure concentrations that would lead to a blood methanol level of 487 mg/l, and then
236 applying a factor of 10 to the derived exposure concentration would result in calculation of extremely high
237 concentrations in the first step at which metabolic pathways would be saturated. After application of the
238 uncertainty factor, concentrations would be below saturation level which would mean that the end-of-
239 exposure methanol levels would vary for the AEGL-2 exposure concentration-time combinations. Using
240 the pharmacokinetic model of Perkins et al. (1995a), inhalation exposure concentrations were calculated
241 for appropriate time periods that would lead to a blood methanol concentration of 48.7 mg/l at the end of
242 the time period. The calculated exposure concentrations were set as AEGL-2 values.

243 The AEGL-3 values were based on oral intoxications in humans. Several case studies (Naraqi et
244 al., 1979; Erlanson et al., 1965; Bennett et al., 1955; Gonda et al., 1978; Meyer et al., 2000) reported
245 measured blood methanol concentrations and time periods between intoxication and measurement. Given
246 the time that elapsed until blood sampling, during which part of the methanol was metabolized, it can be
247 concluded that peak blood methanol concentrations have been above 1000 mg/l in all fatal cases. Based
248 on the extensive clinical experience with methanol intoxications, the American Academy of Clinical
249 Toxicology (AACT, 2002) published clinical practice guidelines on the treatment of methanol poisoning.
250 According to these guidelines, peak blood methanol concentrations >500 mg/l indicate serious poisoning
251 for which hemodialysis is recommended. Based on the human experience, a peak blood methanol
252 concentration of 500 mg/l was chosen as the basis for AEGL-3 derivation. A total uncertainty factor of 3
253 was used. An uncertainty factor of 3 was applied for intraspecies variability because clinical experience
254 with methanol intoxications is mainly based on cases involving adult men while much less data is
255 available for women, children or elderly persons, and because subpopulations with a less than optimal
256 folate status may be more susceptible to the health effects of methanol. Using a total uncertainty factor of
257 3, a blood methanol concentration of 167 mg/l was derived as the basis for calculation of exposure
258 concentrations. Application of the uncertainty factor to the blood methanol concentration was preferred
259 because the calculated exposure concentrations in air stayed better in the concentration range for which the
260 pharmacokinetic model was validated and the effect of methanol metabolism for longer exposure periods
261 was more adequately taken into account. In contrast, first calculating exposure concentrations that would
262 lead to a blood methanol level of 500 mg/l and then applying a factor of 3 to the derived exposure
263 concentration would result in calculation of extremely high concentrations in the first step at which
264 metabolic pathways would be saturated. Using the pharmacokinetic model of Perkins et al. (1995a),
265 inhalation exposure concentrations were calculated for appropriate time periods that would lead to a blood
266 methanol concentration of 167 mg/l at the end of the time period. The calculated exposure concentrations
267 were set as AEGL-3 values.

268 The proposed AEGL values are listed in the table below.

SUMMARY TABLE OF PROPOSED AEGL VALUES FOR METHANOL ^a						
Classification	10-Minute	30-Minute	1-Hour	4-Hour	8-Hour	Endpoint (Reference)
AEGL-1 (Nondisabling)	670 ppm (880 mg/m ³)	670 ppm (880 mg/m ³)	530 ppm (690 mg/m ³)	340 ppm (450 mg/m ³)	270 ppm (350 mg/m ³)	No headache or eye irritation (Batterman et al., 1998; pers. commun. Franzblau, 1999; 2000; Frederick et al., 1984; NIOSH, 1980; 1981)
AEGL-2 (Disabling)	11000 ppm ^b (14000 mg/m ³)	4000 ppm (5200 mg/m ³)	2100 ppm (2800 mg/m ³)	730 ppm (960 mg/m ³)	520 ppm (680 mg/m ³)	No developmental toxic effects in mice Rogers et al. (1993; 1995, abstract; 1997); Rogers (1999, personal communication)
AEGL-3 (Lethal)	#	14000 ppm ^b (18000 mg/m ³)	7200 ppm ^b (9400 mg/m ³)	2400 ppm (3100 mg/m ³)	1600 ppm (2100 mg/m ³)	Lethality in humans after oral exposure (AACT, 2002)

^a Cutaneous absorption may occur; direct skin contact with the liquid should be avoided.

^b The 10-minute AEGL-2 value and the 30-minute and 1-hour AEGL-3 values are higher than 1/10 of the lower explosive limit (LEL) of methanol in air (LEL = 55,000; 1/10th LEL = 5500 ppm). Therefore, safety considerations against the hazard of explosion must be taken into consideration.

The 10-minute AEGL-3 value of 40,000 ppm is higher than 50% of the lower explosive limit of methanol in air (LEL = 55,000 ppm; 50% of the LEL = 27,500 ppm). Therefore, extreme safety considerations against the hazard of explosion must be taken into account.

References

AACT, American Academy of Clinical Toxicology Ad Hoc Committee on the Treatment Guidelines for Methanol Poisoning: D.G. Barceloux, G.R. Bond, E.P. Krezelok, H. Cooper, and J.A. Vale, 2002.
American Academy of Clinical Toxicology Practice Guidelines on the Treatment of Methanol Poisoning. *Clinical Toxicology* 40, 415-446

Batterman, S.A., A. Franzblau, J.B. D'Arcy, N.E. Sargent, K.B. Gross and R.M. Schreck, 1998. Breath, urine, and blood measurements as biological exposure indices of short-term inhalation exposure to methanol. *International Archives of Occupational and Environmental Health* 71, 325-335.

Becker, C.E., 1983. Methanol poisoning. *Journal of Emergency Medicine* 1, 51-58.

293 Bennett, I., F.H. Cary, G.L. Mitchell and M.N. Cooper, 1953. Acute methyl alcohol poisoning: a review
294 based on experiences in an outbreak of 323 cases. *Medicine* 32, 431-463.

295 Erlanson, P., H. Fritz, K.-E. Hagstam, B. Liljenberg, N. Tryding and G. Voigt, 1965. Severe methanol
296 intoxication. *Acta Medica Scandinavica* 177, 393-408.

297 Franzblau, A., 1999. Dr. Alfred Franzblau, University of Michigan School of Public Health, Ann Arbor,
298 Michigan, personal communication, e-mail dated 14 June 1999.

299 Franzblau, A., 2000 Dr. Alfred Franzblau, University of Michigan School of Public Health, Ann Arbor,
300 Michigan, personal communication, e-mail dated 3 October 2000.

301 Frederick, L.J., P.A. Schulte, A. Apol, 1984. Investigation and control of occupational hazards associated
302 with the use of spirit duplicators. *American Industrial Hygiene Association Journal* 45, 51-55.

303 Gilger, A.P. and A.M. Potts, 1955. Studies on the visual toxicity of methanol. V. The role of acidosis in
304 experimental methanol poisonings. *American Journal of Ophthalmology* 39, 63-86.

305 Gonda, A., H. Gault, D. Churchill and D. Hollomby, 1978. Hemodialysis for methanol intoxication. *The
306 American Journal of Medicine* 64, 749-758.

307 Hellman, T.M. and F.H. Small, 1974. Characterization of the odor properties of 101 petrochemicals using
308 sensory methods. *Journal of the Air Pollution Control Association* 24, 979-982.

309 Meyer, R.J., M.E.J. Beard, M.W. Ardagh and S. Henderson, 2000. Methanol poisoning. *New Zealand
310 Medical Journal* 113, 11-13.

311 Naraqi, S., R.F. Dethlefs, R.A. Slobodniuk, and J.S. Sairere, 1979. An outbreak of acute methyl alcohol
312 intoxication. *Australia and New Zealand Journal of Medicine* 9, 65-68.

313 NIOSH, National Institute for Occupational Safety and Health, 1980. Hazard evaluation and technical
314 assistance report TA 80-32. Everett school district, Everett, Washington. National Institute of
315 Occupational Safety and Health, Cincinnati, OH, USA.

316 NIOSH, National Institute for Occupational Safety and Health, 1981. Health hazard evaluation report No.
317 HETA-81-177, 178-988, University of Washington, Seattle. National Institute of Occupational Safety and
318 Health, Cincinnati, OH, USA.

319 Perkins, R.A., K.W. Ward and G.M. Pollack, 1995. A pharmacokinetic model of inhaled methanol in
320 humans and comparison to methanol disposition in mice and rats. *Environmental Health Perspectives*
321 103, 726-733.

322 Rogers, J.M., M.L. Mole, N. Chernoff, B.D. Barbee, C.I. Turner, T.R. Logsdon and R.J. Kavlock, 1993.
323 The developmental toxicity of inhaled methanol in the CD-1 mouse, with quantitative dose-response
324 modeling for estimation of benchmark doses. *Teratology* 47, 175-188.

325 Rogers, J.M., B.D. Barbee and M.L. Mole, 1995. Exposure concentration and time (C x T) relationships
326 in the developmental toxicity of methanol in mice. *Toxicologist* 15, 164 (abstract).

327 Rogers, J.M. and M.L. Mole, 1997. Critical periods of sensitivity to the developmental toxicity of inhaled
328 methanol in the CD-1 mouse. *Teratology* 55, 364-72.

329 Rogers, J.M., 1999. US-EPA, National Health and Environmental Effects Research Laboratory, Research
330 Trigangle Park, North Carolina, personal communication, letter dated 27 May 1999.

331 **1. INTRODUCTION**

332 Methanol is a clear, colorless, volatile flammable liquid with a characteristic pungent odor when
 333 pure.

334 Methanol is used in the industrial production as solvent and as raw material for the production of
 335 many important organic compounds, principally formaldehyde, methyl tert.-butyl ether, acetic acid, glycol
 336 methyl ethers, methylamine, methyl halides and methyl methacrylate. Methanol is a constituent of a large
 337 number of commercially available solvents and consumer products including paints, shellacs, varnishes,
 338 paint thinners, cleansing solutions, antifreeze solutions, duplicating fluids, denaturant for ethanol, and in
 339 hobby and craft adhesives. Potentially large uses of methanol are in its direct use as a fuel (in the future),
 340 in gasoline blends or as a gasoline extender. About 20 million tons of methanol were produced worldwide
 341 in 1991, principally by catalytic conversion of hydrogen, carbon dioxide and carbon monoxide (NLM,
 342 1998; WHO, 1997). The world-wide production capacity was about 30 million tons in 1995 (WHO,
 343 1997). Chemical and physical properties of methanol are listed in Table 1.

344 **TABLE 1: CHEMICAL AND PHYSICAL DATA**

345 Parameter	346 Value	347 Reference
346 Molecular formula	347 CH ₃ OH	348 NLM, 1998
347 Molecular weight	348 32.04	349 NLM, 1998
348 CAS Registry Number	349 67-56-1	350 NLM, 1998
349 Physical state	350 liquid	351 NLM, 1998
350 Color	351 colorless	352 NLM, 1998
351 Synonyms	352 Methyl-alcohol; carbinol; Methylalkohol; wood alcohol; 353 EPA-Pesticide-Chemical-Code-053801	354 NLM, 1998
352 Vapor pressure	353 133 hPa (21.2 °C) 354 125 hPa (20 °C) 355 169 hPa (25 °C) 356 152 hPa (25 °C)	357 NLM, 1998 358 Rippen, 1998 359 NLM, 1998 360 Rippen, 1998
353 Density	354 0.8100 g/ml (0/4 °C) 355 0.7928 g/ml (20 °C)	356 NLM, 1998 357 WHO, 1977
354 Melting point	355 -97.8 °C	356 NLM, 1998
355 Boiling point	356 64.7 °C (1010.8 hPa)	357 NLM, 1998
356 Solubility	357 Miscible with ethanol, ether, ketones, benzene, most organic 358 solvents and water; soluble in acetone, chloroform	359 NLM, 1998
357 Odor	358 Alcoholic odor; pungent odor when crude; pungent	359 NLM, 1998
358 Explosive limits in air	359 5.5% (lower) and 44% (upper) 360 6.7% (lower) and 36.5% (upper)	361 WHO, 1977 362 AIHA, 1994

Parameter	Value	Reference
Conversion factors	1 ppm = 1.31 mg/m ³ (25 °C, 1010.8 hPa) 1 mg/m ³ = 0.764 ppm (25 °C, 1010.8 hPa)	NLM, 1998 NLM, 1998

360 2. HUMAN TOXICITY DATA

361 2.1. Acute Lethality

362 Almost all cases of acute methanol toxicity result from ingestion. Intoxication may result from
 363 methanol contamination of grain spirits, consumption of adulterated alcoholic beverages, suicidal
 364 ingestion of methanol containing products and unintended consumption of such products (ACCT, 2002,
 365 Buller and Wood, 1904, Becker, 1983, WHO, 1977). However, the majority of cases occurred at the end
 366 of the last and at the beginning of this century after introduction of wood alcohol as an industrial solvent,
 367 and no reliable exposure concentrations or durations are available for these cases. For example, Tyson and
 368 Schoenberg (1914) counted about 100 cases of impairment of vision and death from inhalation of
 369 methanol at the workplace. After early headache, dizziness, nausea, changes in color perception and
 370 blurred vision, delayed deaths follow, about one day after sufficiently high methanol exposure. Death and
 371 blindness (often bilateral) in those who survive are directly related to the extent of formate-induced
 372 metabolic acidosis.

373 In one methanol fatality by inhalation, a woman died after a 12-hour exposure at the workplace
 374 (Anonymous, 1932). The time between cessation of exposure and death was not stated. A postevent study
 375 of the exposure conditions revealed concentrations ranging from 4000 to 13000 ppm. No further details
 376 were reported.

377 *Single Oral Exposure*

378 From a large number of reports on methanol poisonings as a result of the consumption of
 379 adulterated beverages (WHO, 1977), it was concluded that the minimum oral lethal dose is about 1 g/kg
 380 (Buller and Wood, 1904; Röe, 1982). Buller and Wood (1904) concluded that an oral methanol dose of
 381 1.4 g/kg would be lethal to 40 % of the victims.

382 The American Academy on Clinical Toxicology published practice guidelines on the treatment of
 383 methanol poisoning (AACT, 2002). The publication reviewed mechanisms of toxicity, clinical features
 384 and laboratory findings. Early after intoxication methanol may produce a significant osmolal gap. The
 385 osmolal gap is the difference between measured osmolarity in blood (usually 270-290 mOsm/kg water)
 386 and the calculated osmolarity (which is equivalent to $(1.86[\text{Na}^+]+[\text{BUN}]+[\text{glucose}])/0.93$). Early in the
 387 course of methanol poisoning the osmolal gap usually exceeds 20 mOsm/kg water; for example a blood
 388 methanol level of 1000 mg/l will cause an osmolal gap of 34 mOsm/kg water. At a later stage of methanol
 389 poisoning, the formic acid generated will produce metabolic acidosis and an anion gap. The latter is the
 390 difference between the sum of the sodium and potassium concentrations and the sum of the chloride and
 391 bicarbonate concentrations in blood (i.e. $([\text{Na}^+]+[\text{K}^+])-([\text{HCO}_3^-]+[\text{Cl}^-])$). The normal anion gap of 12-16
 392 mmol/l can be attributed to negatively charged proteins, fatty acids, sulfates and phosphates. A significant
 393 anion gap will not be present early in the course of methanol intoxication when the serum bicarbonate
 394 concentration falls while the chloride concentration increases. When the bicarbonate buffer capacity is
 395 depleted, blood pH will start to decline and this is accelerated by the accumulation of lactate as a result of
 396 formate-induced inhibition of mitochondrial respiration. "Clinical symptoms correlate more closely to

metabolic acidosis rather than to serum methanol concentrations. Case series suggest that visual dysfunction occurs when formate concentrations exceed 200-300 mg/l. Poor prognostic indicators include serum formate concentrations >500 mg/l, a pH <7.0 , and coma or seizures on admission to the emergency department." "A variety of factors complicate the correlation of serum methanol concentrations to clinical effects including differences in sample timing, individual variation, concentration of toxic metabolites, and the ingestion of ethanol. Clinical symptoms and mortality correlate more closely with metabolic acidosis rather than with serum methanol concentrations. Consequently, the clinical presentation and outcome of two patients with the same serum methanol concentrations may be substantially different." "Peak methanol concentrations below 200 mg/l usually are associated with asymptomatic individuals, but interpretation of the methanol concentration requires consideration of the time since ingestion, the co-ingestion of ethanol and the acid-base status. Peak methanol concentrations over 500 mg/l indicate serious poisoning, particularly if an anion gap metabolic acidosis is present." "If a patient presents with ophthalmological symptoms and signs or with significant acidosis in the context of a likely methanol ingestion, the initial priorities are to correct the acidosis with sodium bicarbonate, attempt to enhance metabolism of formate to carbon dioxide by administration of folinic acid [or folic acid], inhibit further metabolism of methanol to formate with either fomepizole or ethanol, and finally to arrange hemodialysis for further correction of metabolic abnormalities, if necessary." Treatment with fomepizole or ethanol is recommended at plasma methanol concentration >200 mg/l, or documented recent history of ingesting toxic amounts of methanol and osmolal gap >10 mOsm/kg water, or history or strong clinical suspicion of methanol poisoning and at least two of the following criteria: arterial pH <7.3 , serum bicarbonate <20 mmol/l, osmolal gap >10 mOsm/kg water. Hemodialysis for removal of methanol and formate is recommended for the following conditions: significant metabolic acidosis (pH $<7.25-7.30$), abnormalities of vision, deteriorating vital signs despite intensive care support, renal failure, electrolyte imbalance unresponsive to conventional therapy, or serum methanol concentration >500 mg/l.

Naraqi et al. (1979) described 32 men (mean age 23, range 17-39) who drank pure methanol. The methanol was mixed with orange juice or soft drinks. The purity of the methanol was confirmed later by gas chromatography. The estimated amount of methanol consumed ranged from 60 to 600 ml (mean 275 ml). Three patients consumed ethanol immediately prior to drinking methanol. The first symptoms appeared 8-36 hours (mean 18 hours) after consumption and comprised blurred vision, pupillary changes, fundi changes, abdominal pain, vomiting, nausea, headache, dizziness, lethargy, restlessness, coma, seizures, and Kussmaul respiration. Circulating methanol and ethanol concentrations of 15 patients were measured in blood drawn within the first 48 hours after hospital admission. The treatment consisted of sodium bicarbonate infusion; ethanol, peritoneal or hemodialysis were not used. Of 28 patients admitted to hospital, 4 died (one of those had an elevated blood ethanol concentration) within 72 hours, 16 recovered without complications, 2 became totally blind, 4 developed severe visual impairment and 2 had severe visual disturbances as well as speech difficulties. Blood methanol concentrations in fatal cases (except for the case of concomitant ethanol exposure) are shown in Table 2. Blood methanol concentrations >500 mg/l were seen in only two non-fatal cases. Individual blood methanol concentrations of surviving patients were not reported.

Erlanson et al. (1965) described 4 patients that consumed pure methanol that had been sold as ethanol. Three patients died in spite of intensive care including ethanol therapy, bicarbonate infusion and hemodialysis. Blood methanol concentrations and symptoms are given in Table 2. The lowest concentration associated with fatal outcome was 275 mg/l measured 52 hours after methanol uptake; in this patient ethanol therapy was begun after 48 hours.

441 Bennett et al. (1953) reported on several cases of oral methanol poisoning. The cases in which no
442 or only trace amounts of ethanol were detected in the blood are shown in Table 2. Of five cases, two with
443 estimated oral doses of 0.6 and 5.6 g/kg died in spite of hospital treatment, while the other three cases
444 survived ingestion of estimated doses of 1.1, 1.9 and 3.3 g/kg.

445 Gonda et al. (1978) described the consequences of ingestion of windshield washer fluid (90-95 %
446 methanol). All cases were treated with ethanol, sodium bicarbonate and hemodialysis (except for 2 cases
447 that did not receive ethanol). Of 9 patients, 2 died and 3 of the 7 survivors had permanent visual
448 impairment. Measured blood methanol concentrations are given in Table 2.

449 Meyer et al. (2000) tabulated the time between methanol ingestion and hospital admission along
450 with blood methanol concentrations for 4 cases (see Table 2).

451 Kahn and Blum (1979) described a fatal dermal methanol exposure in an 8-month-old boy. The
452 child had been "treated" with methanol-soaked compresses during two nights (about 12 hours each) before
453 he was admitted to hospital. A blood methanol concentration of 400 mg/l was determined in the early
454 afternoon. The child died in that evening in spite aggressive medical intervention.

455 Although several other reports on fatal oral methanol exposures have been documented in the
456 literature (e.g. Keeney and Mellinkoff, 1949; Kane et al., 1968), these are not presented here because
457 methanol exposure was combined with ethanol intake in most of these cases. Since ethanol at blood
458 concentrations of about 1 g/l or higher can completely block methanol metabolism, reported methanol
459 doses or blood methanol concentrations are not useful for the derivation of AEGL values.

460 TABLE 2: ACUTE ORAL METHANOL INTOXICATIONS IN HUMANS

Clinical outcome	Sex, age	Blood methanol conc. (mg/l) at time postexposure (h)	Latent period, symptoms, remarks	Reference
death after 48 h	male 27	730 (< 48 h)	8 h coma (admission)	Naraqi et al., 1979
death after 36 h	male 19	1110 (< 48 h)	36 h coma (admission)	Naraqi et al., 1979
death after 36 h	male 20	3260 (< 48 h)	12 h coma (admission)	Naraqi et al., 1979
death after 136 hours	male 49	275 (52 h)	15 h failing vision, 24 h vomiting, hearing disturbances, 28 h restlessness, 29 h coma, 48 h (admission and ethanol therapy)	Erlanson et al., 1965
death after 79 h	male 65	277 (53 h)	15 h nausea, vomiting, headache, 19 h failing eye sight, 30 h severe visual disturbances, cyanosis, 42 h coma, 48 h (admission and ethanol therapy)	Erlanson et al., 1965
death after 110 h	female 49	860 (53 h)	42 h unconsciousness, 43 h respiratory standstill, 44 h (admission and ethanol therapy)	Erlanson et al., 1965
survived	female 39	194 (50 h)	9 h vomiting, 36 h failing eye sight, 44 h blindness, 45 h clouding of consciousness (admission and ethanol therapy)	Erlanson et al., 1965
death during treatment of relapse	male 41	4000 (18 h)	blind, headache; estimated oral dose about 50 ml	Bennett et al., 1953
death on 4th day	male 48	1300 (24 h)	blind, headache, abdominal pain, blind, stupor; estimated oral dose about 500 ml	Bennett et al., 1953
death during treatment of relapse	male 26	2500 (48 h)	cloudy vision, headache, nausea, abdominal pain, vomiting	Bennett et al., 1953
recovered	male 34	1500 (18 h)	cloudy vision, headache, abdominal pain, weakness, vomiting, stupor; estimated oral dose about 100 ml	Bennett et al., 1953
recovered	female 29	2700 (18 h)	impaired vision, retinal edema, headache, dizziness, nausea, vomiting; estimated oral dose about 150 ml	Bennett et al., 1953

	Clinical outcome	Sex, age	Blood methanol conc. (mg/l) at time postexposure (h)	Latent period, symptoms, remarks	Reference
480	recovered	male 43	1600 (48 h)	cloudy vision, retinal edema, headache, abdominal pain	Bennett et al., 1953
481	died	male 30	5600 (12 h)	comatose	Gonda et al., 1978
482	died	male 48	3700 (24 h)	confusion, progressing coma	Gonda et al., 1978
483	survived, eye damage	male 43	5700 (4 h)	comatose	Gonda et al., 1978
484	survived, eye damage	male 42	250 (40 h)	blurred and greenish vision	Gonda et al., 1978
485	survived, eye damage	male 45	30 (100 h)	weakness, dyspnea, vomiting, abdominal pain, visual impairment developed after 3 days	Gonda et al., 1978
486	survived	female 51	530 (24 h)	dizziness, headache, nausea	Gonda et al., 1978
487	survived	male 15	740 (24 h)	stupor, nausea, vomiting	Gonda et al., 1978
488	survived	female 48	560 (24 h)	slurring speech	Gonda et al., 1978
489	survived	male 36	1020 (40 h)	profound weakness, photophobia, blurred vision, slurred speech	Gonda et al., 1978
490	died	male 30	2050 (36 h), 970 ethanol	coma	Meyer et al., 2000
491	survived	male 28	1150 (36 h)	nausea	Meyer et al., 2000
492	survived	male 25	990 (36 h)	visual impairment	Meyer et al., 2000
493	survived	female 41	192 (36 h)	no symptoms	Meyer et al., 2000

497 2.2. Nonlethal Toxicity

498 The signs and symptoms of methanol poisoning include initial headache, dizziness, nausea,
 499 weakness and insomnia, shooting pains, paresthesia, prickling and numbness in the extremities. Changes
 500 in color perception and blurred vision (Browning, 1965; NIOSH, 1976; Becker, 1983; Kavet and Nauss,

501 1990; ACCT, 2002) develop as formate concentrations increase over time. After a latency period (cf.
502 Section 4.2) life-threatening metabolic acidosis and permanent bilateral blindness can develop.

503 **2.2.1. Experimental Studies**

504 Batterman et al. (1998), studied 4 healthy women (aged 41-63 years) exposed at 800 ppm for 30,
505 60 and 120 min. Each of these exposures was repeated with the same subjects. Additionally, 3 other
506 women and 12 men (age not stated) were exposed at 800 ppm methanol for 8 hours. All volunteers were
507 healthy, non-smoking individuals. In the article, the authors made no statement on the presence or absence
508 of any signs or symptoms of the methanol exposure. In a personal communication, the second author, Dr.
509 Alfred Franzblau, stated that although no formal mechanism of recording symptoms was used, the subjects
510 were generally asked during exposure if they experienced any discomforts. Dr. Franzblau wrote
511 "individual symptoms were certainly asked of some subjects" and that "none of the subjects reported odor,
512 irritation, headache or other non-specific symptoms"; likewise "none of the subjects reported any
513 difficulties or alterations of visual function". Dr. Franzblau wrote that it is possible that some subjects
514 were not queried in that no written notes were made. Both, investigators and subjects, knew the methanol
515 concentrations during each of the sessions. Dr. Franzblau recalled that a meter was set up outside the
516 window of the exposure chamber so that the subjects could see directly the concentration of methanol
517 inside the chamber. The investigators also had exposure to methanol at the various levels, either because
518 they spent some time in the chamber during the experiments, or because they conducted trial runs on
519 themselves before conducting the studies on other subjects (Franzblau, 1999; 2000; personal
520 communication).

521 Chuwers et al. (1995) allowed 26 healthy subjects (15 men, 11 women) in an exposure chamber to
522 inhale methanol at 200 ppm for 4 hours. The exposure concentration was continuously monitored by an
523 infrared spectrophotometer and, in addition, by gas chromatography. The measured exposure
524 concentration was 199 ± 7 ppm. Immediately before and upon conclusion of exposure several visual
525 (Vistech contrast sensitivity test, Lanthony 15 Hue desaturated panel color discrimination test),
526 neurophysiological (P-300 auditory evoked potentials) and neurobehavioral (2-and-7 visual scanning
527 performance, Stroop test, Symbol Digit substitution test, Sternberg memory task) tests were performed.
528 Because the time to complete all tests required one hour, some of the tests (2-and-7, Stroop and Symbol
529 Digit tests) were started during the last half hour of exposure. Each subject was once exposed to methanol
530 and once to water vapor in random order in a double-blind fashion. Methanol and formate concentrations
531 in serum and urine were measured during exposure 0, 15, 30, 45, 60, 90, 120, 150, 180, 210 and 240
532 minutes after beginning and 1, 2, 3 and 4 hours after the cessation of exposure. The effect of methanol
533 was significantly only on two outcomes: the P300 amplitude when alcohol consumption and smoking
534 accounted for between-subject variability and on the Symbol Digit test with age accounting for between-
535 subject variability. A correlation with the area under the serum methanol curve was found for P300
536 amplitude, but not for the Symbol Digit test. Although no odor detection was reported by the subjects,
537 18/26 subjects (13 expected) guessed correctly the methanol exposure session. The possible unblinding of
538 test subjects potentially could have affected the subjects' performance. The authors concluded that a 4-
539 hour exposure to 200 ppm methanol did not significantly affect neurobehavioral, neurophysiological and
540 visual performance in a healthy normal population. An accompanying paper about the same study did not
541 find a significant increase in urinary or serum (14.3 ± 8.9 mg/l vs. 12.7 ± 1.7 mg/l in controls) formate
542 concentrations (D'Alessandro et al., 1994).

543 In a similar experiment, Cook et al. (1991) exposed 12 healthy young men, each serving as his
544 own control, for 75 minutes to 250 mg/m³ (190 ppm) methanol. The mean analytical concentration (\pm SD)
545 measured using an infrared gas analyzer and by gas chromatography was 249 \pm 7 mg/m³. Each subject was
546 twice sham-exposed and twice exposed to methanol under double-blind control conditions. 22
547 neurobehavioral and neurophysiological tests were administered before, during, and after exposure to
548 measure visual, behavioral, reasoning, and hearing functions. Methanol exposure had no effect on the
549 subjects' performance on most of the tests. However, some methanol-exposed subjects reported fatigue
550 and lack of concentration. Performance was also slightly impaired in the Sternberg memory task. There
551 were also changes in the latency of the P200 component of the visual- and auditory-event related potential.
552 These effects were small and did not exceed the range of results measured in filtered air-exposed subjects.

553 Muttray et al. (2001) exposed 12 male, healthy, right-handed students by inhalation in an exposure
554 chamber for 4 hours to 20 or 200 ppm methanol (cross-over designed study). Analytical concentrations
555 were 20.3 \pm 3.8 (\pm SD) ppm and 203.5 \pm 2.5 (\pm SD) ppm, respectively. Electroencephalographic examinations
556 were performed immediately after conclusion of exposure with closed and open eyes and during the color
557 word stress test. Significant alterations in the encephalograms between exposure to 20 or 200 ppm were
558 found only in measurements performed with eyes shut. No effects were found in the color word stress test.
559 A German version of an Swedish Performance Evaluation System questionnaire was administered before,
560 2 h and 4 h after exposure. It contained the following 17 items: headache, dizziness, nausea, tiredness,
561 pain or pressure over the chest, coughing spells, shortness of breath, irritation to the eyes, watering eyes,
562 blurred sight, irritation to the nose, running nose, sensation of a bad smell, irritation to the throat, sensation
563 of an unpleasant taste, irritation to the skin, and feeling of faintness or vertigo. Subjects were requested to
564 check off the degree of their symptoms of an ordinal scale from 0 (no symptom) to 5 (severe symptom).
565 None of the symptom scores increased significantly during the exposure to 20 or 200 ppm methanol. The
566 authors considered the electroencephalographic alterations not as an adverse effect, but as a subclinical,
567 excitatory effect of methanol.

568 The American Industrial Hygiene Association critiqued odor threshold studies and reported a
569 range of 4.2-5960 ppm with a geometric mean of 160 ppm for the odor detection threshold and a range of
570 53-8940 ppm with a geometric mean of 690 ppm for the odor recognition threshold (AIHA, 1989). Other
571 review articles reported ranges of 10-20500 ppm (Ruth, 1986), 382-15280 ppm (O'Neill and Phillips,
572 1992) and 3-7640 ppm (Verschueren, 1983). In a review article, Amoore and Hautala (1983) reported a
573 geometric mean odor detection threshold of 100 ppm (range 10-20500 ppm) using odor thresholds
574 reported in the literature, but "omitting extreme points and duplicate quotations". Several of the reviewed
575 studies (Scherberger et al., 1958, May, 1966) cannot be considered adequate for deriving a reliable odor
576 threshold because of insufficient exposure conditions (sniffing at a bottle opening), unstated purity of the
577 methanol used, lack of presentation of technical details and analytical procedures.

578 Hellman and Small (1974) measured the absolute and recognition thresholds of methanol in air. In
579 this study odor thresholds were determined for 101 petrochemicals using a trained odor panel in the Union
580 Carbide Technical Center, South Charleston, WV. Details of the procedure used were not reported. The
581 absolute odor threshold (detection limit) for methanol was 4.26 ppm. At this concentration "50 % of the
582 odor panel observed an odor". The odor recognition threshold was the concentration at which 50 % "of the
583 trained odor panel defined the odor as being representative of the odorant being studied". The air odor
584 recognition threshold was 53.3 ppm (at this concentration all subjects recognized the odor, the 50 %
585 recognition level was not established).

Leonardos et al. (1969) used a combination of a test room and an antechamber, which was held odor-free using an air filter system, and a trained panel of four staff members of the Food and Flavor Section of Arthur D. Little, Inc., determined the air odor threshold for methanol. At least 5 different concentrations were tested. The individual concentrations tested were not reported. An odor recognition threshold of 100 ppm was determined for methanol. A similar value was also reported in an experimental study by Ryazanov (1961).

Flury and Wirth (1933) exposed 2 to 4 individuals for 5 minutes to methanol concentrations of 1, 10 or 86 mg/l (760, 7600 or 65400 ppm; nominal concentrations). Methanol was sprayed into the exposure chamber and dispersed by a ventilator; analytical measurements of the exposure concentrations were not performed. Only a weak odor perception was reported at 760 ppm. 7600 ppm was associated with very weak nasal irritation, while 65400 ppm induced a very strong (unbearable) nasal irritation, which made deep respiration impossible, and marked ocular irritation. From the study report it remains unclear whether the test subjects were examined for symptoms other than irritation.

Leaf and Zatman (1952) studied the pharmacokinetics of methanol exposing themselves up to four times to methanol concentrations between 0.7 mg/l (530 ppm) for about 3.3 hours and 1.43 mg/l (1090 ppm) for about 3 hours. The authors stated that under the conditions of the experiment exposures of 3-4 hours were as long as could reasonably be tolerated. They did not state, however, whether this limitation was due to effects caused by methanol or the experimental design.

2.2.2. Occupational Exposure

Studies with repeated inhalation exposure

NIOSH (1980) (data also published in Frederick et al., 1984) studied the exposure relationship and possible health effects of methanol exposure from spirit duplicators in teacher aides. Fifteen-minute breathing zone samples from 21 of 58 duplicators in 12 schools were analyzed using a Wilkes Miran 1A® gas analyzer. Measured methanol concentrations ranged from 365 to 3080 ppm (mean 1060 ppm, median 1040 ppm). Fifteen of 21 measurements exceeded 800 ppm. 11 measurements were between 1000 and 1500 ppm and only one was above this range. The authors reported that additional exposure as a result of skin absorption during the handling of paper wet with methanol was likely. A health questionnaire survey was conducted among 84 female teacher aides, of whom 66 (mean age 39.8 years, range 24-60) responded. Exposure times varied widely from 1 hour/day for 1 day/week to 8 hours/day for 5 days/week during about 3 years. 302 teachers from the same schools served as a comparison group. Of the teachers responding, 66 female (mean age 37.5 years, range 24 to 59 years) were randomly selected for comparison. Part of the teachers also spent some time in the duplicator rooms (the reports do not provide exact exposure information for the teachers). Among the aides, 4 of the 22 symptoms listed in the questionnaire were reported significantly ($p<0.05$ using Mantel-Haenszel Chi-square test) more frequently: headache (34.8% in aides vs. 18.1% in controls), dizziness (30.3% vs. 1.5%), blurred vision (22.7% vs. 1.5%) and nausea/upset stomach (18.0% vs. 6.0%). Similar prevalences were found for symptoms, such as trouble sleeping, unusually tired, irritable, giddiness, poor memory/confusion, muscle weakness and dry/sore throat. No information on the exact exposure duration and the time between start of exposure and occurrence of symptoms was provided. The data indicated that the prevalence of methanol toxicity cases increased with the percentage of time spent at duplicators per week. The authors defined a methanol toxicity case by any of the following four symptom aggregations: 1) visual changes or blurred vision, 2)

627 one acute symptom (headache, dizzines, numbness, giddiness, nausea or vomiting) and one chronic
628 symptom (unusually tired, muscle weakness, trouble sleeping, irritability or poor memory), 3) two acute
629 symptoms or 4) three chronic symptoms.

630 Kawai et al. (1991) analyzed 48 personal samples of breathing-zone air from 31 different subjects,
631 using tube-type diffusive samplers and gas chromatography: 5 samples indicated time-weighted average
632 methanol concentrations during an 8-hour work shift between 3000 and 5500 ppm, 10 samples were
633 between 1000 and 2000 ppm, 4 samples were between 500 and 1000 ppm and 19 below 500 ppm.
634 Exposed workers were grouped into a group exposed to higher methanol concentrations (22 workers;
635 geometric mean exposure concentration 459 ppm) and a group exposed to lower methanol concentrations
636 (11 workers; geometric mean 31 ppm) (the authors did not report the concentration used as the criterion
637 for grouping). The following subjective complaints were given significantly more in the high-exposure
638 group compared to the low-exposure group: dimmed vision during work (11/22 vs. 0/11) and nasal
639 irritation during work (7/22 vs. 0/11).

640 The symptom of 'dimmed vision' has been questioned by the authors who stated that "Further questioning
641 disclosed that the workers in fact saw fog in the workroom air, especially on humid days when the factory
642 was especially busy; the fog was probably produced by the reaction of methanol vapor with humidity in
643 the air. No visual problems were noted when the windows were kept open and fresh air was allowed to
644 flow in, suggesting that this symptom might not be of direct medical significance, although it should
645 indicate the presence of dense methanol vapor." The fact that headaches did not occur more frequently
646 supports the author's interpretation that the 'dimmed vision' was a physical rather than a health-related
647 problem because in other occupational studies, headaches occurred at lower concentrations than effects on
648 vision (Kingsley and Hirsch, 1955) or, at higher exposure concentrations, as a more frequent symptom
649 than blurred vision (NIOSH, 1980; Frederick et al., 1984). In conclusion, the reported 'dimmed vision' is
650 considered most likely not to be a methanol-caused health effect.

651 The authors did not try to correlate the symptoms with the measured breathing-air samples. No significant
652 differences between the two groups were found for the following symptoms: dimmed vision off work,
653 unusual feeling in the throat, unusual smell during work, headache off work, increased sensitivity of the
654 skin in the extremities off work, forgetfulness off work, fainting after suddenly standing up off work, and
655 chill sensation in the extremities off work. On ophthalmologic examination, 3/22 vs. 0/11 subjects showed
656 clinical signs: in two subjects a slow light reflex of the pupils was observed and one person showed
657 slightly mydriatic pupils. The geometric mean of methanol exposure of the 3 subjects was 1017 ppm. One
658 of the two subjects showing a slow light reflex had a habit of drinking an equivalent of 75 g ethanol per
659 day. No information on the exposure duration and the time between start of exposure and occurrence of
660 symptoms was provided.

661 Kingsley and Hirsch (1955) reported that an unspecified number of employees working in the
662 immediate vicinity of direct process duplicating machines complained of frequent and recurrent
663 headaches. The duplicating machines used duplicating fluids containing 5-98 % methanol. Since the other
664 ingredients were not identified, exposure to other volatile compounds cannot be ruled out. The authors
665 stated that those individuals situated closer to the machines experienced more severe headaches, those who
666 actually operated the equipment suffered the most, and that with the onset of cold weather, when doors
667 and windows were closed, the severity and frequency of the headaches increased. Methanol concentrations
668 measured in the breathing zone of the workers ranged from 15 to 375 ppm and generally were in excess of
669 200 ppm. The method of analysis was not reported. No information on exposure duration was provided.

670 **2.2.3. Case Studies**671 Cases of methanol poisoning after inhalation have been reported in the literature (Tyson and
672 Schoenberg, 1914; NIOSH, 1976; IUCLID, 1996). However, reliable information about exposure
673 concentrations or durations is lacking and the incidents very often involved repeated or long term exposure
674 to methanol.675 NIOSH (1981) reported the results of an environmental evaluation of a spirit duplicating machine
676 workplace. Measurement was done by collecting breathing zone samples for 5 consecutive 5-minute
677 periods. The measured concentration range was 950-1100 ppm (mean 1025 ppm). The operator
678 experienced eye irritation at the end of the 25-minute period. No information is given regarding sex and
679 age of the operator and whether this operator had experienced more or less symptoms in the past
680 compared to other duplicating machine operators in the same school.681 Humperdinck (1941) reported a case of methanol poisoning during handling of damp
682 nitrocellulose (35-40 % methanol) in a nitrocellulose plant. The worker had been on this job for 4 years
683 and had not previously reported any symptoms. He became ill following the institution of wartime
684 blackout measures which impaired plant ventilation. The worker became blind in the right eye with
685 marked narrowing of the visual field in the left eye. Examination of the workplace air revealed methanol
686 concentrations ranging from 1600 to 10900 mg/m³ (1200 to 8300 ppm). These symptoms were not
687 reported in another 22 workers exposed to methanol. No statement was made on whether these workers
688 experienced any other symptoms.

689 **TABLE 3: SUMMARY OF EFFECTS ON HUMANS AFTER INHALATION OF METHANOL**

690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	
Concentration (ppm)	Exposure Time															
4000-13000 (probable range)	12 h (workplace)	case study; fatal case after occupational exposure														
1200-8300 (probable range)	unknown (workplace)	case study; visual disturbances, blindness on one eye														
65400	5 min	experimental study; very strong (unbearable) nasal irritation, strong eye irritation														
7600	5 min	experimental study; very weak nasal irritation														
760	5 min	experimental study; weak odor perception, no irritation														
1060 (mean)	1 h/d to 8 h/d (repeatedly at workplace)	occupational study; more frequent headaches, dizziness, blurred vision, nausea/upset stomach														
1025 (mean)	25 min	eye irritation														
800	8 hours	experimental pharmacokinetic study with no statement on effects; in a personal communication, a coauthor stated that the subjects did not report any symptoms														
459 (mean)	8 hours (repeatedly at workplace)	occupational study; dimmed vision (the authors suggested that visibility was temporarily reduced by fog in the workroom) and nasal irritation														
200-375	unknown (repeatedly at workplace)	occupational study; recurrent headaches														
200	4 hours	experimental study; no significant CNS effects														
190	75 minutes	experimental study; no significant CNS effects														

706 **2.3. Developmental/Reproductive Toxicity**707 Very little information is available regarding developmental or reproductive effects of methanol in
708 humans (NTP-CEHRRH, 2003; WHO, 1997).709 Lorente et al. (2000) investigated the role of maternal occupational exposure in occurrence of cleft
710 lip and palate. Data from the study was obtained from a multicenter European case-referent study utilizing
711 6 congenital malformation registers between 1989 and 1992. Occupational exposures during the first

712 trimester were studied in 851 women; 100 cases had infants with oral clefts and 751 referents had infants
713 without oral clefts. The subjects were interviewed to determine occupational history and the types of
714 products used on the job. An industrial hygienist reviewed interview responses to determine the
715 probability of chemical exposures. Confounding factors considered included maternal age, socioeconomic
716 status, residence, urbanization, country of origin, and medical history. Subjects were interviewed about
717 smoking, and alcohol intake but it is not clear if the analyses considered those factors. Data were analyzed
718 by estimating an adjusted odds ratio for each type of exposure. Analyses determined that at least 10 % of
719 the subjects were likely exposed to methanol during the first trimester of pregnancy. Odds ratios of 3.61
720 (95% C.I. 0.91-14.4) and 3.77 (95% C.I. 0.65-21.8) were calculated for methanol exposure and
721 occurrence of cleft palate only and cleft lip with or without cleft palate, respectively. Although these ratios
722 are elevated, they are consistent with the null hypothesis of no increased risk for orofacial clefts after
723 occupational exposure to methanol. It should be noted that for methanol, the numbers were quite small
724 (only 2 cases with cleft palate and 4 with cleft lip with or without cleft palate exposed methanol).

725 **2.4. Genotoxicity**

726 No studies documenting genotoxic effects of methanol in humans were identified (WHO, 1997).

727 **2.5. Carcinogenicity**

728 No studies documenting carcinogenic effects of methanol in humans were identified (WHO,
729 1997).

730 **2.6. Summary**

731 Although several case reports on lethal methanol poisoning of humans due to exposure by
732 inhalation have been published in the literature, data on exposure concentration and exposure duration are
733 usually lacking. Information about lethal effects on humans after oral uptake of methanol is available: The
734 conclusion drawn by several authors (Buller and Wood, 1904; Röe, 1982) that the minimum lethal oral
735 dose is about 1 g/kg is supported by three studies reporting on intoxication incidents in which humans
736 drank pure methanol (i.e. no concomitant ethanol consumption). Bennett et al. (1953) reported two lethal
737 cases after uptake of estimated oral doses of 0.6 and 5.6 g/kg, while another three cases survived ingestion
738 of 1.1, 1.9 and 3.3 g/kg. In the study of Naraqi et al. (1979), the lowest blood methanol concentration
739 associated with fatal outcome was 730 mg/l measured about 24 hours after uptake. Erlanson et al. (1965)
740 reported a lowest blood methanol concentration of 275 mg/l in a fatal case, measured about 52 h after
741 intoxication.

742 At lower exposure concentrations headache and visual disturbances are the most critical endpoints.
743 In a pharmacokinetic study, 15 subjects were exposed to 800 ppm for 8 hours; the authors made no
744 statement on health effects (Batterman et al., 1998), but in a personal communication a coauthor stated
745 that the subjects did not report any symptoms. Chuwerts et al. (1995) found no significant effect on
746 neurobehavioral, neurophysiological and visual performance in an experimental study after a 4-hour
747 exposure to 200 ppm. Similarly, no significant effects on neurobehavioral and neurophysiological test
748 results were observed after a 75-minute exposure to 190 ppm (Cook et al., 1991). After repeated exposure
749 at the workplace to average concentrations of about 1000 ppm headache, dizziness, nausea and blurred
750 vision have been reported (NIOSH, 1980; Frederick et al., 1984). Weak nasal or eye irritation have been

751 reported after exposure to 7600 ppm for 5 minutes (Flury and Wirth, 1933), 1025 ppm for 25 minutes
752 (NIOSH, 1981) and after repeated occupational exposure to mean concentrations of 459 ppm (Kawai et
753 al., 1991). For the odor threshold, a very wide range of values has been reported in the literature, e.g. the
754 American Industrial Hygiene Association critiqued odor threshold studies and reported a range of 4.2-
755 5960 ppm with a geometric mean of 160 ppm for the odor detection threshold and a range of 53-8940
756 ppm with a geometric mean of 690 ppm for the odor recognition threshold (AIHA, 1989). In an
757 experimental study, Hellman and Small (1974) determined an odor detection threshold of 4.26 ppm.

758 **3. ANIMAL TOXICITY DATA**

759 **3.1. Acute Lethality**

760 Data on acute lethal concentrations of methanol for single exposure periods and repeated
761 exposures are available for the monkey, cat, rat and mouse. The interpretation of lethality data is difficult,
762 because of the different mechanisms involved in different species: in rodents no accumulation of formate
763 is observed and animals die of central nervous system depression after acute exposure to very high
764 methanol concentrations; in contrast, in humans and non-human primates delayed death at considerable
765 lower concentrations of methanol is seen due to metabolic acidosis caused by formate accumulation (see
766 Section 4.2). In addition, developmental toxicity and fetal death was reported in rodents after subchronic
767 exposure to methanol concentrations well below those causing death in adult animals (see Section 3.3).
768 For this reasons, data from studies on monkeys and developmental toxicity studies on rodents seem
769 relevant for the derivation of AEGL values. The lethality data are summarized in Table 4.

770 **3.1.1. Non-human Primates**

771 McCord (1931) exposed rhesus monkeys to methanol concentrations of 40000, 20000, 10000,
772 5000 or 1000 ppm. The author reported that exposure at 40000 ppm for 4 hours resulted in prompt death
773 of the monkeys (probably two animals, not exactly stated) and exposure at 40000 ppm for 1 hour
774 (probably of one animal, not exactly stated) resulted in sickness for 2-3 days and delayed death. The
775 authors did not report clinical observations or number of exposed animals for the 20000-ppm and 10000-
776 ppm exposures. 1000 ppm produced death in 1 of 4 animals after an exposure for 18 hours/day for a "total
777 of 41 hours". Another animal "long survive[d] the action of 5000 ppm"; the exact exposure duration and
778 effects were not reported. The author used synthetic methanol from 3 different commercial sources as well
779 as "pure natural", "95% natural" and "crude natural" methanol without specifying which animal was
780 exposed to which type of methanol and whether any differences in toxicity were observed. The monkeys
781 were from a group of 31 rhesus monkeys taken from the wildlife and brought to the USA only shortly
782 before the experiments. One of the monkeys died of pneumonia within 24 hours of arrival and another one
783 was killed due to "low-grade inflammation of the face". The group comprised male and female monkeys,
784 but the gender of the exposed animals was not indicated. The exact duration and frequency of exposure as
785 well as detailed effects were not reported.

786 ***Studies with repeated inhalation exposure***

787 NEDO (1987) exposed monkeys (*Macaca fascicularis*) (number of animals given in brackets) at
788 3000 (4), 5000 (3), 7000 (1) or 10000 (2) ppm methanol for 21 hours/day for different exposure periods;
789 the control group comprised 6 animals. Continuous monitoring of the exposure concentration revealed
790 mean concentrations of 3053±61, 5071±22 and 5018±34, 7079±37 and 10441±402 ppm, respectively.

791 One animal exposed at 10000 ppm showed lethargy and after the third exposure (i.e. the third day) was
792 comatose and died. Another animal exposed to 6000-10000 ppm (duration for different exposure
793 concentrations not clearly stated) died after 6 days. One animal exposed to 7000 ppm had to be killed after
794 6 days. Of three animals exposed to 5000 ppm, two died on the 5th day and the third on the 14th day. No
795 lethality was observed in 4 animals exposed at 3000 ppm for 20 days. Nonlethal effects observed in this
796 experiment are reported in Section 3.2.1.

797 Andrews et al. (1987) exposed groups of 3 male and 3 female cynomolgus monkeys (*Macaca*
798 *fascicularis*) to 0, 500, 2000 or 5000 ppm methanol for 6 hours/day, 5 days/week for 4 weeks. The air
799 exchange rate of the exposure chamber was 0.33 min⁻¹. Methanol exposure levels were monitored with a
800 Wilkes Miran 1A-CVF[®] infrared analyzer and measured values were within $\pm 10\%$ of the nominal
801 concentrations. Animals were observed for signs of toxicity twice each day and given a detailed physical
802 assessment each week without observing any exposure-related effect. No deaths were reported after
803 repeated exposure to methanol concentrations of up to 5000 ppm. See Section 3.2.1 for nonlethal effects.

804 *Studies with non-inhalation exposure*

805 Gilger and Potts (1955) gave single oral doses of 1, 2, 3, 4, 6 or 8 g/kg to rhesus monkeys (one
806 animal/dose). Death was observed at 3 g/kg or higher with the time to death decreasing with increasing
807 concentrations: death occurred after 32-38 h, 29-36 h, 29 h and 6-23 h at 3, 4, 6 and 8 g/kg, respectively.
808 After lethal doses signs of inebriation were observed; semicoma was seen only shortly before death.
809 Deaths occurred from respiratory failure. At doses of 1 and 2 g/kg, animals did not show any symptoms.

810 **3.1.2. Cats**

811 Flury and Wirth (1933) exposed groups of 2 cats to methanol concentrations of 141, 113, 86, 59,
812 44 or 24 mg/l (107200, 85900, 65400, 44800, 33400 or 18200 ppm) for 6 hours. Somnolence occurred at
813 conclusion of exposure time at 33400 ppm or higher. Prostration was seen at 65400 ppm for 4.4 hours,
814 85900 ppm for 4.1 hours or 107200 ppm for 4.0 hours. Delayed deaths were observed for one of two
815 animals exposed at 33400, 65400 or 107200 ppm and for both animals exposed at 85900 ppm methanol
816 during the 14-day postexposure observation time.

817 **3.1.3. Rats**

818 LC₅₀ values for adult rats reported in industry studies include: 145000 ppm for 1 hour (DuPont
819 Co., Haskell Laboratory, 1974), 97900 ppm for 4 hours (BASF, 1980a) and 66900 ppm for 6 hours
820 (BASF, 1980b). NIPRI (1974) reported an LC₅₀ of 64000 ppm for 4 hours.

821 Loewy and Von der Heide (1914) exposed rats to different concentration-time combinations.
822 31600 ppm for 18-20 hours resulted in death. 22500 ppm for 8 hours and 50000 ppm for 2.5 hours caused
823 narcosis and 13000 ppm for 20 hours prostration. 8800 ppm for 8 hours led to lethargy and 2000 ppm for
824 8 hours had no effect.

825 **3.1.4. Mice**

826 Scott et al. (1979) reported that the LC₅₀ for male mice was 41000 ppm for 6 hours. The
827 observation period was 24 hours. Izmerov et al. (1982) reported an LC_{Lo} of 37594 ppm for 2 hours in

828 mice. Pavlenko (1972) reported coma, but no deaths, after exposure of mice to 71000 mg/m³ (54000 ppm)
 829 for 3.5-4 hours/day up to a cumulative total of 54 hours (corresponding to about 14 exposure days; no
 830 details reported).

831 Several older studies report effects on mice: Weese (1928) observed that exposure at 53500 ppm
 832 for 54 hours or 71800 ppm for 54 or 28 hours led to narcosis and death. Mice exposed at 48000 ppm for
 833 24 hours showed narcosis and those exposed to 10000 ppm for 230 hours showed ataxia. Lehmann and
 834 Flury (1943) reported narcosis in mice exposed at 42000 ppm for 7 hours. Marshbitz et al. (1936) exposed
 835 white mice to methanol concentrations of 40, 60, 80, 100, 120, 133 or 200 mg/l (30560, 45480, 61120,
 836 76400, 91680, 101610 or 152800 ppm) for up to 4 hours. During exposure mice first showed a state of
 837 drowsiness, then an excited state, followed by an impairment of coordination and finally narcosis.
 838 Narcosis developed after 190, 153, 134, 89, 95, 91 and 94 minutes, respectively. The overall mortality
 839 within one month after exposure was 45 % (mortality information for individual groups was not
 840 provided).

841 **TABLE 4: SUMMARY OF ACUTE LETHAL INHALATION DATA IN LABORATORY ANIMALS**

Species	Concentration (ppm)	Exposure Time	Effect	Reference
Monkey	40000	1 h	sickness in 2-3 days, delayed death	McCord, 1931
Monkey	40000	4 h	death	McCord, 1931
Monkey	10000	21 h/d, 3 d	lethargy, after 3 exposures comatose and died	NEDO, 1987
Monkey	7000	21 h/d, 6 d	animals had to be killed after 6 days	NEDO, 1987
Monkey	5000	21 h/d, 5 d	of 3 animals, 2 died on day 5 and one on day 14	NEDO, 1987
Monkey	5000	6 h/d, 5 d/w, 4 w	no mortality	Andrews et al., 1987
Monkey	3000	21 h/d, 20 d	no mortality	NEDO, 1987
Monkey	1000	18 h/d, 41 h total	shortest exposure resulting in death	McCord, 1931
Cat	33400	6 h	1 of 2 animals died	Flury and Wirth, 1933
Rat	145000	1 h	LC ₅₀	DuPont Co., Haskell Laboratory, 1974
Rat	97900	4 h	LC ₅₀	BASF, 1980a
Rat	64000	4 h	LC ₅₀	NPIRI, 1974
Rat	66900	6 h	LC ₅₀	BASF, 1980b

Species	Concentration (ppm)	Exposure Time	Effect	Reference
Rat	50000	2,5 h	no mortality, narcosis	Loewy and Von der Heide, 1914
Rat	31600	18-20 h	lethal	Loewy and Von der Heide, 1914
Rat	22500	8 h	narcosis	Loewy and Von der Heide, 1914
Rat	5000	24 h/d, gd 7-17	fetal death in late pregnancy (see Section 3.3.2)	NEDO, 1986
Rat	5000	7 h/d, gd 1-19	no fetal death (see Section 3.3.2)	Nelson et al., 1985
Mouse	71800	54 h	narcosis, death	Weese, 1928
Mouse	71800	28 h	narcosis, death	Weese, 1928
Mouse	53500	54 h	narcosis, death	Weese, 1928
Mouse	54000	3.5-4 h/d, total 24 h	comatose, survived	Pavlenko, 1972
Mouse	48000	24 h	narcosis, survived	Weese, 1928
Mouse	30560-152800	≤ 4 h	narcosis after 190-94 min, overall mortality 45 %	Marshbitz et al., 1936
Mouse	42000	7 h	narcosis	Lehmann und Flury, 1943
Mouse	41000	6 h	LC ₅₀	Scott et al., 1979
Mouse	37594	2 h	LCL _{Lo}	Izmerov et al., 1982
Mouse	10000	7 h, gd 7	fetal death (see Section 3.3.3)	Rogers et al., 1995
Mouse	7500	7 h/d, gd 6-15	fetal death; NOEL 5000 ppm (see Section 3.3.3)	Rogers et al., 1993

3.2. Nonlethal Toxicity

Studies reporting nonlethal effects after a single acute exposure to methanol and relevant for derivation of AEGL values are lacking. Several studies report nonlethal effects, affecting mainly liver, the nervous system and kidney, and developmental toxic effects (see Section 3.3). These data are summarized in Table 5.

3.2.1 Non-human Primates

879 *Studies with repeated inhalation exposure*
880

881 NEDO (1987) exposed monkeys (*Macaca fascicularis*) (number of animals given in brackets) at
882 3000 (4), 5000 (3), 7000 (1) or 10000 (2) ppm methanol for 21 hours/day for up to 20 days. As reported
883 in Section 3.1.1, delayed mortality occurred in animals exposed to 5000 ppm or higher. At cessation of
884 exposure to 3000 ppm or higher, animals were restless, moving around the cage and had frequent blinking
885 and yawning, which can be interpreted as signs of eye and respiratory tract irritation. Animals exposed to
886 3000 ppm became used to methanol exposure after approximately 4 days and recovered activity,
887 movement and appetite. At 5000 ppm or higher, animals showed reduced movement, crouched for a
888 longer time, had difficulty in standing up, showed involuntary hand movements, vomiting and dyspnea.
889 Exposure at 5000 ppm or higher for 5 days or longer induced necrosis of the basal ganglia of the
890 cerebrum, severe cerebral edema, severe liver necrosis and vacuolar degeneration of the kidneys. After
891 exposure at 3000 ppm for 20 days, mild alterations in the cerebral tissue around ventricles without edema
 or necrosis and a slight fatty degeneration of the liver without necrosis were observed.

892 In another experiment of this series (NEDO, 1987), monkeys (number indicated in brackets) were
893 exposed at 1000 (5), 2000 (3) or 3000 (4) ppm methanol for 21 hours/day for 7 months, and killed for
894 pathological analysis after recovery periods of 0, 1, 6 or 10 months. Continuous monitoring of the
895 exposure concentration revealed mean exposure levels of 1013 ± 64 , 2095 ± 73 and 3089 ± 58 ppm,
896 respectively. During the course of the exposure period, scratching of the body, frequent yawning and
897 runny noses were observed at all concentrations. Slight necrotic changes of basal ganglia nerve cells were
898 found after exposure to 3000 ppm and a recovery period of one month; these alterations were not found
899 after the animals had recovered for periods of 6 or 10 months. Groups exposed to 1000 or 2000 ppm
900 showed the presence of responsive stellate cells in the frontal and parietal lobes, but no necrosis of basal
901 ganglia. These stellate cells disappeared after a recovery period of 6 months. In contrast, the presence of
902 stellate cells persisted throughout the recovery period after exposure at 3000 ppm. A slight increase of
903 glial cells in the optic nerve and a slight degeneration of peripheral nerves was observed in the 1000-ppm
904 group after 6 months recovery, but not in animals examined immediately after the end of the 7-month
905 exposure period. Similar observations were obtained in animals exposed at 2000 ppm and examined after
906 6 or 10 months of recovery. Monkeys exposed at 3000 ppm showed a slight optic nerve atrophy and a
907 reduction of myelinated nerve fibers. In all groups a concentration-dependent round cell infiltration and
908 slight fibrotic alterations of the liver was found. The liver changes were unrelated to the recovery period,
909 but their strength did correlate with the exposure concentration and exposure period.

910 In another experiment of this series (NEDO, 1987) monkeys were exposed for 21 hours/day at 10,
911 100 or 1000 ppm methanol for 7, 19 and 29 months (groups of 2, 3 and 3 animals, respectively).
912 Concentrations measured in the exposure chambers were 9.9 ± 1.3 , 101.0 ± 8.2 and 1016 ± 83 ppm,
913 respectively. Runny noses were seen in animals exposed at 100 or 1000 ppm. In the high exposure group
914 animals scratched over the whole body and crouched for long periods of time. No differences in food and
915 water intake and in body weight gain were seen. No signs of degeneration of the basal ganglia of the
916 cerebrum were found in histopathological analysis. A diffuse increase of responsive stellate cells, centered
917 in the subcortical white substance, was evident in a high proportion of cases. Histologically, these cells are
918 not characteristic of degeneration, but they were nearly absent in normal monkeys in the control group.
919 These responsive stellate cells were not correlated with methanol concentration or period of exposure. In
920 the respiratory test, these cells were no longer observed after exposure was ended, so their occurrence is
921 thought to be a reversible transient histological reaction to methanol inhalation. In the visual system no
922 abnormal symptoms were observed that correlated with the exposure concentration. In the groups exposed

923 to 1000 ppm, round-cell infiltration in the liver was seen after all periods of exposure, but only after
924 exposure for 29 months a fibrosis was seen in 2 of 3 monkeys. This fibrosis was strictly limited and the
925 histopathological effect was considered small. No fibrotic reactions were found in the groups exposed to
926 10 or 100 ppm.

927 Andrews et al. (1987) exposed groups of 3 male and 3 female cynomolgus monkeys (*Macaca*
928 *fascicularis*) at 0, 500, 2000 or 5000 ppm methanol for 6 hours/day, 5 days/week for 4 weeks. As
929 described in Section 3.1.1, no deaths were observed. Body weights were recorded prior to study initiation
930 and weekly during thereafter. No effects on body weights or organ weights compared to controls were
931 observed except that female monkeys exposed at 5000 ppm had significantly lower absolute adrenal
932 weights (the authors considered this difference as not having any apparent biological significance).
933 Animals showed no upper respiratory tract irritation, gross and histological examination of 35 different
934 tissues of control and high-dose monkeys revealed no effects. No details were given on which tissues were
935 studied and, thus, it is unclear whether histopathology included the optic nerve and peripheral nerves, for
936 which effects were reported in the study by NEDO (1987). No ocular toxic effects were observed after
937 gross, microscopic and ophthalmoscopic examinations.

938 3.2.2. Dogs

939 Loewy and Von der Heide (1914) exposed dogs to methanol vapor. They observed no effects at
940 2000 ppm for 24 hours or 13700 ppm for 4 hours. At 36700 ppm for 8 hours or 50000 ppm for 1 hour,
941 dogs showed prostration and incoordination. The postexposure observation period and technical details
942 were not reported.

943 3.2.3. Cats

944 Flury and Wirth (1933) exposed groups of 2 cats to different methanol concentrations (see Section
945 3.1.2). During exposure of animals at 18200 ppm, increased salivation and disturbance of balance was
946 observed. Delayed deaths were observed after exposure at 33400 ppm) or higher (see Section 3.1.2).

947 3.2.4. Rats

948 *Studies with repeated inhalation exposure*

949 White et al. (1983) reported no signs of pulmonary toxicity in male Sprague-Dawley rats exposed
950 to 0, 260, 2600 or 13000 mg/m³ (0, 200, 2000 or 10000 ppm) methanol for 6 hours/day, 5 days/week for
951 6 weeks. Biochemical and cytological parameters of the lung, such as lung weight, DNA content, protein
952 content, ribonuclease and protease activity were evaluated. No lung irritation was observed.

953 Andrews et al. (1987) exposed male and female Sprague-Dawley rats at 500, 2000 or 5000 ppm
954 methanol for 6 hours/day, 5 days/week for 4 weeks. No effects on body or organ weights were found,
955 except that female rats exposed to 2000 ppm had significantly higher relative spleen weights than controls.
956 The authors considered this difference as not having any apparent biological significance. In all methanol-
957 treated groups increased discharges around the nose and eyes, lacrimation, mucoid nasal discharges, red
958 nasal discharge, dried red nasal discharge were observed. The frequency of these symptoms was increased
959 in the treated groups, but only the incidence of mucoid nasal discharges appeared to be concentration-
960 related. Gross and histological examination of 35 different tissues of control and high-dose rats revealed

961 no effects. No ocular abnormalities were observed. The red nasal discharge was most likely caused by
 962 extravasation of red blood cells (chromadacryorrhea), which is caused easily in the rat not only by locally
 963 acting chemicals, but also by stress, dry air or upper respiratory tract infections.

964 NEDO (1987) exposed groups of 20 male and 20 female Fischer 344 rats continuously for 12
 965 months at 0, 10, 100 or 1000 ppm. During the treatment period, 1 female rat of the 10-ppm group died on
 966 day 340, and one female rat of the 1000-ppm group had to be killed on day 337. No alterations in general
 967 conditions and behavior were observed. The highest exposure group showed a slightly reduced body
 968 weight increase. In clinical, hematological and biochemical examinations, no significant alterations
 969 compared to controls were observed. Pathological analysis revealed a slight, dose-dependent increase in
 970 liver and spleen weights. No neoplastic alterations were found.

971 **3.2.5. Mice**

972 ***Studies with repeated inhalation exposure***

973 NEDO (1987) studied groups of 30 male and 30 female B6C3F₁ mice continuously exposed for
 974 12 months at 0, 10, 100 or 1000 ppm. Groups of 10 animals were killed for analysis after 6 months.
 975 During the treatment period, one female mouse of the 100-ppm group died and another one had to be
 976 killed. No alterations in general conditions and behavior were observed. The body weights of male mice
 977 and female mice were increased after 6 and 9 months, respectively. This difference (4 % and 6 % relative
 978 to controls) was significant only in the groups exposed to 1000 ppm. A significantly reduced food uptake
 979 without any effect on body weight was found for the female mice of the 1000-ppm group during the first
 980 two months and after 7 months; no correlation with body weight changes was found. In male mice
 981 exposed at 1000 ppm an increase liver weight was observed after 6 months and increased kidney and
 982 spleen weights were found after 12 months, but the dose-dependency of these effects showed was unclear.
 983 After 12 months a fatty degeneration of hepatocytes was observed in higher frequency in male mice of the
 984 high exposure group, but was also reported in lower frequency in the control group.

985 **TABLE 5: SUMMARY OF NON-LETHAL EFFECTS IN LABORATORY ANIMALS**

Species	Concentration (ppm)	Exposure Time	Effect	Reference
Monkey	5000	6 h/d, 5d/w, 4w	no effects on respiratory tract or eyes, no histopathological alterations	Andrews et al., 1987
Monkey	3000	21h/d, 20 d	weakness and loss of motion during exposure; mild fatty liver degeneration and cerebral tissue alterations, no NOEL reported	NEDO, 1987
Monkey	1000	21h/d, 7 m	mild peripheral nerve degeneration, round cell infiltration and fibrotic alterations of in the liver	NEDO, 1987
Dog	50000	1 h	prostration, incoordination	Loewy and Von der Heide, 1914

	Species	Concentration (ppm)	Exposure Time	Effect	Reference
991	Dog	36700	8 h	prostration, incoordination	Loewy and Von der Heide, 1914
992	Dog	13700	4 h	none	Loewy and Von der Heide, 1914
993	Dog	2000	24 h	none	Loewy and Von der Heide, 1914
994	Cat	18200	6 h	increased salivation, disturbance of balance	Flury and Wirth, 1933
995	Rat	20000	7 h/d, 19 d	maternal toxic effects in pregnant rats; unsteady gait during exposure; NOEL 10000 ppm (see Section 3.3.2)	Nelson et al., 1985
996	Rat	13000	20 h	prostration	Loewy and Von der Heide, 1914
997	Rat	8800	8 h	lethargy	Loewy and Von der Heide, 1914
998	Rat	2000	8 h	none	Loewy and Von der Heide, 1914
999	Rat	10000	7 h/d, gd 1-19	fetal malformations; NOEL 5000 ppm (see Section 3.3.2)	Nelson et al., 1985
1000	Rat	10000	6 h/d, 5 d/w, 6 w	no pulmonary toxicity	White et al., 1983
1001	Rat	500; 2000; 5000	6 h/d, 5 d/wk, 4 wk	increased discharges around the nose and eyes at all concentrations	Andrews et al., 1987
1002	Mouse	15000	6 h	maternal toxic effects in pregnant mice; ataxia, circling, tilting heads and depressed motor activity during exposure; NOEL 10000 ppm (see Section 3.3.3)	Bolon et al., 1993
1003	Mouse	5000	7 h	fetal malformations; NOEL 2000 ppm (see Section 3.3.3)	Rogers et al., 1995
1004	Mouse	2000	7 h/d, gd 6-15	fetal malformations; NOEL 1000 ppm (see Section 3.3.3)	Rogers et al., 1993
1005	Mouse	1000	24 h/d, 7 d/w, 12 m	reduced body weights, increased kidney / spleen weights, higher incidence of fatty liver degeneration; not seen at 100 ppm	NEDO, 1987

1006 **3.3. Developmental/Reproductive Toxicity**

1007 Several studies on the developmental and reproductive toxicity of methanol were carried out.
1008 Single and repeated inhalation exposures during the period of embryogenesis induced a wide range of
1009 concentration-dependent teratogenic and embryo-lethal effects in rats and mice. The developmental toxicity
1010 data have been reviewed by NTP-CEHRH (2003) and US-EPA (2001) and these panels concluded that
1011 despite of toxicokinetic differences between rodents and humans, the available rodent data was relevant
1012 for humans.

1013 **3.3.1. Nonhuman Primates**

1014 ***Studies with repeated inhalation exposure***

1015 Burbacher et al. (1999a; 1999b; 2004a; 2004b) exposed groups of 11-12 female *Macaca*
1016 *fascicularis* in a two-cohort study at 0, 200, 600 or 1800 ppm for 2 hours/day, 7 days/week, 4 months
1017 prior to and throughout pregnancy. During each exposure the methanol delivery to the exposure chamber
1018 was stopped after 2 hours, while animals remained in the chamber for another 30 minutes with fast
1019 declining methanol concentrations (1/6th of exposure concentration at 124 minutes and 0 ppm at 135
1020 minutes). Animals were exposed individually in an exposure chamber; methanol concentration was
1021 measured every 10 minutes by an infrared analyzer and mean concentrations (\pm SE) during pregnancy
1022 were 0 ± 0 , 206 ± 0 , 610 ± 1 and 1822 ± 1 ppm, respectively. Blood methanol concentrations, determined after
1023 the first and the 87th exposure as well as two times during pregnancy, were 4.3-5.5 mg/l at 200 ppm
1024 (roughly two-fold higher than background values), 9.5-12.1 mg/l at 600 ppm and 33.2-40.4 mg/l at 1800
1025 ppm. The mean plasma formate concentrations did not show consistent rises following methanol exposure.
1026 The chronic methanol exposure did not result overt signs of toxicity, such as lethargy, uncoordinated
1027 movements and labored or irregular respiration. No effects were found on maternal weight gain during
1028 pregnancy and simple tests for visual problems and fine-motor incoordination (performed after each
1029 exposure). The length of the menstrual cycle and the frequencies of conception and live births in the
1030 methanol-exposed and control females were very similar. However, all methanol-exposed groups showed
1031 a decrease in pregnancy duration of about 8 days (no dose-response relationship). Cesarian section was
1032 done in 2 monkeys exposed at 200 ppm and another 2 exposed at 600 ppm because of uterine bleedings
1033 (no bleedings were observed in the high exposure group or in control animals). Two cesarian sections were
1034 performed on monkeys exposed at 1800 ppm, one for unproductive labor and another because of
1035 intrauterine death of a hydrocephalic fetus. The average pregnancy durations of all groups were still within
1036 the range of pregnancy duration of 160-169 days reported in the literature for this species. There were no
1037 effects on size or body weight of the offspring (8-9 infants per dose group), neither did methanol-exposed
1038 infants display a higher incidence of signs of prematurity. Results of behavioral assessments did not
1039 indicate significant methanol exposure effects on early reflex responses, gross motor development, spatial
1040 and concept learning or memory and social behavior. Exposure was associated with a delay in early
1041 sensorimotor development for male, but not female infants: In the Visually Directed Reaching Test (ability
1042 to grasp and retrieve a small object) a delay of about 9 days for the 200-ppm group and of about 2 weeks
1043 in the 600-ppm and 1800-ppm groups in reaching the testing criterion (8/10 consecutive trials successful)
1044 was found. The HEI Institute's Health Review Committee recommended to interpret these results
1045 cautiously because they are based on 3 males in the 600-ppm and 2 males in the 1800-ppm groups and
1046 may have been influenced by the low mean age reported for male control monkeys to reach the test
1047 criterion. Visual recognition memory was also affected according to the Fagan Test of Infant Intelligence
1048 (the test makes use of the infant's proclivity to direct more visual attention to novel rather than to familiar
1049 abstract or social stimuli). While the control infants exhibited a significant novelty response for both the
1050 abstract patterns and social stimuli (monkey faces), all infants of the methanol-exposed groups failed to

1051 show a significant preference for novel social stimuli (results with the abstract stimuli varied greatly by
1052 cohort and no consistent pattern was observed); there were no mean group differences across the 4 groups.
1053 However, the Nonmatch-to-Sample Test, used to evaluate the same cognitive function, revealed no
1054 significant effects. A severe wasting syndrome (resulting in euthanasia) was observed in 2 of 4 females of
1055 cohort 1 and 0 of 3 females of cohort 2 after approximately 1 year of age; the etiology of the syndrome
1056 (e.g. a retroviral infection) could not be elucidated.

1057 **3.3.2. Rats**

1058 ***Studies with repeated inhalation exposure***

1059 NEDO (1987) exposed groups of 36 pregnant Sprague-Dawley rats continuously at 0, 200, 1000
1060 or 5000 ppm during gestational days (gd) 7-17. Maternal toxicity was observed at 5000 ppm: one animal
1061 died and another had to be killed; body weight was significantly reduced compared to controls; uptake of
1062 food and water was reduced during gestational days 7-12 and even one week after delivery. At 5000 ppm,
1063 an increased embryo lethality in the later period of pregnancy and a reduced birth weight was found. The
1064 F1 generation showed an increased incidence of deaths, which occurred during the first 4 days, and body
1065 weights of females were still reduced at the end of the nursing period. Morphological changes included
1066 earlier dentition, eye lid opening and testes descent. At 8 weeks of age, reduced relative weights of brain,
1067 thyroid, thymus and testes as well as an increased relative weight of the pituitary gland were found. No
1068 histopathological changes were recorded. No effects on the reproduction of the F1 generation were found.
1069 In groups exposed at 1000 or 200 ppm, no developmental toxic effects were observed.

1070 Nelson et al. (1985) exposed groups of about 15 pregnant Sprague-Dawley rats for 7 hours/day at
1071 0, 5000 or 10000 ppm on gd 1-19 or to 20000 ppm on gd 7-15. The exposure atmosphere was monitored
1072 continuously using a Miran 1A infrared analyzer[®]. At 20000 ppm dams showed unsteady gait during the
1073 first days of exposure and a significantly reduced food uptake, however without any effect on body
1074 weight. No signs of maternal toxicity were reported at 5000 or 10000 ppm. On gd 20, dams were killed
1075 and half of the fetuses were examined for visceral and the other half for skeletal defects. No effects of
1076 methanol was found on the number of yellow bodies, implantations, resorptions or fetal deaths. At 20000
1077 ppm a significantly increased number of litters with malformations and a significantly reduced number of
1078 fetuses without malformations was found. Methanol induced a concentration-related decrease in fetal
1079 weights at 10000 and 20000 ppm. Skeletal and visceral malformations were significantly increased at
1080 20000 ppm. Malformations predominantly comprised extra or rudimentary cervical ribs and urinary or
1081 cardiovascular defects. Similar malformations were found at 10000 ppm, but the incidence was not
1082 significantly different from that in the control group. Blood methanol concentrations were measured in
1083 non-pregnant rats using gas chromatography (see Table 8 for results). Exposure at 5000 ppm did not cause
1084 any malformations.

1085 Stern et al. (1996; 1997) exposed 4 cohorts of about 30 (number estimated, not explicitly stated
1086 by the authors) pregnant Long-Evans rats at 0 or 4500 ppm methanol for 6 hours/day beginning on gd 6.
1087 After birth, both dams and pups were exposed through postnatal day 21. Maternal blood methanol
1088 concentrations were constant during gestation (mean 0.55 ± 0.07 (SD) mg/ml) and lactation (mean
1089 0.56 ± 0.09 (SD) mg/ml). Before weaning, pups exhibited blood concentrations approximately twice those
1090 attained by their dams (mean 1.26 ± 0.23 (SD) mg/ml). When exposure was continued after weaning on
1091 postnatal day 21, blood concentration in pups slowly declined and reached the level of the dams about 48
1092 days after birth. A panel of neurobehavioral tests was performed on the pups. No effects of methanol

1093 exposure on suckling and olfactory conditioned behavior were found. In motor activity tests, methanol-
1094 exposed neonates were less active on postnatal day 18, but more active on postnatal day 25 than the
1095 equivalent control group pups. Very subtle effects were also seen in two operant behavior tests.

1096 **3.3.3. Mice**

1097 Rogers et al. (1995, abstract) and Rogers (1999, personal communication) exposed groups of
1098 pregnant CD-1 mice on gd 7 to the following concentration-time combinations (CxT) (exposure periods
1099 indicated in brackets): 2000 ppm (5 and 7 hours), 5000 ppm (2, 3, 5 and 7 hours), 10000 ppm (2, 3, 5 and
1100 7 hours) or 15000 ppm (1, 2, 3, 5 and 7 hours). The number of litters ranged from 5-39 for CxT
1101 combinations and was 106 in control groups. Maternal blood methanol levels determined at the end of the
1102 exposure time increased with the CxT to a maximum mean of 4966 mg/l at 15000 ppm for 7 hours. For
1103 exposures with the same CxT, blood methanol levels were higher with shorter duration, higher
1104 concentration exposures, i.e., 1200 mg/l at 5000 ppm for 7 hours, 1500 mg/l at 10000 ppm for 3 hours,
1105 and 2300 mg/l at 15000 ppm for 2 hours were measured. Dams were killed on gd 17 for assessment of
1106 teratogenic effects. Fetal death, cleft palate and multiple skeletal defects were significantly increased at
1107 CxT combinations of 70000 ppm · h or higher (i.e., no fetal death was found at 5000 ppm for 7 hours;
1108 authors expressed data only as CxT values). The most sensitive endpoint was cervical rib induction, which
1109 occurred at CxT of 15000 ppm · h or higher (i.e., no effects were observed at 2000 ppm for 5 or 7 hours).
1110 Incidences for fetal effects increased with higher exposure concentrations for similar CxT, e.g. percentages
1111 of fetuses with C7 cervical rib were about 40 % at 5000 ppm for 7 h and at 10000 ppm for 3 h and about
1112 63 % at 15000 ppm for 2 h (this result also corresponds with the higher blood methanol concentration for
1113 the latter concentration-time combination). This study has only been published as an abstract up until now.

1114 In the study of Rogers et al. (1997), groups of 12-19 pregnant CD-1 mice were exposed at 10000
1115 ppm methanol or filtered air for 7 hours/day on 2 consecutive days during gestation, either gd 6-7, 7-8, 8-
1116 9, 9-10, 10-11, 11-12 or 12-13, or for 7 hours on a single day of gestation, either on gd 5, 6, 7, 8 or 9.
1117 Mice received water but not food during exposure. On analysis on gd 17, a significant effect on maternal
1118 body weights was evident only after exposure on gd 7-8. Significantly more dead/resorbed fetuses per
1119 litter were found after exposures on gd 6-7 or 7-8 or after single exposure on gd 7. After gd-7 exposure,
1120 the number of live fetuses was lower than on any other day. Cleft palate occurred significantly more
1121 frequently in groups exposed on gd 6-7, 7-8 or 8-9 and in those exposed on gd 5, 6, 7, 8 or 9 (peak on gd
1122 7). Exencephaly occurred significantly more frequently after exposure on gd 6-7 or 8-9 and in those
1123 exposed on gd 5, 6, 7 or 8 (peak on gd 7). The following significantly higher incidences of skeletal
1124 malformations were observed: defects of exoccipital (peak gd 6-7, gd 5), atlas (peak gd 6-7, gd 5,6), axis
1125 (peak gd 6-7, gd 7), rib on cervical vertebra seven (peak gd 6-7, gd 7), and rib on lumbar vertebra one
1126 (peak gd 7-8, gd 7). Maternal blood methanol concentrations were determined at times during, at the end
1127 of, and subsequent to a single 7-hour exposure on gd 7 (see Table 8).

1128 ***Studies with repeated inhalation exposure***

1129 Rogers et al. (1993) exposed pregnant CD-1 mice (number of dams examined indicated in
1130 brackets) at 1000 (31), 2000 (61), 5000 (61), 7500 (20), 10000 (20) or 15000 (34) ppm for 7 hours/day
1131 on gd 6-15. Controls comprised groups that were sham-exposed to filtered air, left untreated in their home
1132 cages or left in their home cages and food-deprived for 7 hours/day to match the food deprivation of
1133 methanol-exposed mice. The methanol concentration in the exposure chamber (15 air changes per hour)
1134 was monitored continuously with a Foxboro Miran 1A Infrared Analyzer®. One dam each died at 7500,

10000 and 15000 ppm. The sham-exposed and food-deprived controls as well as all methanol-exposed dams gained less weight than did unexposed dams fed ad libitum, but methanol did not exacerbate this effect. On gd 17, mice were killed and implantation sites, live and dead fetuses and resorptions were counted. Fetuses were examined externally and weighed as a litter. Half of each litter was examined for soft tissue anomalies, the other half for skeletal morphology. Significant increases were observed in the incidence of exencephaly and cleft palate at 5000 ppm or higher. At 7500 ppm or higher significantly increased number of dead fetuses/litter were found and full-litter resorptions were increased at 10000 and 15000 ppm. A concentration-related increase in cervical ribs was significant at 2000 ppm or higher. Using a log-logistic dose response model, the authors calculated maximum likelihood estimates (MLE₀₅) corresponding to 5% added risk above background (BMD₀₅ given in parenthesis). MLE₀₅ was 4314 (3398) ppm for cleft palate, 5169 (3760) ppm for exencephaly, 3713 (3142) ppm for cleft palate or exencephaly, 5650 (4865) ppm for resorptions and 824 (305) ppm for cervical rib. Blood methanol levels in dams were measured 15 minutes after cessation of the first exposure (see Table 8).

Bolon et al. (1993) investigated the phase-specific developmental toxicity of methanol in pregnant CD-1 mice. In pilot experiments, mice (5-12 animals/group) were exposed for 6 hours/day at 0 or 10000 ppm on gd 6-15 (i.e. organogenesis), 7-9 (i.e. period of murine neurulation) or 9-11 (i.e. period of potential neural tube reopening). The concentration-response relationship for neural tube defects was determined in a subsequent experiment by exposing dams (20-27 animals/group) at 0, 5000 (gd 7-9), 10000 (gd 6-15, 7-9 or 9-11) or 15000 ppm (gd 7-9 or 9-11). The critical periods of susceptibility to neural tube defects was further narrowed by exposing mice (8-15 animals/group) for 1 (gd 7, 8 or 9) or 2 days (gd 7-8 or 8-9) at 15000 ppm for 8 hours/day. Transient maternal neuronal toxicity was observed at 15000 ppm after the first exposure in 20 % of dams, after the second exposure in 10% and after the third exposure in 5 %. Signs included ataxia, circling, tilting heads and depressed motor activity were observed. Three dams were removed from the study on gd 7 due to the severity of clinical signs, but had no visible lesions. The other affected dams recovered within 12 hours. Clinical signs were not apparent at 5000 or 10000 ppm. Dams were killed at gd 17. In the pilot study in which a single exposure concentration of 10000 ppm was used, significantly reduced fetal weight was observed after gd-6-15 exposure, but not after exposure on gd 7-9 or 9-11. An significantly increased percentage of resorptions/litter was found after exposure on gd 6-15 and 7-9, but not gd 9-11. Neural tube defects, cleft palate and digit malformations were found in significantly higher incidence after exposure on gd 6-15, cleft palate after exposure on gd 9-11. In the dose-response experiments significantly increased percentages were found for resorptions/litter after 15000 ppm on gd 7-9 and for the number of litters with ≥ 1 resorption after 5000 ppm or higher on gd 7-9. Exposure to 5000 ppm or higher on gd 7-9 significantly induced in renal pelvic cavitation. Exposure at 10000 ppm or higher additionally resulted in significantly increased percentages of ocular defects, cleft palate, hydronephrosis and deformed tails, and exposure at 15000 ppm in neural tube defects. Neural tube defects and ocular lesions occurred after methanol inhalation between gd 7 and 9, while limb anomalies only occurred after exposure during gd 9 and 11. In the window-of-susceptibility experiment, significantly increased percentages of resorptions/litter and of litters with ≥ 1 resorption were observed after exposure at 15000 ppm only for the treatment periods gd 7, 7-8 and 7-9. A significant increase in neural tube defects was observed only after exposure on gd 7-8 or 7-9. The authors did not report, whether fetal death was observed.

3.4. Genotoxicity

Simmon et al. (1977) found methanol to give negative results when tested in *Salmonella*

1178 typhimurium plate incorporation assays with or without metabolic activation using strains TA98, TA100,
1179 TA1535, TA1537 and TA1538. De Flora et al. (1984) observed no effect of methanol in *Salmonella*
1180 typhimurium plate incorporation assays with or without metabolic activation using strains TA1535,
1181 TA100, TA1538, TA98 and TA1537 and in a DNA repair test using *Escherichia coli* strains WP2, WP67
1182 and CM871 in the presence or absence of metabolic activation.

1183 Crebelli et al. (1989) reported that methanol (6.0 % (v/v)) induced dose-dependently a statistically
1184 significant increased frequency of chromosomal malsegregations in *Aspergillus nidulans* diploid strain P1.
1185 Obe and Ristow (1977) did not observe sister chromatid exchanges in Chinese hamster ovary cells in vitro
1186 during treatment for 8 days to a final concentration of 0.1 % (v/v). McGregor et al. (1985) reported an
1187 increase in mutation frequency in L5178Y mouse lymphoma cells treated with 7.9 mg/ml methanol, if S-9
1188 mix was present (it should be noted that this concentration was higher than the maximum concentration
1189 proposed by the 1997 OECD guideline).

1190 Campbell et al. (1991) found no increased frequencies of micronuclei in blood cells, of sister
1191 chromatic exchanges, chromosome aberrations or micronuclei in lung cells in mice exposed by inhalation
1192 to 800 or 4000 ppm methanol 6 hours/day for 5 days.

1193 3.5. Carcinogenicity

1194 In a carcinogenicity study (NEDO, 1987; Katoh, 1989), Fischer-344 rats and B6C3F₁ mice were
1195 exposed at 10, 100 or 1000 ppm for 20 hours/day for 24 and 18 months, respectively. Compared to
1196 control groups, no increased mortality in the treated groups was observed. A non-significant reduction of
1197 body weight was observed in methanol-treated female rats between weeks 51 and 71, while in male and
1198 female mice an increased body weight was found between months 6 and 12 and months 9 and 12,
1199 respectively. The increase was significant in female mice exposed at 1000 ppm. No evidence of
1200 carcinogenicity was found in either species. Male rats exposed at 1000 ppm showed a higher frequency of
1201 papillary adenomas than controls, which, however, was not significantly different from controls. Female
1202 rats exposed at 1000 ppm methanol showed a higher number of adrenal pheochromocytoma, which,
1203 however, was not significantly different from controls.

1204 3.6. Summary

1205 With regard to lethal effects in animals, three points are important. First, very high methanol
1206 concentrations can lead to death by central nervous depression, e.g. 6-hour LC₅₀ values of 41000 and
1207 66900 ppm have been reported for mice and rats, respectively (Scott et al, 1979; BASF, 1980b). Second,
1208 high methanol concentrations can lead to fetal death in mice, e.g. fetal death was observed after exposure
1209 at 7500 ppm or higher for 7 hours/day on gestational days (gd) 6-15 and also after a single 7-hour
1210 exposure at 10000 ppm on gd 7, while no fetal death occurred after single or repeated exposure to 5000
1211 ppm (Rogers et al., 1993; 1995, abstract). Third, in monkeys, but not in rodents, delayed deaths can result
1212 from metabolic acidosis caused by accumulation of the methanol metabolite formate, e.g. delayed deaths
1213 occurred after repeated exposure to 10000 ppm for 21 hours/day (after 3 exposures) and 5000 ppm for 21
1214 hours/day (after 5 exposures), but not after repeated exposure to 5000 ppm for 6 hours/day, 5 days/week,
1215 4 weeks (NEDO, 1987; Andrews et al., 1987).

1216 Severe histopathological effects on central nervous system, liver and kidneys of monkeys have

1217 been reported after exposure at 5000 ppm for 21 hours/day for 20 days (NEDO, 1987), while no
1218 histopathological effects were reported at 5000 ppm for 6 hours/day, 5 days/week for 4 weeks (Andrews
1219 et al., 1987). While in the first study irritation was observed in monkeys at concentrations of 1000 ppm or
1220 higher, no irritation was found in the latter study at 5000 ppm.

1221 Methanol causes developmental toxic effects. In mice, fetal malformations were found a) after
1222 single exposure at 5000 ppm (3, 5 or 7 hours), but not at 5000 ppm (2 hours) or 2000 ppm (up to 7
1223 hours), and b) after repeated exposure at 2000 ppm or higher, but not at 1000 ppm, for 7 hours/day
1224 (Rogers et al., 1993; 1995, abstract; Rogers, 1999, personal communication). In rats, fetal malformations
1225 were found after exposure a) at 10000 ppm or higher, but not 5000 ppm, for 7 hours/day on gd 1-19 and
1226 b) at 5000 ppm, but not 1000 ppm, for 24 hours/day on gd 7-17 (Nelson et al., 1985; NEDO, 1987). After
1227 exposure of monkeys (*Macaca fascicularis*) at 200, 600 or 1800 ppm for 2 hours/day, 7 days/week 4
1228 months prior to and throughout pregnancy, some effects indicating developmental effects were observed
1229 (shorter pregnancy lengths, a severe wasting syndrome in some of the offspring (of unknown etiology),
1230 and a concentration-related delay in sensorimotor development in male offspring) (Burbacher et al.,
1231 1999a; 1999b; 2004a; 2004b). After exposure of rats at 4500 ppm for 6 hours/day from gestational day 6
1232 to postnatal day 21, very subtle effects were seen in operant behavior tests, but not in conditioned behavior
1233 and motor activity tests (Stern et al., 1996; 1997).

1234 There was no evidence of carcinogenic effects in a lifetime bioassay in rats and mice exposed at
1235 1000 ppm for 20 hours/day, 7 days/week (NEDO, 1987). Methanol showed no mutagenicity in bacterial
1236 mutagenicity tests, sister chromatid exchange assay in Chinese hamster ovary cells or the micronucleus test
1237 in mice exposed at 4000 ppm for 6 hours/day for 5 days; it increased the mutation frequency in mouse
1238 lymphoma cells at very high concentrations (WHO, 1997).

1239 4. SPECIAL CONSIDERATIONS

1240 4.1. Metabolism and Disposition

1241 4.1.1. Absorption, Distribution and Elimination

1242 The background blood concentrations in humans ranges from 0.32 to 2.61 mg/l (mean 0.73 mg/l)
1243 for methanol and from 3 to 19 mg/l (0.07-0.4 mmol/l) for formate. Both substances are taken up from the
1244 normal diet and generated in metabolic processes (Kavet and Nauss, 1990).

1245 Methanol is rapidly absorbed after inhalation, the absorption percentage being around 53-85 %
1246 (Leaf and Zatman, 1952; Sedivec et al., 1981). After ingestion, it is rapidly absorbed from the
1247 gastrointestinal tract with peak absorption occurring after 30-60 minutes (Becker, 1983, Leaf and Zatman,
1248 1952). Liquid methanol shows a very high skin absorption rate with an average of 0.192 mg methanol/cm²
1249 per minute (Dutkiewicz et al., 1980).

1250 Pollack and Brouwer (1996) studied the disposition of methanol in pregnant rats on gestation days
1251 (gd) 7, 14 and 20 and in pregnant CD-1 mice on gd 9 and 18. In these studies, exposure was by the oral,
1252 intravenous and inhalation routes (1000-20000 ppm for 8 hours). Saline was the vehicle for oral and
1253 intravenous exposure. Three to five animals were examined per dose and exposure condition. Methanol
1254 concentrations were measured in blood, urine, and amniotic fluid by gas chromatography (GC). The
1255 disposition of methanol after oral or intravenous administration was similar in pregnant and nonpregnant

1256 female rats, regardless of the gestational stage (day 7, 14 or 20 after conception) at which the
1257 toxicokinetics of methanol were examined. Parallel experiments in female mice indicated that methanol
1258 elimination was approximately twice as rapid in mice as in rats due to a significantly higher maximal
1259 velocity for methanol metabolism in the smaller rodent species. As was the case in the rat, relatively small
1260 changes in methanol elimination were observed during the course of gestation in pregnant mice. In both
1261 species, the rate of methanol metabolism by fetal liver in vitro was less than 10 % that of the metabolic
1262 rate in adult liver.

1263 Methanol distributes readily and uniformly to organs and tissues in direct correlation to their water
1264 content; its apparent volume of distribution is 0.6-0.7 l/kg (Yant and Schrenk, 1937). In humans, clearance
1265 of methanol from the body proceeds with a half-life of 1 day or more for high doses exceeding 1 g/kg and
1266 about 3 hours for low doses, i.e., less than 0.1 g/kg (Leaf and Zatman, 1952). From volunteers breathing
1267 methanol concentrations between 50 and 300 mg/m³ (38-229 ppm) for 8 hours, Sedivec et al. (1981)
1268 estimated a half-life of 1.5-2 hours. From volunteer exposures at up to 800 ppm for 8 hours and using
1269 blood and urine sampling, Batterman et al. (1998) calculated a half-lifes of 1.44 and 1.55 hours,
1270 respectively.

1271 **4.1.2. Metabolism**

1272 During metabolic degradation, methanol is initially oxidized to formaldehyde. The enzymes
1273 mainly catalyzing this reaction are alcohol dehydrogenase in humans and non-human primates and catalase
1274 in rats and other non-primate species (see Table 6); in addition microsomal oxidation by cytochrome P450
1275 2E1 may contribute to methanol transformation (WHO, 1997). Formaldehyde is very rapidly oxidized to
1276 formate by several enzymes including a specific formaldehyde dehydrogenase. Formate has to combine
1277 with tetrahydrofolate to form 10-formyl-tetrahydrofolate in order to be further oxidized to CO₂.
1278 Tetrahydrofolate is derived from folic acid (folate) in the diet and is the major determinant of the rate of
1279 formate metabolism (McMartin, 1975). The enzymes involved in the metabolism of methanol in primates
1280 respectively rodents are listed in Table 6.

1281 In humans, methanol is primarily eliminated by metabolism to formaldehyde and further to
1282 formate, which may be excreted in the urine or further oxidized to carbon dioxide. Of a 50-mg/kg dose of
1283 methanol, only 2 % is excreted unchanged by the lungs and kidney (Leaf and Zatman, 1952). Likewise,
1284 studies on rats and monkeys have shown that about 80 % of administered methanol is oxidized to CO₂
1285 (WHO, 1997).

1286 With regard to the methanol concentrations in blood resulting from inhalation exposure, species
1287 differences occur: on the one hand side, the increased ventilation per unit body weight associated with the
1288 smaller species (about 10-fold higher in mice and 3.5-fold higher in rats compared to humans) leads to
1289 higher blood concentrations in rodents. On the other hand side, K_m values are lower in rodents than in
1290 primates and thus enzymatic methanol oxidation in rodents is faster at low methanol exposure
1291 concentrations (enzymatic rate determined by K_m), while it is about equal at high concentrations
1292 (enzymatic rate determined by V_{max}, with similar V_{max} values in rodents and primates; cf. Table 7). The
1293 opposing effects on blood methanol concentration of higher specific ventilation rate and lower K_m in
1294 rodents, are responsible for the finding that the differences in blood methanol concentrations between
1295 rodents and humans are small at concentrations of up to 1000 ppm, but become increasingly larger at
1296 higher concentrations (see Table 8 and Figure 1) (Perkins et al., 1995a).

1297 The metabolic detoxification of formate in rodents occurs with a higher v_{max} (about 2-3-fold
 1298 higher in rats and 8-10-fold higher in mice compared to primates) and a lower K_m , which results in a much
 1299 faster elimination of formate in rodents. In contrast to rodents, formate accumulates in primates during
 1300 exposure to high methanol concentrations, since formate is formed faster than it is metabolized.

TABLE 6: METABOLISM OF METHANOL AND ENZYMES INVOLVED; adopted from WHO (1997) and Watkins et al. (1970)		
Metabolic step	Humans and non-human primates	Rodents
Methanol CH_3OH ↓ Formaldehyde HCHO	alcohol dehydrogenase (about 80-90% in monkey; Watkins et al., 1970) cytochrome P450 monooxygenase	catalase (peroxidase activity) alcohol dehydrogenase (about 40-45%; Watkins et al., 1970)
Formaldehyde HCHO ↓ Formic acid HCOOH	formaldehyde dehydrogenase	formaldehyde dehydrogenase
Formic acid HCOOH ↓ Carbon dioxide CO_2	10-formyl-THF-synthetase * 10-formyl-THF-dehydrogenase	10-formyl-THF-synthetase 10-formyl-THF-dehydrogenase

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313 * THF, tetrahydrofolate

TABLE 7: KINETIC PARAMETERS OF METHANOL METABOLISM					
	Metabolic step	Species	V _{max} ^a	K _m	Reference
1314 1315 1316 1317 1318 1319 1320	Methanol CH ₃ OH ↓ Formaldehyde HCHO	monkey (Mac. mulata)		360 mg/l ^b	Dafeldecker et al., 1981
		monkey (Mac. fascicularis)	70 mg/l h		Noker et al., 1980
		monkey (Mac. fascicularis)	171 mg/h	63 ± 11 mg/l	Burbacher et al., 1999a; Burbacher et al., 2004a
		monkey (Mac. nemestrina)	75 mg/l h	278 mg/l	Makar et al., 1975
		monkey	27.5 mg/kg h	44.8 ± 19.0 mg/l	Watkins et al., 1970
		monkey (Mac. fascicularis)	44 mg/l h	33.9 ± 15.4 mg/l	Eells et al., 1983
		monkey (Mac. mulata)	48 mg/l h	52.9 ± 14.5 mg/l	Makar et al., 1968
		rat, non-pregnant	63.2 ± 6.3 mg/kg h	48.7 mg/l	Ward et al., 1997
		rat, pregnant gd 14	60.5 ± 6.4 mg/kg h	48.7 mg/l	Ward et al., 1997
		rat, pregnant gd 20	50.6 ± 2.5 mg/kg h	48.7 mg/l	Ward et al., 1997
1321 1322 1323 1324 1325	Formaldehyde HCHO ↓ Formic acid HCOOH	mouse, non-pregnant	134 ± 6 mg/kg h		Ward et al., 1997
		mouse, pregnant gd 8	131 ± 3 mg/kg h		Ward et al., 1997
		mouse, pregnant gd 18	96.8 ± 6.2 mg/kg h		Ward et al., 1997
		human	75 mg/kg h	3.8 mg/l	Horton et al., 1992
		monkey	144 mg/kg h	3.8 mg/l	Horton et al., 1992
1326 1327 1328 1329 1330	Formic acid HCOOH ↓ Carbon dioxide CO ₂	rat	300 mg/kg h	3.8 mg/l	Horton et al., 1992
		monkey (Mac. fascicularis)	19.9 ± 0.5 mg/kg h		Eells et al., 1983
		monkey (Mac.)	35 mg/kg h	175 mg/kg	McMartin et al., 1977
		primates	34 mg/kg h		Greim, 1995
		rat (Sprague-Dawley)	85 mg/kg h	100 mg/kg	Palese and Tephly, 1975
		rat	75 mg/kg h	60 mg/kg	McMartin et al., 1977
		rat	78 mg/kg h		Johlin et al., 1987 (Ward et al., 1995)
		mouse	300 mg/kg h		Johlin et al., 1987 (Ward et al., 1995)

^a values of V_{max} are given for substrate concentrations

^b values in mg/l refer to methanol concentrations in blood

4.1.3. Pharmacokinetic Models

Bouchard et al. (2001) developed a multicompartment biologically based dynamic model to describe the time evolution of methanol and its metabolites in rats, monkeys and humans following oral uptake or inhalation exposure. The dynamic of intercompartment exchanges was described mathematically by a mass balance differential equation system. The model's conceptual and functional representation was the same for rats, monkeys, and humans, but relevant published data specific to the species of interest served to determine the critical parameters of the kinetics. For model development, the kinetic data of Horton et al. (1992) for rat (intravenous route), Dorman et al. (1994) for monkey and Osterloh et al. (1996) and Sedivec et al. (1981) for humans were used. The model was validated using inhalation data for

1342 rat and monkey (Horton et al., 1992) and humans (Batterman et al., 1998). Simulations provided a good
 1343 agreement between measured data and model calculations.

1344 Perkins et al. (1995a) established a pharmacokinetic model allowing calculation of blood
 1345 methanol concentrations in humans, rats and mice after inhalation exposure (see Appendix B). The authors
 1346 calculated that an 8-hour exposure at 5000 ppm methanol would result in blood methanol concentrations
 1347 of 2976-4188 mg/l in mice, 1018 mg/l in rats and 224 mg/l in humans, while exposure at 1000 ppm
 1348 would result in 132-268, 93.5, and 38.5 mg/l, respectively, and exposure at 200 ppm in 9-12, 11, and 7.5
 1349 mg/l, respectively.

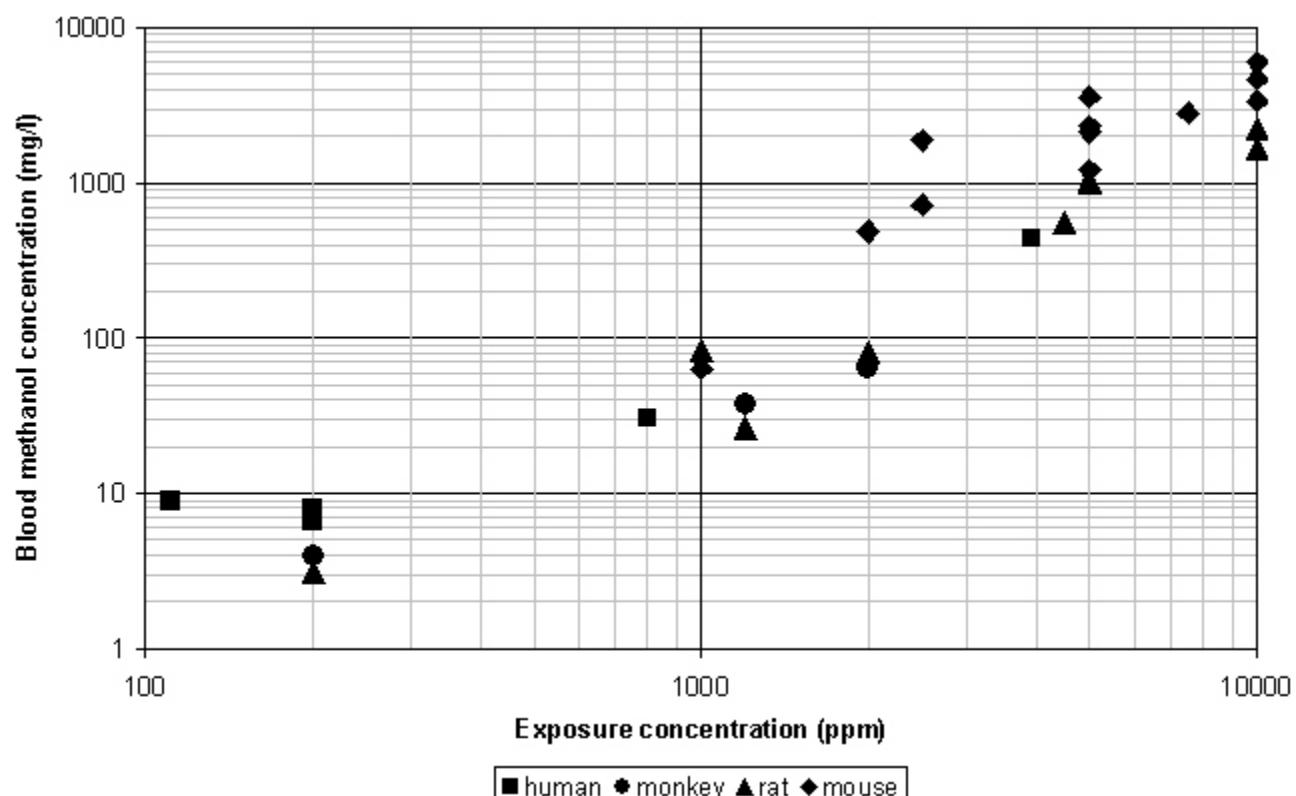
1350 Horton et al. (1992) developed a pharmacokinetic model of inhaled methanol based on data from
 1351 Fischer-344 rats and rhesus monkeys. The blood methanol concentrations after a 6-hour inhalation
 1352 exposure predicted for humans, monkeys, and rats were 140, 230 and 400 mg/l at 5000 ppm, 50, 70 and
 1353 90 mg/l at 2000 ppm and 30, 30 and 40 mg/l, respectively, at 1200 ppm.

1354 The models are in agreement with experimental data for exposure periods of up to 8 hours, which
 1355 are summarized in Table 8 and in Figure 1. For 5 individuals exposed to methanol concentrations between
 1356 3000 and 5500 ppm during an 8-hour-work shift (Kawai et al., 1991) blood methanol concentrations were
 1357 calculated from the reported urine concentrations and the relationship between methanol concentrations in
 1358 urine and blood:

$$1359 \text{ (mg/l (urine)} = 0.867 \times \text{mg/l (blood)} + 0.687 \text{ (Kawai et al., 1992).}$$

1360 The calculated mean blood concentration of 442 mg/l at an exposure concentration of 3936 ppm was
 1361 almost a factor 2 higher than expected from the pharmacokinetic models. It remains unclear whether this
 1362 difference was caused by the use of values of V_{max} and K_m estimated from monkey data, a concomitant
 1363 ethanol consumption of the workers, higher actual ventilation rates than assumed in the model or genetic
 1364 polymorphisms of involved enzymes present in Japanese. In summary, blood concentrations are similar
 1365 between different species up to exposure concentrations of about 1000 ppm. At higher concentrations,
 1366 resulting blood concentrations in rats and mice are about 3-fold and 10-fold, respectively, higher than in
 1367 humans.

1368 Fisher et al. (2000) described a physiologically based pharmacokinetic (PBPK) model for the
 1369 monkey, to account for fractional systemic uptake of inhaled methanol vapors in the lung.
 1370


1371 **TABLE 8: BLOOD METHANOL CONCENTRATIONS IN HUMANS AND ANIMALS AFTER A
 1372 SINGLE EXPOSURE TO METHANOL**

1373 Species	Exposure time (h)	Exposure concentration (ppm)	Blood methanol concentration at end of exposure (mg/l)	Remarks	Reference
1374 human	8	3936	442	occupational; n=5	Kawai et al., 1991
1375 human	8	800	30.7 ± 6.9 (SD)	experimental; n=15; 0.6 ± 0.5 in controls	Batterman et al., 1998

	Species	Exposure time (h)	Exposure concentration (ppm)	Blood methanol concentration at end of exposure (mg/l)	Remarks	Reference
1376	human	6	200	7.0 ± 1.2 (SD)	experimental; n=6; subjects resting, 1.8±1.2 before exposure	Lee et al., 1992
1377	human	6	200	8.1 ± 1.5 (SD)	experimental; n=6; exercising subjects	Lee et al., 1992
1378	human	4	200	6.5 ± 2.7 (SD)	experimental; n=20; 1.8 ± 2.6 before exposure	Chuwers et al., 1995
1379	human	1,25	190	1.9 ± 0.5	experimental; n=24; 0.6 ± 0.3 after sham exposure	Cook et al., 1991
1380	human	8	111 ± 68 (SD)	8.9 ± 14.7 (SD)	occupational; n=16	Heinrich and Angerer, 1982
1381	monkey	6	2000	64.4 ± 10.7 (SEM)	n=3	Horton et al., 1992
1382	monkey	2	1800	33.2-40.4	pregnant animals	Burbacher et al., 1999a; 2004a
1383	monkey	6	1200	37.6 ± 8.5 (SEM)	n=3	Horton et al., 1992
1384	monkey	2	600	9.5-12.1	pregnant animals	Burbacher et al., 1999a; 2004a
1385	monkey	6	200	3.9 ± 1.0 (SEM)	n=3	Horton et al., 1992
1386	monkey	2	200	4.3-5.5	pregnant animals	Burbacher et al., 1999a; 2004a
1387	rat	8	20000	3916 ± 907 (SD)		Perkins et al., 1995b
1388	rat	7	20000	8650 ± 400 (SD)	n=3	Nelson et al., 1985
1389	rat	8	15000	2667 ± 372 (SD)		Perkins et al., 1995b
1390	rat	7	15000	3826 ± 162 (SE)	pregnant rats; n=13; 2.7 ± 0.8 in controls	Stanton et al., 1995
1391	rat	8	10000	1656 ± 330 (SD)		Perkins et al., 1995b
1392	rat	7	10000	2240 ± 200 (SD)	n=3	Nelson et al., 1985
1393	rat	8	5000	1047 ± 298 (SD)		Perkins et al., 1995b

	Species	Exposure time (h)	Exposure concentration (ppm)	Blood methanol concentration at end of exposure (mg/l)	Remarks	Reference
1394	rat	7	5000	1000 ± 210 (SD)	n=3	Nelson et al., 1985
1395	rat	6	4500	550 ± 70 (SD)	pregnant rat; n not state, about 60	Stern et al., 1996
1396	rat	6	2000	79.7 ± 6.1 (SEM)	n=4	Horton et al., 1992
1397	rat	6	1200	26.6 ± 2.0 (SEM)	n=4	Horton et al., 1992
1398	rat	8	1000	83 ± 15 (SD)		Perkins et al., 1995b
1399	rat	6	200	3.1 ± 0.4 (SEM)	n=4	Horton et al., 1992
1400	mouse	8	15000	11165 ± 3290 (SD)	n=2-4; individual exposure; high activity	Perkins et al., 1995b
1401	mouse	7	15000	7720 ± 581 (SEM)	pregnant mice; n=3; 1.6 ± 0.4 in controls	Rogers et al., 1993
1402	mouse	2	15000	2300	pregnant animals	Rogers, 1999
1403	mouse	8	10000	6028 ± 506 (SD)	n=2-4; individual exposure; high activity	Perkins et al., 1995b
1404	mouse	8	10000	3348 ± 36 (SD)	n=3-4; group exposure; moderate activity	Perkins et al., 1995b
1405	mouse	7	10000	4653 ± 552 (SEM)	see above	Rogers et al., 1993
1406	mouse	3	10000	1500	pregnant animals	Rogers, 1999
1407	mouse	7	7500	2801 ± 35 (SEM)	see above	Rogers et al., 1993
1408	mouse	8	5000	3580 ± 599 (SD)	n=2-4; individual exposure; high activity	Perkins et al., 1995b
1409	mouse	8	5000	2313 ± 338 (SD)	n=3-4; group exposure; moderate activity	Perkins et al., 1995b
1410	mouse	7	5000	2126 ± 157 (SEM)	see above	Rogers et al., 1993
1411	mouse	7	5000	1200	pregnant animals	Rogers, 1999

	Species	Exposure time (h)	Exposure concentration (ppm)	Blood methanol concentration at end of exposure (mg/l)	Remarks	Reference
1412	mouse	8	2500	1883 ± 1278 (SD)	n=2-4; individual exposure; high activity	Perkins et al., 1995b
1413	mouse	8	2500	718 ± 57 (SD)	n=3-4; group exposure; moderate activity	Perkins et al., 1995b
1414	mouse	7	2000	487 ± 125 (SEM)	see above	Rogers et al., 1993
1415	mouse	7	1000	63 ± 4 (SEM)	see above	Rogers et al., 1993

1416 **FIGURE 1: BLOOD CONCENTRATIONS OF METHANOL IN DIFFERENT SPECIES**

1417 Data for actual exposure concentrations up to 10000 ppm and exposure periods between 6 and 8 hours
1418 were taken from Table 8.

1420 The first effects on humans caused by methanol exposure are central nervous system effects, such
1421 as headache, dizziness and nausea, weakness, peripheral nervous effects, such as shooting pains,
1422 paresthesia, prickling and numbness in the extremities, and ocular effects, such as changes in color
1423 perception and, blurred vision (NIOSH, 1976; Kavet and Nauss, 1990; ACCT, 2002). Due to their fast
1424 appearance after exposure these effects are probably caused by methanol itself and not by a metabolite.
1425 More marked effects on the central nervous system, such as ataxia, incoordination, lethargy, prostration,
1426 narcosis and coma, are seen in rodents.

1427 After occurrence of the immediate symptoms mentioned above, which can be rather weak, an
1428 asymptomatic latent period follows and may last from several hours to a few days, although 12 to 24
1429 hours is most common. The latent period gives way to the onset of a syndrome that consists of an
1430 uncompensated metabolic acidosis with superimposed toxicity to the visual system (Kavet and Nauss,
1431 1990; AACT, 2002). There is substantial clinical and experimental evidence that formic acid is the toxic
1432 metabolite responsible for metabolic acidosis (Jacobsen and McMarn, 1986) and ocular toxicity (Lee et
1433 al., 1994a; 1994b).

1434 Rats rendered folate-deficient by either feeding a folate-deficient diet (Lee et al. 1994a; 1994b) or
1435 chemical treatment (Ells, 1991), developed metabolic acidosis, ocular toxicity and retinal
1436 histopathological changes analogous to the human methanol-poisoning syndrome. A reduced folate level
1437 leads to a shortage of tetrahydrofolate, the cofactor required for metabolic oxidation of formate, and thus
1438 causes accumulation of formate in these animals. Martinasevic et al. (1996) found that total folate levels in
1439 human and rat retinal tissues were much lower than the respective levels in liver. Absolute folate
1440 concentrations in human retinal tissue were only 14 % of those found in rat retina. The levels of 10-formyl
1441 tetrahydrofolate dehydrogenase were three times higher in human retina compared with rat retina. Taking
1442 into account the lower detoxification capacity of human retina, it seems probable that the ocular toxic
1443 effects of methanol are also caused by the metabolite formate.

1444 In experiments in vitro (Nicholls, 1975), formate has been shown to inhibit cytochrome c oxidase,
1445 a component of the mitochondrial electron transport chain, through binding to the ferric heme iron.
1446 Wallace et al. (1997) report that in vitro studies using isolated retinal and cardiac mitochondria revealed
1447 that formate selectively inhibited retinal mitochondrial ATP synthesis. Hayreh et al. (1977) postulated that
1448 formate interferes with ATP production in the retina and optic nerve, which could result in retinal
1449 dysfunction, axoplasmic flow stasis in the optic nerve, optic disc edema, interference with the neural
1450 conduction process, ultimately resulting in blindness.

1451 The developmental toxicity of methanol in rodents may be caused by methanol itself. Dorman et
1452 al. (1995) exposed pregnant CD-1 mice on day 8 of gestation at 10000 or 15000 ppm methanol for 6
1453 hours by inhalation. Other groups were treated by gavage with 1.5 g/kg methanol or 750 mg/kg sodium
1454 formate. Peak formate levels in maternal plasma and decidual swelling from pregnant mice given sodium
1455 formate were similar to those observed following a 6-hour methanol inhalation at 15000 ppm. No
1456 significant effect on folate concentrations in red blood cells and the decidual swelling was found during
1457 and up to 16 hours after the exposure. Exencephaly was only observed after exposure to methanol, but not
1458 sodium formate. Sakanashi et al. (1996) and Fu et al. (1996) observed that a low dietary folate level, that
1459 led to a liver folate level of about half the normal value and that did not affect maternal hematocrit levels,
1460 led to a 4-fold increase in methanol-induced incidences of cleft palate. Increased exencephaly was found
1461 in the low folate group treated with methanol, but was not increased by low dietary folate alone. The

1462 methanol treatment did not influence folate levels in liver and plasma, as measured on gestational day 18,
1463 i.e., three days (Sakanashi et al., 1996) or 10 days (Fu et al., 1996) after the last methanol dosing. These
1464 results to not suggest that methanol exerts its developmental toxic effect by decreasing folate
1465 concentrations in the body; rather it seems to exert developmental toxic effects in parallel to a suboptimal
1466 dietary folate concentration.

1467 This conclusion is supported by the results of Andrews et al. (1998) who conducted in vitro
1468 studies with rat embryos to compare toxicities of methanol and formate alone and in combination.
1469 Treatment with individual compounds produced significant decreases in development score, somite
1470 number, crown-rump length, and head length in Simplex 1 and Simplex 2. In Simplex 2, the
1471 methanol/formate mixtures also produced significant decreases in those parameters. However, in all cases,
1472 the reductions following exposure to either methanol or formate alone were greater than reductions
1473 observed with methanol/formate mixtures. The observation led Andrews and colleagues to conclude that
1474 methanol and formate have an infra-additive (less than additive) interaction and produce effects through
1475 different mechanisms of toxicity.

1476 4.3. Pharmacokinetics and Toxic Effects in Normal and Folate-Deficient Animals

1477 In animals rendered folate-deficient through a folate-reduced or folate-deficient diet, higher
1478 formate concentrations, but not higher methanol concentrations, are found in the blood.

1479 Lee et al. (1994b) exposed a group of 10 folate-reduced Long-Evans rats at 2000 ppm methanol
1480 for 20 hours/day for 3 days. Rats had been on a folate-deficient diet for at least 18 weeks. Their liver
1481 folate levels were between 10-30 % of animals fed a normal standard diet. Blood methanol concentrations
1482 measured after 24, 48 and 72 hours revealed a plateau and were between 9 and 13 mmol/l (290 to 420
1483 mg/l). Values of folate-sufficient and folate-reduced rats were not statistically different. The blood formate
1484 concentrations during the exposure period showed a linear increase in folate-reduced animals to about 8
1485 mmol/l at 72 hours. Folate concentrations in folate-sufficient control animals were always <0.5 mmol/l
1486 and not different from pretreatment values. Lee et al. (1994a) exposed a group of 11 folate-reduced Long-
1487 Evans rats at 3000 ppm methanol for 20 hours/day for up to 14 days. One animal died after 3 days and
1488 another 7 animals died after 4 days. The blood formate levels in the surviving animals were 20.8 ± 1.2
1489 mmol/l. After exposure of folate-reduced rats at 1200 ppm for 6 hours, blood formate concentrations
1490 increased to 370 % of that of unexposed controls. An additional 72 % increase was observed after
1491 exposure at 2000 ppm. In folate-sufficient rats, formate levels were not increased over the endogenous
1492 levels after a 6-hour exposure at 1200 or 2000 ppm. Horton et al. (1992) reported that an oral methanol
1493 dose of 2 g/kg resulted in a maximum blood formate concentration of 11.7 mmol/l at 48 hours post
1494 administration in folate-reduced rats. A formate concentration of 8.1 mmol/l was found after 24 hours.

1495 No increased formate blood levels were found in rhesus monkeys after exposure at 2000 ppm
1496 methanol for 6 hours (Horton et al., 1992). In another study (Dorman et al., 1994; Medinsky et al. 1997)
1497 monkeys were rendered folate deficient by feeding a folate-deficient diet for 6 weeks before methanol
1498 exposure. At that time, serum folate levels ranged from 0.5-2.4 ng/ml and thus were below the level of 3
1499 ng/ml, which is considered indicative of folate deficiency in humans. After exposure for 2 hours at 10,
1500 200 or 900 ppm methanol, blood methanol concentrations in folate-sufficient monkeys were 0.2-0.8, 10-
1501 30 and 30-200 μ mol/l (0.006-0.025, 0.32-0.96, 0.96-6.4 mg/l), respectively. In folate-deficient animals
1502 exposed at 900 ppm, 100-300 μ mol/l (0.32-9.6 mg/l) were found. Twentyfour hours after an oral dose of
1503 2 g/kg, a peak formate level of 6.5 mmol/l was found in monkeys (Noker et al., 1980).

1504 In contrast to folate-sufficient rats, folate-deficient rats show metabolic acidosis and delayed
1505 deaths and are more susceptible to neurotoxic effects of methanol: In the study of Lee et al. (1994a), one
1506 animal died after 3 days and another 7 animals died after 4 days from exposure at 3000 ppm for 20
1507 hours/day for up to 14 days, while none of 11 folate-sufficient rats died. The surviving animals were
1508 lethargic and their blood pH values were 6.9 ± 0.04 . Immediately cessation of exposure to 2000 ppm for
1509 20 hours/day for 3 days, Lee et al. (1994b) recorded flash-evoked potentials in anesthetized rats. In all
1510 folate-reduced and methanol-exposed animals, a reduction of the b-wave amplitude in the
1511 electroretinogram by an average of 67 % was observed, indicating an effect on the retinogeniculocortical
1512 visual pathway. After oral administration of 2.0 g/kg, a b-wave amplitude reduction of 61 % was obtained.
1513 The reversibility and persistence of the effect was not investigated.

1514 In rats, methanol treatment did not affect liver and plasma folate concentrations. In folate-deficient
1515 rats higher incidences of malformations are found than in folate-sufficient rats and these incidences are
1516 increased by methanol treatment.

1517 Sakanashi et al. (1996) assessed the influence of the maternal folate status on the developmental
1518 toxicity of methanol. CD-1 mice were fed a folic acid-free diet supplemented with 400 (low), 600
1519 (marginal) or 1200 (adequate) nmol folic acid/kg for 5 weeks prior to breeding. All diets contained 1 %
1520 (w/w) succinylsulfathiazole to inhibit endogenous folate production by the intestinal microflora. There
1521 were no effects of the dietary treatment on body weights before breeding. Pregnant animals of each group
1522 were exposed by gavage to 0, 2.0 or 2.5 g methanol/kg twice daily on gestational days (gd) 6-15. Dams
1523 receiving the lowest folate supplementation had significantly lower body weights at gd 12 and 18.
1524 Methanol significantly reduced the gestational weight gain in dams fed the 600 or 1200 nmol folate/kg
1525 diet. Mice were killed and fetuses analyzed on gd 18. In non-methanol exposed animals, maternal folate
1526 concentrations were 4.9 ± 0.7 , 14.5 ± 0.8 and 13.0 ± 1.7 nmol/g in the liver and 5.1 ± 0.2 , 6.3 ± 0.6 and 9.2 ± 3.6
1527 nmol/l plasma in groups receiving 400, 600 and 1200 nmol folate/kg diet, respectively. Methanol
1528 treatment did not significantly influence these folate concentrations. The reduced folate levels did not
1529 cause any effect on hematocrit. Fetal body weights were marginally affected by the diet alone, but
1530 significantly lowered by methanol treatment compared to the respective vehicle-treated groups in the low
1531 and marginal folate groups. The percent of litters affected by cleft palate was increased by methanol
1532 treatment and this effect was exacerbated by low dietary folate. In the adequate, marginal and low groups,
1533 percentages of affected litters were 7.4, 0.0 and 18.5 % without methanol treatment, 30.8, 6.7 and 100 %
1534 at 4.0 g/kg and 34.5, 66.7 and 86.2 % at 5.0 g/kg, respectively. The percentage of litters affected with
1535 exencephaly were 0.0, 0.0 and 3.7 % without methanol treatment, 7.7, 0.0 and 0.0 % at 4.0 g/kg and 3.4,
1536 13.3 and 34.5 % at 5.0 g/kg.

1537 The same investigators performed similar experiments with a reduced exposure period (Fu et al.,
1538 1996): CD-1 mice were fed a folic acid-free diet supplemented with 400 (low) or 1200 (adequate) nmol
1539 folic acid/kg for 5 weeks prior to breeding, as described by Sakanashi et al. (1996). Pregnant animals of
1540 each group were exposed by gavage to 0 or 2.5 g methanol/kg twice daily on gd 6-10. Folate
1541 concentrations in the low dietary folate group were reduced by 50 % in maternal liver, 30 % in red blood
1542 cells and 60-70 % in fetal tissue (low dietary group: 1.86 ± 0.15 nmol/g in controls and 1.69 ± 0.12 nmol/g in
1543 methanol-treated group; adequate dietary group: 5.04 ± 0.22 nmol/g in controls and 5.89 ± 0.39 nmol/g in
1544 methanol-treated group). Low dietary folate alone resulted in cleft palate in 14 % of the litters, while no
1545 litters were affected in the adequate folate group. Methanol treatment increased the incidence of cleft
1546 palate to 73 % in the low and 19 % in the adequate group. The incidence of exencephaly was increased by

1547 methanol from 14 to 23 % in the low and from 4 to 19 % in the adequate group; the increase was not
1548 statistically significant.

1549 **4.4. Structure-Activity Relationships**

1550 There are no structure-activity relationships applicable to estimating acute exposure limits for
1551 methanol. The nature and delayed onset of its toxicity, which involves metabolism into the toxic
1552 metabolite formic acid are notably different from other alcohols.

1553 Youssef et al. (1992) determined the 24-hour oral LD₅₀ values of methanol and ethanol in female
1554 albino rats. The estimated LD₅₀ were 12.25 ml/kg for methanol and 19.00 ml/kg for ethanol, which
1555 corresponds to 0.303 mol/kg for methanol and 0.325 mol/kg for ethanol. A very steep dose-response
1556 curve was observed for methanol-induced lethality, with 5 % lethality at a dose of about 2.2 mol and 95 %
1557 lethality at a dose of about 3.5 mol.

1558 Rogers (1995, abstract) found methanol to be a more potent developmental toxicant than ethanol,
1559 when pregnant mice were administered two intraperitoneal injections of ethanol (2.45 g/kg each) or
1560 methanol (2.45 g/kg or 1.7 g/kg; the latter is the molar equivalent of the ethanol dose used). Unlike
1561 methanol, ethanol induced a transient ataxia lasting several hours. While the dose of ethanol used caused
1562 only a low incidence of microphthalmia, with no effects on viability or fetal weight, the higher methanol
1563 dose resulted in 100 % of live fetuses having holoprosencephaly spectrum malformations including
1564 absence of the forebrain, cebophthalmia, complete premaxillary agenesis, and micro- or anophthalmia. A
1565 mean of 55 % of implants/litter were resorbed, and fetal weight was reduced. The lower methanol dose
1566 was still clearly more toxic than the equimolar ethanol dose, producing 30 % resorptions and midfacial
1567 deficiencies and micro- or anophthalmia in over 50 % of live fetuses.

1568 Nelson et al. (1985) also found methanol to be a more potent developmental toxicant as ethanol:
1569 groups of approximately 15 pregnant Sprague-Dawley rats were exposed for 7 hours/day to methanol
1570 concentrations of 20000 ppm (during gestational days (gd) 7-15), 10000 ppm (gd 1-19) or 5000 ppm (gd
1571 1-19) (see Section 3.3.2) or to ethanol concentrations of 20000 ppm (gd 1-19), 16000 ppm (gd 1-19) or
1572 10000 ppm (gd 1-19). For both alcohols, unexposed groups served as controls. Analysis on gd 20 revealed
1573 slight maternal toxicity and a high incidence of congenital malformations ($p < 0.001$) (predominantly extra
1574 or rudimentary cervical ribs and urinary or cardiovascular defects) in the 20000-ppm-methanol group.
1575 Similar, but not significantly increased malformations were seen in the 10000-ppm group. No adverse
1576 effects were noted in the 5000-ppm group. Dams exposed to 20000 ppm ethanol were narcotized at the
1577 end of exposure, and maternal weight gain and feed intake were decreased during the first week of
1578 exposure. The 16000-ppm dams had significantly depressed weight gain during the first week of exposure,
1579 but there were no significant effects on feed consumption. There was no definite increase in
1580 malformations at any level of ethanol, although the incidence in the 20000-ppm group was of borderline
1581 significance.

1582 In humans, fetal alcohol syndrome is the most common preventable cause of mental retardation.
1583 Diagnostic criteria for fetal alcohol syndrome include heavy maternal alcohol consumption during
1584 gestation, pre- and postnatal growth retardation, craniofacial malformations including microcephaly, and
1585 mental retardation. Less complete manifestations of gestational alcohol exposure also occur and are referred
1586 to as fetal alcohol effects or alcohol-related neurodevelopmental disorder. Although the total amount of

1587 alcohol consumed and the pattern of drinking are both important factors, peak maternal blood alcohol
1588 level is the most important determinant of the likelihood and severity of effects. Overconsumption during
1589 all three trimesters of pregnancy can result in certain manifestations, with the particular manifestations
1590 dependent upon the period of gestation during which insult occurs. Despite an intensive research effort,
1591 the mechanisms underlying fetal alcohol syndrome remain unclear (Bruckner and Warren, 2001).

1592 **4.5. Other Relevant Information**

1593 **4.5.1. Species Variability**

1594 The species differences in methanol toxicity result from differences in metabolism of methanol
1595 via formaldehyde and formic acid to carbon dioxide. In contrast to rodents, formic acid accumulates in
1596 human and non-human primates, which leads to the symptoms of metabolic acidosis and, probably, is also
1597 responsible for the ocular toxicity. Rodents develop higher blood methanol levels after inhalation
1598 exposure compared to primates, which favors development of methanol-caused central nervous system
1599 and developmental toxicity.

1600 The mouse is considerably more susceptible for the developmental toxic effects than the rat: For
1601 repeated 7-hours/day exposures the LOEL for malformations was 10000 ppm in rats (corresponding to a
1602 blood methanol concentration of 2247 mg/l) (Nelson et al., 1985) and 2000 ppm in mice (corresponding
1603 to 487 mg/l) (Rogers et al., 1993) and the NOEL was 5000 ppm in rats (corresponding to 1000 mg/l) and
1604 1000 ppm in mice (corresponding to 63 mg/l). Thus, the blood methanol concentration at the LOEL was
1605 about 5fold lower and at the NOEL it was about 16fold lower in mice compared to rats. Similar data for
1606 other species are not available.

1607 **4.5.2. Intraspecies Variability**

1608 Several factors contribute to variability in methanol-induced toxicity between. The rate of
1609 methanol metabolism and formate accumulation is influenced by the folate status. Lee et al. (1994a) have
1610 shown that Long-Evans rats fed a folate-reduced diet and having only about 10-30 % of the normal folate-
1611 level in the liver - unlike normal control animals - developed metabolic acidosis. Thus, folate-deficient
1612 individuals, which include pregnant women, the elderly, individuals with poor-quality diet, and alcoholics
1613 might develop higher formate concentrations compared to normal individuals (WHO, 1997). For the lack
1614 of data, it is very difficult to estimate this variability in quantitative terms.

1615 **4.5.3. Combination Effects**

1616 Methanol shows a markedly prolonged half-life when exposure is combined with exposure to
1617 ethanol (WHO, 1997). This has firmly been established for oral exposure. The slower methanol
1618 metabolism due to the higher affinity of alcohol dehydrogenase for ethanol is used therapeutically in
1619 methanol poisonings in order to prevent metabolism of methanol to formic acid. A blood ethanol level of
1620 about 22 mmol/l (1000 mg/l) has been recommended to block methanol metabolism in poisoned humans
1621 (AACT, 2002; Jacobsen and McMartin, 1986; Becker, 1983). In monkeys methanol oxidation was
1622 reduced by 90 % when the molar ratio of ethanol to methanol in the orally applied mixture was 1:1 and by
1623 70 % when the ratio was 1:4 (Jacobsen and McMartin, 1986).

1624 **4.5.4. Role of Folate in Human Birth Defects**

1625 It has been estimated that about half of the neural tube defects in humans are caused by an
1626 insufficient intake of folic acid with the normal diet. The folate dose in normal diet is only about half of
1627 the value of 0.4 mg/day which is recommended for women capable of becoming pregnant (Butterworth
1628 and Bendich, 1996; Forman et al., 1996). A correlation with other congenital birth defects, such as
1629 orofacial clefts, has also been found (Tolarova and Harris, 1995). Periconceptional folate supplementation
1630 has been shown to give effective protection against the development of neural tube defects (Butterworth
1631 and Bendich, 1996; Czeizel, 1996). Folate supplementation is only effective when given before and very
1632 early in pregnancy because closure of the neural tube and the palate and upper jaw occurs in week 3-4 and
1633 week 3-8 of pregnancy, respectively.

1634 While a suboptimal folate status of pregnant women constitutes itself a significant risk factor, it is
1635 unlikely that methanol exposure lowers folate concentrations in the body and thus contributes indirectly to
1636 a lower folate status and an increased rate of birth defects. There are no experimental findings that would
1637 support the possibility that a single methanol exposure decreases body folate concentrations. In mice, a 6-
1638 hour exposure at 15000 ppm methanol had no significant effect of on folate concentrations in red blood
1639 cells and in the decidual swelling during and up to 16 hours after cessation of the exposure (Dorman et al.,
1640 1995). Likewise, oral methanol doses of up to 5 g/kg/day given on gestational days 6-15 (Sakanashi et al.,
1641 1996) or on gestational days 6-10 (Fu et al., 1996) did not influence liver and plasma folate concentrations
1642 (cf. Section 4.3) when measured 3 days and 8 days, respectively, after the last dosing.

1643 In addition, the folate status is unlikely to influence blood methanol concentrations. As discussed
1644 in Section 4.1.4, in folate-deficient monkeys and rats much higher formate concentrations accumulate in
1645 the blood, but the effect on the methanol concentration was small (Lee et al., 1994a; 1994b; Dorman et al.,
1646 1994; Medinsky et al., 1997).

1647 5. RATIONALE AND PROPOSED AEGL-1

1648 5.1. Human Data Relevant to AEGL-1

1649 Batterman et al. (1998) exposed 15 healthy subjects at 800 ppm for 8 hours in a pharmacokinetic
1650 study. In a personal communication, the coauthor Dr. Alfred Franzblau stated that subjects did not report
1651 symptoms (Franzblau, 1999; 2000). Chuwers et al. (1995) exposed 26 healthy subjects at 200 ppm for 4
1652 hours. No symptoms were reported and in a number of neurobehavioral, neurophysiological and visual
1653 performance tests, no significant effects were found. Likewise, Cook et al. (1991) reported neither
1654 symptoms nor effects in neurobehavioral and neurophysiological tests after exposure of 12 subjects at 190
1655 ppm for 75 minutes. Muttray et al. (2001) reported electroencephalogram alterations, which were not
1656 considered adverse, in 12 subjects exposed at 200 ppm for 4 hours.

1657 NIOSH (1980) and Frederick et al. (1984) studied the health effects of methanol exposure from
1658 spirit duplicators in 66 teacher aides. Measured methanol concentrations ranged from 365 to 3080 ppm
1659 (mean concentration 1060 ppm, median concentration 1040 ppm). Exposure durations ranged from 1
1660 hour/day for 1 day/week to 8 hours/day for 5 days/week during about 3 years. Compared to a control
1661 group of teachers from the same schools the aides reported significantly higher frequencies of headaches,
1662 dizziness, blurred vision and nausea/upset stomach. No information on the exact exposure duration and
1663 time between start of exposure and occurrence of symptoms was provided. NIOSH (1981) reported that
1664 exposure of one worker at 1025 ppm for 25 minutes resulted in eye irritation at the end of exposure.

1665 Kingsley and Hirsch (1955) reported that repeated exposure at the workplace to methanol concentrations
1666 of about 200-375 ppm can lead to headaches. However, information about the exact exposure
1667 concentrations and exposure durations is lacking. In addition, simultaneous exposure to other volatile
1668 organic compounds cannot be ruled out.

1669 Flury and Wirth (1933) reported weak nasal irritation in volunteers after exposure at 7600 ppm for
1670 5 minutes. No irritation was observed at 760 ppm. Eye irritation was reported at 1025 ppm for 25 minutes
1671 in a case study (NIOSH, 1981) and weak nasal irritation was reported after repeated exposure to mean
1672 concentrations of 459 at the workplace (Kawai et al., 1991). Considerable uncertainty exists in
1673 characterization of the exposure conditions in the latter study and the range of exposure concentrations
1674 was large (up to 5500 ppm; the authors did not state the lower exposure concentration limit defining the
1675 "high" exposure group).

1676 **5.2. Animal Data Relevant to AEGL-1**

1677 NEDO (1987) exposed monkeys (*Macaca fascicularis*) at 1000, 2000 or 3000 ppm for 21
1678 hours/day for 7 months. During the first exposures, frequent yawning and runny noses were observed at all
1679 concentrations, which might be indicative of a weak irritative effect. At histopathology, the 1000-ppm
1680 group showed a dose-dependent round cell infiltration and slight fibrotic alterations of the liver. Andrews
1681 et al. (1987) exposed monkeys (*Macaca fascicularis*) at 500, 2000 or 5000 ppm methanol for 6 hours/day,
1682 5 days/week for 4 weeks. No irritative effects were observed at exposure concentrations as high as 5000
1683 ppm. The authors did not report on any effects observed in the histopathological analysis.

1684 **5.3. Derivation of AEGL-1**

1685 Several experimental human studies are available that used methanol concentrations of about 200
1686 ppm. Chuwers et al. (1995) found no significant effects in a panel of neurophysiological and
1687 neuropsychological tests after exposure at 200 ppm for 4 hours. Using the same exposure conditions,
1688 Muttray et al. (2001) observed electroencephalogram alterations which the authors did not consider
1689 adverse; no clinical symptoms were reported by the subjects. Likewise, the NAC/AEGL committee
1690 considered these findings as below the threshold for AEGL-1. Batterman et al. (1998) exposed volunteers
1691 at a higher level (i.e. 800 ppm for 8 hours). As this was a pharmacokinetic study, health effects were not
1692 formally evaluated. In a personal communication the coauthor Dr. Franzblau stated that individual
1693 symptoms were asked of some subjects, other subjects were only asked generally if they had symptoms,
1694 and that in some exposure sessions subjects might not have been queried. According to Dr. Franzblau,
1695 none of the subjects reported symptoms. Since the subjects knew the exposure concentration by means of
1696 a meter showing the actual concentration, if might be expected that this would have increased the
1697 inclination of subjects to report symptoms.

1698 NIOSH (1980) and Frederick et al. (1984) reported significantly higher frequencies of headaches,
1699 dizziness, blurred vision after occupational exposure at 1060 ppm (mean concentration). NIOSH (1981)
1700 reported eye irritation in a worker after exposure at 1025 ppm for 25 minutes. Since the 1000-ppm level
1701 was considered already a discomfort level, the 800 ppm for 8 hour exposure from the Batterman et al.
1702 (1998) study was chosen as a starting point for AEGL-derivation. Since the local irritation effects are
1703 determined by the concentration of methanol in air and not to the blood methanol level, calculation of
1704 AEGL-1 values was not done using a pharmacokinetic model (as done for AEGL-2 and -3) based on the

1705 end-of-exposure blood methanol level of 30.7 mg/l reported by Batterman et al. (1998). Instead, exposure
 1706 to 800 ppm for 8 hours was used as the basis for AEGL-1 derivation.

1707 Time scaling using the equation $C^n \times t = k$ was carried out to derive exposure duration-specific
 1708 values. Due to lack of a definitive data set, a default value for n of 3 was used in the exponential function
 1709 for extrapolation from the experimental period (8 hours) to shorter exposure periods. For the 10-minute
 1710 AEGL-1 the 30-minute value was applied because no studies were available that demonstrated the absence
 1711 of notable discomfort (with respect to irritation) in the general population, including susceptible
 1712 subpopulations, at 970 ppm (extrapolated value for 10-minute period). The calculations of exposure
 1713 concentrations scaled to AEGL-1 time periods are shown in Appendix A.

1714 A total uncertainty factor of 3 was used. An uncertainty factor of 3 for intraspecies variability was
 1715 applied because interindividual variability with regard to slight central nervous system effects (e.g.
 1716 headache) is likely to exist (although it cannot be quantified exactly from the existing experimental and
 1717 epidemiological studies) and because subpopulations with a less than optimal folate status may be more
 1718 susceptible to the health effects of methanol.

1719 The values are listed in Table 9 below.

1720 **TABLE 9: AEGL-1 VALUES FOR METHANOL**

AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-1	670 ppm (880 mg/m ³)	670 ppm (880 mg/m ³)	530 ppm (690 mg/m ³)	340 ppm (450 mg/m ³)	270 ppm (350 mg/m ³)

1723 A level of distinct odor awareness (LOA) for methanol of 8.9 ppm was derived on the basis of the
 1724 odor detection threshold from the study of Hellman and Small (1974) (see Appendix C for LOA
 1725 derivation). The LOA represents the concentration above which it is predicted that more than half of the
 1726 exposed population will experience at least a distinct odor intensity, about 10 % of the population will
 1727 experience a strong odor intensity. The LOA should help chemical emergency responders in assessing the
 1728 public awareness of the exposure due to odor perception.

1729 **6. RATIONALE AND PROPOSED AEGL-2**

1730 **6.1. Human Data Relevant to AEGL-2**

1731 Blindness can result from exposure to methanol. However, no data are available that would allow
 1732 derivation of a threshold exposure concentration for blindness in humans. Appropriate data from animal
 1733 models are also lacking for this endpoint. Moreover, reports about acute oral methanol poisoning indicate
 1734 that blindness results only after live-threatening doses and thus no clear distinction is possible between
 1735 methanol doses leading to blindness and those causing lethal effects (Naraqi et al., 1979; WHO, 1997;
 1736 IUCLID, 1996; NIOSH, 1976).

1737 Humperdinck (1941) reported that one of 23 exposed workers became ill, blind in the right eye
 1738 with marked narrowing of the visual field in the left eye after 4 years at the workplace without any

1739 previous symptoms. Examination of the workplace air revealed methanol concentrations ranging from
1740 1200 to 8300 ppm. Effects on vision were not reported in another 22 workers exposed to methanol,
1741 however, no statement was made on whether these workers experienced any other symptoms.

1742 NIOSH (1980) and Frederick et al. (1984) studied the health effects of methanol exposure from
1743 spirit duplicators in 66 teacher aides. Measured methanol concentrations ranged from 365 to 3080 ppm
1744 (mean concentration 1060 ppm, median concentration 1040 ppm). Exposure times ranged from 1
1745 hour/day for 1 day/week to 8 hours/day for 5 days/week during about 3 years. Compared to a control
1746 group of teachers from the same schools the aides reported significantly higher frequencies of headaches,
1747 dizziness, blurred vision and nausea/upset stomach. No information on the exact exposure duration, time
1748 between start of exposure and occurrence of symptoms, and relationship between symptom severity and
1749 exposure time was provided.

1750 NIOSH (1981) reported that exposure of one worker to 1025 ppm for 25 minutes resulted in eye
1751 irritation..

1752 Kawai et al. (1991) reported that workers exposed to higher methanol concentrations complained
1753 significantly more often of dimmed vision (the authors suggested that visibility was temporarily reduced
1754 by fog in the workroom) and nasal irritation than workers exposed to lower methanol concentrations.
1755 Measurement of breathing-zone air for 31 subjects revealed time-weighted average methanol
1756 concentrations during an 8-hour work shift of 3000-5500 ppm for 5 samples, 1000-2000 ppm for 10
1757 samples, 500-1000 ppm for 4 samples and <500 ppm for 19 samples. The authors did not try to correlate
1758 incidence or severity of symptoms with measured breathing-air concentrations.

1759 6.2. Animal Data Relevant to AEGL-2

1760 Rogers et al. (1995, abstract) and Rogers (1999, personal communication) performed single-
1761 exposure experiments with pregnant CD-1 mice, exposing them on day 7 of gestation for 1, 2, 3, 5 or 7
1762 hours at 2000, 5000, 10000 or 15000 ppm (Rogers et al., 1995). Since cervical rib induction occurred at
1763 concentration-time products (CxT) greater than or equal to 15000 ppm · h (the authors expressed results
1764 only as CxT products), a NOEL for cervical rib induction of 2000 ppm for 7 hours can be derived from
1765 this study. This study is supported by another study of the same group that used repeated 7-hour exposures
1766 (Rogers et al., 1993) and found a dose-related increase in cervical ribs at exposure concentrations of 2000
1767 or higher. In that study (Rogers et al., 1993), a NOEL of 1000 ppm for developmental toxic effects after
1768 repeated exposure was derived.

1769 In pregnant rats, repeated 7-hour exposures at 20000 ppm resulted in significantly increased
1770 numbers of litters with malformations, such as extra or rudimentary cervical ribs and urinary or
1771 cardiovascular defects and 10000 ppm caused increased, but not statistically significant incidences of
1772 malformations, while 5000 ppm for 7 hours/day did not lead to an increase in malformations (Nelson et
1773 al., 1985). Upon continuous exposure of pregnant rats on days 7-17 of gestation, 5000 ppm led to
1774 maternal toxic effects, an increased embryo lethality, reduced birth weight and morphological changes,
1775 while 1000 ppm caused no developmental toxic effects (NEDO, 1987).

1776 In monkeys (*Macaca fascicularis*), exposure at 200, 600 or 1800 ppm for 2 hours/day, 7
1777 days/week 4 months prior to and throughout pregnancy caused effects indicating developmental toxicity.

1778 All methanol-exposed groups had significantly shorter pregnancy lengths. A dose-response relationship
1779 was not observed for these effects. A severe wasting syndrome was observed in 2/7 female offspring of
1780 the 1800-ppm group; the etiology of the wasting syndrome could not be identified. A concentration-
1781 related delay in sensorimotor development was measured in male offspring during the first month of life
1782 (Burbacher et al., 1999a; 1999b; 2004a; 2004b).

1783 NEDO (1987) reported on experiments in which monkeys (*Macaca fascicularis*) were exposed for
1784 21 hours/day a) at 3000, 5000, 7000 or 10000 ppm methanol for 15-20 days, b) at 2000 or 3000 ppm for
1785 7 months and c) at 10, 100 or 1000 ppm for 7, 19 or 29 months. In animals exposed at 5000 ppm or
1786 higher, necrosis of the basal ganglia of the cerebrum, cerebral edema, kidney degeneration and necrotic
1787 lesions in the liver were described. 3000 ppm induced slight necrotic changes in basal ganglia after
1788 exposure for 7 months, while only mild alterations were found after 20 days. A prolonged exposure at
1789 1000 ppm methanol for 7 months or longer resulted in round-cell infiltration and slight necrotic changes in
1790 the liver.

1791 6.3. Derivation of AEGL-2

1792 Although methanol intoxication can cause blindness in humans, it is not possible to derive a
1793 threshold for this effect from the available data. Moreover, available reports indicate that blindness results
1794 only after live-threatening poisoning (Naraqi et al., 1979; WHO, 1997; IUCLID, 1996; NIOSH, 1976).

1795 The epidemiological studies evaluating reversible effects on humans, such as slight neurotoxic and
1796 irritative effects at the workplace, though evaluating a relevant toxicological endpoint, will not be used for
1797 derivation of AEGL-2 values because data on exposure concentration and duration were considered
1798 insufficient. However, these reports provide valuable supporting evidence.

1799 The derivation of AEGL-2 values was based on developmental toxic effects in animals. The
1800 available data have been reviewed by US-EPA (2001) and NTP-CEHRH (2003) and both panels
1801 considered the developmental toxic effects in rodents as relevant for humans. The NTP-CEHRH panel
1802 “recognized the need to consider species differences in methanol metabolism and toxicity in its evaluation
1803 of the risk to reproduction posed by methanol exposure in humans. The Expert Panel agreed that blood
1804 methanol concentrations provide a useful dosimetric for the comparison of results among various studies.
1805 There are sufficient pharmacokinetic data to determine blood methanol concentrations in rodents
1806 associated with adverse reproductive and developmental effects. Mean maternal blood methanol
1807 concentrations observed in mice following inhalation exposure to 1000 ppm methanol for 7 hour/day on
1808 gd 6-15 (i.e., the fetal NOAEL for teratogenicity) was 97 mg/l. Mean maternal blood methanol
1809 concentration observed in mice following inhalation exposure to 2000 ppm methanol for 7 hours/day on
1810 gd 6-15 (i.e., the fetal LOAEL for teratogenicity) was 537 mg/l. In humans, achievement of such a blood
1811 methanol concentration has resulted in formate accumulation, metabolic acidosis, ocular toxicity, and
1812 other signs of methanol toxicity. These observations suggest that there may be overlap between exposures
1813 resulting in clinical signs of acute toxicity and those that might result in developmental toxicity in humans.
1814 The toxicity data available to the Panel that was collected in monkeys provide suggestive but insufficient
1815 evidence that adverse developmental effects may occur in primates exposed by inhalation to methanol at
1816 maternally non toxic doses. The Panel’s confidence in these data may have been strengthened had
1817 statistical analyses that adjust for multiple testing been applied to the data. The Expert Panel concludes
1818 that there is insufficient evidence to determine if the human fetus is more or less sensitive than the most

1819 sensitive rodent species (i.e., mouse) to methanol teratogenesis. Moreover, other factors (e.g., genetic
1820 polymorphisms in key metabolizing enzymes, maternal folate status) that alter methanol metabolism may
1821 predispose some humans to developmental toxicity at lower blood methanol concentrations (<100 mg/l).
1822 This caveat is especially important since the Expert Panel recognized that there are limited human
1823 exposure data for pregnant women and other potentially susceptible subpopulations. The Expert Panel
1824 concluded that developmental toxicity was the most sensitive endpoint of concern with respect to
1825 evaluating the risk to reproduction posed by methanol exposure in humans. In particular, the data obtained
1826 from rodent studies indicate that the gastrulating and early organogenesis stage embryo is particularly
1827 sensitive to the adverse developmental effects of methanol. The Panel concluded that methanol is the most
1828 likely proximate teratogen; however, the biological basis by which it induces such effects remains
1829 unknown. The Panel assumed the available rodent data was relevant for humans." (NTP-CEHRH, 2003).

1830 The study in monkeys by Burbacher et al. (1999a; 1999b; 2004a; 2004b), provides some evidence
1831 for neurobehavioral effects (delayed development of visually directed reaching and absence of novelty
1832 preference) in monkeys after prenatal exposure at 200, 600 and 1800 ppm for 2 hours/day, 7 days/week
1833 throughout pregnancy. It is difficult to decide whether these slight effects would also be seen after
1834 reducing the number of exposure days to a single day. It seems reasonable, however, to assume that a
1835 single exposure during pregnancy would have a much lesser effect than a daily exposure during the whole
1836 intrauterine development. Further research would be necessary to establish a clear causality and dose-
1837 response relationship for this and the other effects (vaginal bleeding, shortened pregnancy length, wasting
1838 syndrome in offspring). In conclusion, the results of Burbacher et al. (1999a; 1999b; 2004a; 2004b) were
1839 not considered a suitable basis for derivation of AEGL-2 values. They are, however, not incompatible with
1840 the AEGL-2 values derived below.

1841 In mice, repeated 7-hour/day exposures during gestational days 6 to 15 caused a dose-related,
1842 significant increase in cervical ribs at 2000 ppm or higher; other malformations, such as exencephaly and
1843 cleft palate occurred concentration-dependently at 5000 ppm or higher (Rogers et al., 1993). The same
1844 type of malformations was found after a single 7-hour exposure at 10000 ppm (no other concentrations
1845 tested) (Rogers et al., 1997). In another study, which has not been formally published up until now,
1846 Rogers and coworkers (Rogers et al. 1995, abstract; Rogers, 1999, personal communication) exposed
1847 mice on gestational day 7 to different concentration-time combinations. The most sensitive endpoint was
1848 cervical rib induction, which occurred at concentration-time products greater than or equal to 15000 ppm ·
1849 h, but not at concentration-time products below 15000 ppm · h (i.e. no effects were observed at 2000 ppm
1850 for 5 h, 2000 ppm for 7 h or 5000 ppm for 2 h; authors expressed data only as CxT values). Thus, while
1851 2000 ppm for 7 hours was a LOEL in the repeated exposure study (Rogers et al., 1993), it was a NOEL
1852 after single exposure. Although the single exposure study had shortcomings in the reporting, it was very
1853 consistent with the well-documented repeated exposure study. It was therefore considered adequate to use
1854 an exposure at 2000 ppm for 7 hours as a starting point for AEGL-2 derivation.

1855 As discussed in Section 4.2, there is experimental evidence that developmental toxic effects are
1856 caused by methanol itself and not by a metabolite, such as formate (Dorman et al., 1995). It is therefore
1857 reasonable use blood methanol concentrations as the dose metric. The corresponding end-of-exposure
1858 blood concentration in mice after exposure to 2000 ppm for 7 hours was measured as 487 mg/l (Rogers et
1859 al., 1993).

A total uncertainty factor of 10 was used. An uncertainty factor of 1 was applied for interspecies variability because a sensitive species was used for derivation of AEGL-2 values and because toxicokinetic differences between species were accounted for by using a pharmacokinetic model for calculating exposure concentrations. An uncertainty factor of 10 was used for intraspecies variability because no information on developmental toxic effects of methanol on humans is available and because also for other chemicals the variability in susceptibility of humans for developmental toxic effects is not well characterized. Moreover, pregnant women are a subpopulation with a less than optimal folate status and, thus, may be more susceptible to the health effects of methanol.

Using a total uncertainty factor of 10, a blood methanol concentration of 48.7 mg/l was derived as the basis for calculation of exposure concentrations. Application of the uncertainty factor to the blood methanol concentration was preferred because the calculated exposure concentrations in air stayed better in the concentration range for which the pharmacokinetic model was validated and the effect of methanol metabolism for longer exposure periods was more adequately taken into account. In contrast, first calculating exposure concentrations that would lead to a blood methanol level of 487 mg/l, and then applying a factor of 10 to the derived exposure concentration would result in calculation of extremely high concentrations in the first step at which metabolic pathways would be saturated. After application of the uncertainty factor, concentrations would be below saturation level which would mean that the end-of-exposure methanol levels would vary for the AEGL-2 exposure concentration-time combinations.

Using the pharmacokinetic model of Perkins et al. (1995a), inhalation exposure concentrations were calculated for appropriate time periods that would lead to a blood methanol concentration of 48.7 mg/l at the end of the time period (see Appendix C, Table 15). The calculated exposure concentrations were set as AEGL-2 values.

The values are listed in Table 10 below.

TABLE 10: AEGL-2 VALUES FOR METHANOL

AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-2	11000 ppm ^a (14000 mg/m ³)	4000 ppm (5200 mg/m ³)	2100 ppm (2800 mg/m ³)	730 ppm (960 mg/m ³)	520 ppm (680 mg/m ³)

^aThe 10-minute AEGL-2 value is higher than 1/10 of the lower explosive limit (LEL) of methanol in air (LEL = 55,000; 1/10th LEL = 5500 ppm). Therefore, safety considerations against the hazard of explosion must be taken into consideration.

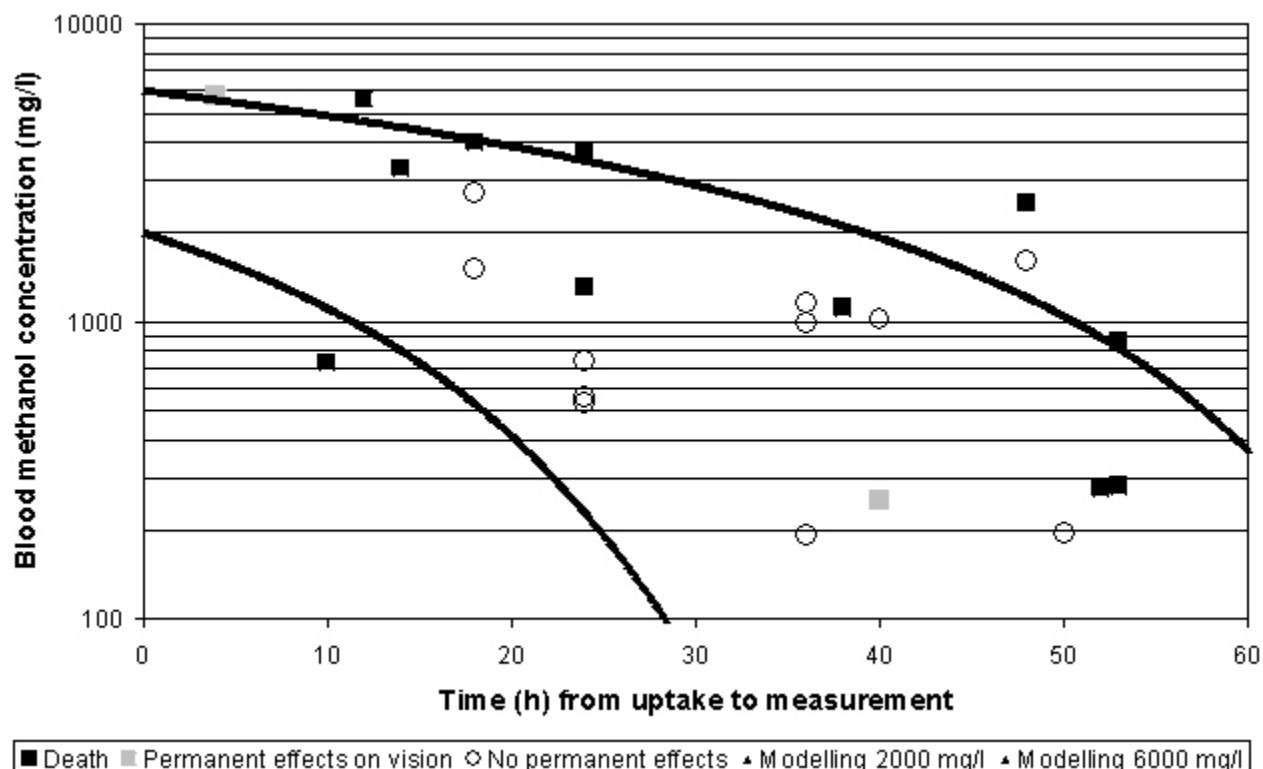
The derived AEGL-2 values are supported by the occupational exposure study of Kawai et al. (1991), in which 8-hour mean concentrations were 3000-5500 ppm in 5 samples and 1000-2000 ppm in another 10 samples and resulted in dimmed vision (the authors suggested that visibility was temporarily reduced by fog in the workroom) and nasal irritation, but not in severe or irreversible toxicity.

7. RATIONALE AND PROPOSED AEGL-3

7.1. Human Data Relevant to AEGL-3

1895 Although several case reports on lethal methanol poisoning of humans due to exposure by
1896 inhalation have been published in the literature, data on exposure concentration and exposure duration are
1897 usually lacking. A fatal case after occupational exposure to an estimated concentration of 4000-13000
1898 ppm for 12 hours was reported (Anonymous, 1932).

1899 From a large number of reports on oral methanol poisonings, it was concluded that the minimum
1900 lethal oral dose is about 1 g/kg (Buller and Wood, 1904; Röe, 1982) (this value is also supported by
1901 monkey data; see below). Using a volume of distribution of 0.65 l/kg (Yant and Schrenk, 1937) a
1902 theoretical maximum blood methanol concentration of


$$1.0 \text{ g/kg} / 0.65 \text{ l/kg} = 1540 \text{ mg/l}$$

1903 can be calculated.

1905 From the large number of case reports on methanol intoxication, the studies from Naraqi et al.
1906 (1979), Erlanson et al. (1965), Bennett et al. (1953), Gonda et al. (1978) and Meyer et al. (2000) are
1907 presented in Section 2.1, because these studies report cases of methanol intoxication without concomitant
1908 ethanol uptake and report both blood methanol concentrations and the time between intoxication and
1909 measurement. These data are graphically presented in Figure 2.

1910 Kahn and Blum (1979) report the case of a fatal dermal methanol exposure in an 8-month-old
1911 boy. The child had been "treated" with methanol-soaked compresses during two nights (about 12 hours
1912 each) before he was admitted to hospital. A blood methanol concentration of 400 mg/l was determined in
1913 the early afternoon. Due to lack of information on methanol toxicokinetics in small children, a peak blood
1914 methanol concentration cannot be estimated in this case.

1915 In an epidemiological study, Kawai et al. (1991) reported symptoms, such as dimmed vision (the
1916 authors suggested that visibility was temporarily reduced by fog in the workroom) and nasal irritation
1917 during work, in a group of 22 workers exposed to a time-weighted average methanol concentration of 459
1918 ppm during an 8-hour work shift; a group of 5 breathing-zone samples revealed concentrations between
1919 3000 and 5500 ppm.

FIGURE 2: MEASURED BLOOD METHANOL CONCENTRATIONS IN HUMAN FATALITIES

Data points are from studies cited in Table 2, Section 2.1. For comparison, concentration-time curves for blood methanol concentrations of 2000 and 6000 mg/l are shown (black lines). Calculations were done using the pharmacokinetic model by Perkins et al. (1995a) (see Appendix B).

1920
1921

1922 7.2. Animal Data Relevant to AEGL-3

1923 Gilger and Potts (1955) observed death of rhesus monkeys after doses of 3 g/kg or higher, while
1924 at doses of 1 and 2 g/kg animals did not show any symptoms. After lethal doses, signs of inebriation
1925 were observed; semicomma was seen only shortly before death.

1926 Rogers et al. (1993) exposed pregnant CD-1 mice at 1000, 2000, 5000, 7500, 10000 or 15000
1927 ppm for 7 hours/day on days 6-15 of gestation. 7500 ppm or higher induced a significantly increased
1928 number of dead fetuses/litter, while no fetal death occurred at 5000 ppm. When CD-1 mice were exposed
1929 for only one time on day 7 of gestation, increased fetal death was observed at 10000 ppm for 7 hours or at
1930 15000 ppm for 5 hours, but not at 5000 ppm for 7 hours, 10000 ppm for 5 hours or 15000 ppm for 3
1931 hours (Rogers et al., abstract, 1995; Rogers, personal communication, 1999). From these studies, a NOEL
1932 for fetal death of 5000 ppm for 7 hours can be derived.

1936 NEDO (1987) reported on experiments in which groups of 4 monkeys (*Macaca fascicularis*) were exposed at 3000, 5000, 7000 or 10000 ppm methanol for 21 hours/day for at least 15 days. Animals exposed at 10000 ppm showed lethargy and after the third exposure were comatose and died. Animals exposed at 7000 ppm had to be killed after 6 days and of three animals exposed at 5000 ppm, two died on day 5 and one on day 14. No deaths occurred at 3000 ppm. Andrews et al. (1987) observed no deaths after exposure of 6 monkeys (*Macaca fascicularis*) at 5000 ppm for 6 hours/day, 5 days/week for 4 weeks. A NOEL of 5000 ppm for 6 hours could be derived from the latter study.

1943 The reported LC₅₀ values for adult rodents are 41000 ppm for 6 hours for mice and for rats
1944 145000 ppm for 1 hour, 97400 ppm for 4 hours, 64000 ppm for 4 hours and 66500 ppm for 6 hours (see
1945 Table 4).

1946 7.3. Derivation of AEGL-3

1947 Due to the lack of data on fatalities after inhalation, AEGL-3 values were based on acute oral
1948 intoxication data in humans.

1949 The minimum lethal oral dose of about 1 g/kg reported in review articles by Buller and Wood
1950 (1904) and Röe (1982) was not used as the basis for AEGL derivation because the value was not
1951 sufficiently supported by data in these articles. However, the reported minimum lethal oral dose which
1952 corresponds to a peak blood methanol level of about 1540 mg/l is supported by case studies on
1953 intoxication with methanol only (i.e. without concomitant ethanol consumption) (Naraqi et al., 1979;
1954 Erlanson et al., 1965; Bennett et al., 1955; Gonda et al., 1978; Meyer et al., 2000). These studies reported
1955 measured blood methanol concentrations and time periods between intoxication and measurement. Given
1956 the time that elapsed until blood sampling, during which part of the methanol was metabolized, it can be
1957 concluded that peak blood methanol concentrations have been above 1000 mg/l in all fatal cases (see
1958 Figure 2). Based on the extensive clinical experience with methanol intoxications, the American Academy
1959 of Clinical Toxicology (AACT, 2002) published clinical practice guidelines on the treatment of methanol
1960 poisoning. According to these guidelines, peak blood methanol concentrations >500 mg/l indicate serious
1961 poisoning for which hemodialysis is recommended. Based on the human experience, a peak blood
1962 methanol concentration of 500 mg/l was chosen as the basis for AEGL-3 derivation.

1963 A total uncertainty factor of 3 was used. An uncertainty factor of 3 was applied for intraspecies
1964 variability because clinical experience with methanol intoxications is mainly based on cases involving
1965 adult men while much less data is available for women, children or elderly persons, and because
1966 subpopulations with a less than optimal folate status may be more susceptible to the health effects of
1967 methanol.

1968 Using a total uncertainty factor of 3, a blood methanol concentration of 167 mg/l was derived as
1969 the basis for calculation of exposure concentrations. Application of the uncertainty factor to the blood
1970 methanol concentration was preferred because the calculated exposure concentrations in air stayed better
1971 in the concentration range for which the pharmacokinetic model was validated and the effect of methanol
1972 metabolism for longer exposure periods was more adequately taken into account. In contrast, first
1973 calculating exposure concentrations that would lead to a blood methanol level of 500 mg/l and then
1974 applying a factor of 3 to the derived exposure concentration would result in calculation of extremely high
1975 concentrations in the first step at which metabolic pathways would be saturated.

1976 Using the pharmacokinetic model of Perkins et al. (1995a), inhalation exposure concentrations
 1977 were calculated for appropriate time periods that would lead to a blood methanol concentration of 167
 1978 mg/l at the end of the time period (see Appendix C, Table 16). The calculated exposure concentrations
 1979 were set as AEGL-3 values.

1980 The values are listed in Table 11 below.

TABLE 11: AEGL-3 VALUES FOR METHANOL					
AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-3	#	14000 ppm ^a (18000 mg/m ³)	7200 ppm ^a (9400 mg/m ³)	2400 ppm (3100 mg/m ³)	1600 ppm (2100 mg/m ³)

1984 ^aThe 1-hour AEGL-3 values are higher than 1/10 of the lower explosive limit (LEL) of methanol in air (LEL =
 1985 55,000; 1/10th LEL = 5500 ppm). Therefore, safety considerations against the hazard of explosion must be taken into
 1986 consideration.

1987 [#]The 10-minute AEGL-3 value of 40,000 ppm is higher than 50% of the lower explosive limit of methanol in air
 1988 (LEL = 55,000 ppm; 50% of the LEL = 27,500 ppm). Therefore, extreme safety considerations against the hazard of
 1989 explosion must be taken into account.

1990 The derived values are supported by the study of Kawai et al. (1991), which reported dimmed
 1991 vision (the authors suggested that visibility was temporarily reduced by fog in the workroom) and nasal
 1992 irritation during work, in a group of 22 workers exposed to a mean methanol concentration of 459 ppm
 1993 for 8 hours; a group of 5 breathing-zone samples revealed concentrations between 3000 and 5500 ppm.
 1994 The values are also supported by an older study that reported severe nasal and eye irritation in volunteers
 1995 after exposure at 65400 ppm for 5 minutes (Flury and Wirth, 1933).

1996 With regard to fetal death observed in rodents, the derived AEGL-3 values are supported on basis
 1997 of the following rationale: the NOEL for fetal death in mice was 5000 ppm for 7 hours after both single
 1998 and repeated exposure (Rogers et al. 1993; 1995; Rogers, 1999). As pointed out in Section 7.2, methanol
 1999 itself and not a metabolite is probably responsible for the developmental toxic effects in rodents (Dorman
 2000 et al., 1995) and, therefore, it seems reasonable to assess the developmental toxicity on the basis of blood
 2001 methanol concentrations. The corresponding end-of-exposure blood concentration in mice after exposure
 2002 at 5000 ppm for 7 hours was 2126 mg/l (Rogers et al., 1993). The blood methanol concentration that was
 2003 used for derivation of AEGL-3 values was 167 mg/l, which is about 13-fold lower than the NOEL blood
 2004 concentration for fetal death in mice, and thus should provide sufficient protection to humans against this
 2005 effect.

2006 The derived values are also supported by studies on monkeys: since no toxic effects were
 2007 observed in monkeys exposed repeatedly at 5000 ppm for 6 hours/day (Andrews et al., 1987) it can be
 2008 concluded that these exposure conditions are considerably below the lethality threshold. In the study of
 2009 NEDO (1987) no deaths were observed after repeated exposure at 3000 ppm for 21 hours per day. Since
 2010 the biological half life of methanol and formate is in the order of a few hours, the short period of 3 hours
 2011 between exposures in the NEDO study did not allow for complete elimination and, thus, after the first
 2012 exposure higher blood concentrations of methanol and formate must have been present during subsequent

2013 exposures. This may explain the delayed deaths observed after repeated exposure for 21 hours/day to
2014 10000 ppm (death after 3 days), 7000 ppm (death after 6 days) and 5000 ppm (death after 5 days).

2015 **8. SUMMARY OF PROPOSED AEGLS**
2016 **8.1. AEGL Values and Toxicity Endpoints**

2017 The AEGL values for various levels of effects and various time periods are summarized in Table
2018 12. They were derived using the following key studies and methods.

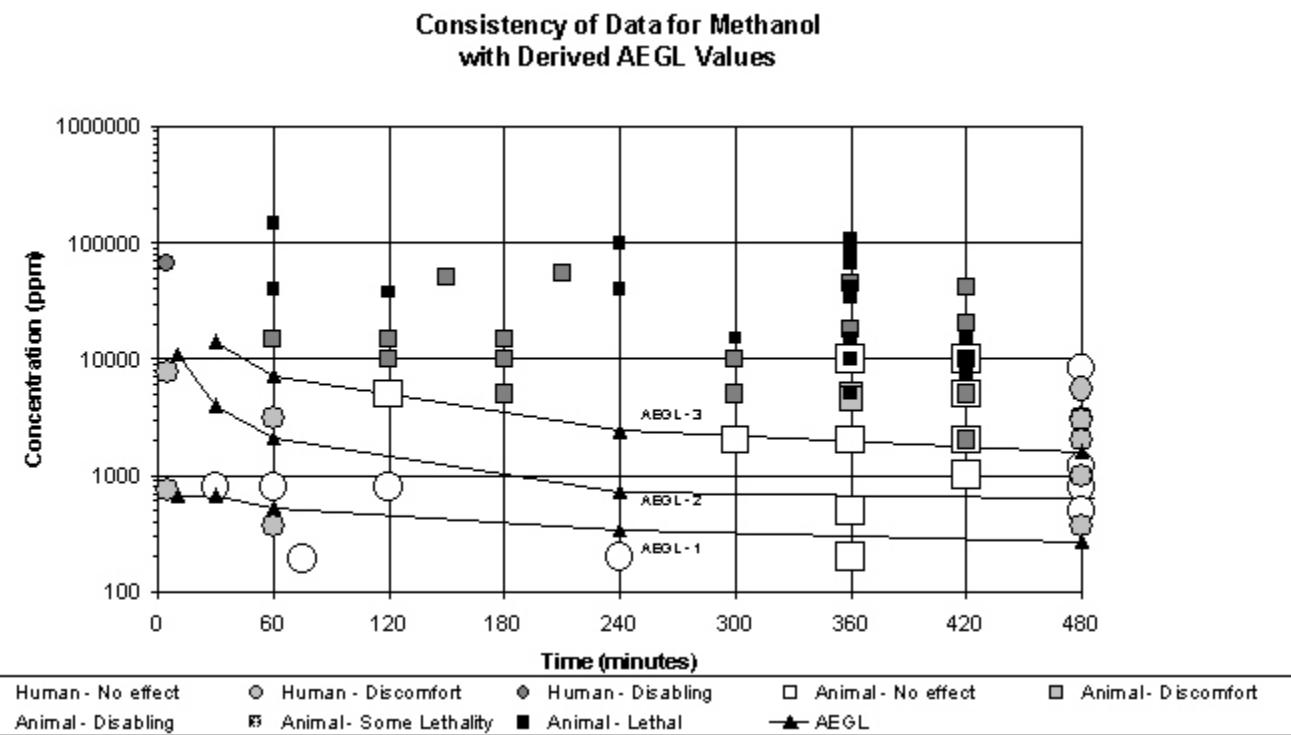
2019 The AEGL-1 was based on a study in which human volunteers were exposed to 800 ppm
2020 methanol for 8 hours (Batterman et al., 1998). While the study made no statement on health effects, the
2021 coauthor Dr. Franzblau stated in a personal communication that the subjects reported no symptoms
2022 (Franzblau, 1999; 2000). A total uncertainty factor of 3 was applied. The other exposure duration-specific
2023 values were derived by time scaling according to the dose-response regression equation $C^n \times t = k$, using
2024 the default of $n=3$ for shorter exposure periods. For the 10-minute AEGL-1 the 30-minute value was
2025 applied.

2026 The AEGL-2 values were based on developmental toxic effects in mice. After a single exposure to
2027 different concentration-time combinations on gestational day 7, the most sensitive endpoint was cervical
2028 rib induction, which occurred at concentration-time products greater than or equal to 15000 ppm · h, but
2029 not at concentration-time products (CxT) below 15000 ppm · h (i.e. no effects were observed after
2030 exposure at 2000 ppm for 5 hours, 2000 ppm for 7 hours and 5000 ppm for 2 hours; authors expressed
2031 data only as CxT values) (Rogers et al. 1995, abstract; Rogers, 1999, personal communication). For the
2032 NOEL of 2000 ppm for 7 hours (Rogers et al. 1995, abstract; Rogers, 1999, personal), the corresponding
2033 end-of-exposure blood concentration was measured as 487 mg/l (Rogers et al., 1993). An interspecies
2034 uncertainty factor of 1 and an intraspecies uncertainty factor of 10 were used. The total uncertainty factor
2035 was applied to the blood methanol concentration resulting in a concentration of 48.7 mg/l. A
2036 pharmacokinetic model was used to calculate inhalation exposure concentrations for appropriate time
2037 periods that would lead to a blood methanol concentration of 48.7 mg/l at the end of the time period.
2038 These exposure concentrations were set as AEGL-2 values.

2039 The AEGL-3 values were based on acute lethal effects on humans after oral methanol uptake.
2040 Case studies (Naraqi et al., 1979; Erlanson et al., 1965; Bennett et al., 1955; Gonda et al., 1978; Meyer et
2041 al., 2000) reported measured blood methanol concentrations and time periods between intoxication and
2042 measurement. Given the time that elapsed until blood sampling, during which part of the methanol was
2043 metabolized, it can be concluded that peak blood methanol concentrations have been above 1000 mg/l in
2044 all fatal cases. Based on the extensive clinical experience with methanol intoxications, the American
2045 Academy of Clinical Toxicology (AACT, 2002) published clinical practice guidelines on the treatment of
2046 methanol poisoning. According to these guidelines, peak blood methanol concentrations >500 mg/l
2047 indicate serious poisoning for which hemodialysis is recommended. Based on the human experience, a
2048 peak blood methanol concentration of 500 mg/l was chosen as the basis for AEGL-3 derivation. An
2049 intraspecies uncertainty factor of 3 was used. The uncertainty factor was applied to the blood methanol
2050 concentration resulting in a concentration of 167 mg/l. A pharmacokinetic model was used to calculate
2051 inhalation exposure concentrations for appropriate time periods that would lead to a blood methanol

2052 concentration of 167 mg/l at the end of the time period. These exposure concentrations were set as AEGL-
 2053 3 values.

2054 Because liquid methanol is absorbed through the skin, a skin notation was added to the table of
 2055 values.


TABLE 12: SUMMARY/RELATIONSHIP OF PROPOSED AEGL VALUES FOR METHANOL^a					
Classification	10-Minute	30-Minute	1-Hour	4-Hour	8-Hour
AEGL-1 (Nondisabling)	670 ppm (880 mg/m ³)	670 ppm (880 mg/m ³)	530 ppm (690 mg/m ³)	340 ppm (450 mg/m ³)	270 ppm (350 mg/m ³)
AEGL-2 (Disabling)	11000 ppm ^b (14000 mg/m ³)	4000 ppm (5200 mg/m ³)	2100 ppm (2800 mg/m ³)	730 ppm (960 mg/m ³)	520 ppm (680 mg/m ³)
AEGL-3 (Lethal)	#	14000 ppm ^b (18000 mg/m ³)	7200 ppm ^b (9400 mg/m ³)	2400 ppm (3100 mg/m ³)	1600 ppm (2100 mg/m ³)

2065 ^a Cutaneous absorption may occur; direct skin contact with the liquid should be avoided.

2066 ^b The 10-minute AEGL-2 value and the 30-minute and 1-hour AEGL-3 values are higher than 1/10 of the lower
 2067 explosive limit (LEL) of methanol in air (LEL = 55,000; 1/10th LEL = 5500 ppm). Therefore, safety considerations
 2068 against the hazard of explosion must be taken into consideration.

2069 [#] The 10-minute AEGL-3 value of 40,000 ppm is higher than 50% of the lower explosive limit of methanol in air
 2070 (LEL = 55,000 ppm; 50% of the LEL = 27,500 ppm). Therefore, extreme safety considerations against the hazard of
 2071 explosion must be taken into account.

2072 All inhalation data are summarized in Figure 3 below. The data were classified into severity
 2073 categories chosen to fit into definitions of the AEGL level health effects. The category severity definitions
 2074 are "No effect"; "Discomfort"; "Disabling"; "Lethal"; "Partial lethality" (at an experimental concentration
 2075 in which some of the animals died and some did not, this label refers to the animals which did not die) and
 2076 "AEGL". Note that the AEGL-2 values are designated as triangles.

2077 **FIGURE 3: CATEGORICAL REPRESENTATION OF ALL METHANOL INHALATION**
2078 **DATA**

2079 **8.2. Comparison with Other Standards and Criteria**

2080 Standards and guidance levels for workplace and community exposures are listed in Table 13. In
2081 addition, biological exposure values exist: the ACGIH BEI (biological exposure index) is 15 mg methanol
2082 per liter urine at the end of shift at the end of workweek (ACGIH, 1999). The German BAT (Biologischer
2083 Arbeitsstoff-Toleranz-Wert; biological tolerance value) is 30 mg methanol per liter urine during the
2084 second half of shift at the end of workweek (Henschler und Lehnert, 1983).

TABLE 13. EXTANT STANDARDS AND GUIDELINES FOR METHANOL

Guideline	Exposure Duration				
	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-1	670 ppm	670 ppm	530 ppm	340 ppm	270 ppm
AEGL-2	11000 ppm	4000 ppm	2100 ppm	730 ppm	520 ppm
AEGL-3	#	14000 ppm	7200 ppm	2400 ppm	1600 ppm
ERPG-1(AIHA) ^a			200 ppm		
ERPG-2 (AIHA)			1000 ppm		
ERPG-3 (AIHA)			5000 ppm		
EEGL (NRC) ^b	800 ppm	400 ppm	200 ppm		10 ppm [24 hours]
PEL-TWA (OSHA) ^c					200 ppm
PEL-STEL (OSHA) ^d	250 ppm [15 minutes]				
IDLH (NIOSH) ^e		6000 ppm			
REL-TWA (NIOSH) ^f					200 ppm
REL-STEL (NIOSH) ^g	250 ppm [15 minutes]				
TLV-TWA (ACGIH) ^h					200 ppm
TLV-STEL (ACGIH) ⁱ	250 ppm				
MAK (Germany) ^j					200 ppm
MAK Spitzentoleranzbegrenzung (Germany) ^k		1000 ppm			
Einsatztoleranzwert (Germany) ^l				500 ppm	
MAC (The Netherlands) ^m					200 ppm

^a ERPG (Emergency Response Planning Guidelines, American Industrial Hygiene Association) (AIHA, 1994)
The ERPG-1 is the maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to one hour without experiencing other than mild, transient adverse health effects or without perceiving a clearly defined objectionable odor. The ERPG-1 for methanol is based on the threshold for producing headaches and dizziness in workers exposed repeatedly to methanol (Frederick et al., 1984). The ERPG-2 is the maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to one hour without experiencing or developing irreversible or other serious health effects or symptoms that could impair an individual's ability to take protective action. The ERPG-2 for methanol is based on observed 1) no toxic effects in workers exposed to 1000-2000 ppm for 0.5 hours or less (Stern and Fassett, 1958), 2) no serious toxic effects after brief exposures at 3000 ppm (Frederick et al., 1984) or 8000 ppm (Humperdinck, 1941) and 3) no toxic effects in monkeys repeatedly exposed to 5000 ppm (Andrews et al., 1987) or rats repeatedly exposed to 10000 ppm (White et al., 1983). The ERPG-3 is the maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to one hour without experiencing or developing life-threatening health effects. The ERPG-3 for methanol is based on observed 1) no lethality in workers exposed to 3000 ppm for 15 minutes (Frederick et al., 1984) or 8000 ppm (Humperdinck, 1941) and 2) no toxic effects in monkeys repeatedly exposed to 5000 ppm (Andrews et al., 1987).

^b EEGL (Emergency Exposure Guidance Levels, National Research Council) (NRC, 1985)
is the concentration of contaminants that can cause discomfort or other evidence of irritation or intoxication in or around the workplace, but avoids death, other severe acute effects and long-term or chronic injury. The EEGL for methanol are mainly based on the LC₅₀ of 1000 ppm in the study on monkeys by McCord (1931), the pharmacokinetic study by Leaf and Zatman (1952) and other observations summarized in the NIOSH Criteria Document (NIOSH, 1976).

^c OSHA PEL-TWA (Occupational Health and Safety Administration, Permissible Exposure Limits - Time Weighted Average) (OSHA, 1994)
is defined analogous to the ACGIH-TLV-TWA, but is for exposures of no more than 10 hours/day, 40 hours/week.

^d OSHA PEL-STEL (Permissible Exposure Limits - Short Term Exposure Limit) (OSHA, 1994)
is defined analogous to the ACGIH-TLV-STEL.

^e IDLH (Immediately Dangerous to Life and Health, National Institute of Occupational Safety and Health) (NIOSH, 1996)
represents the maximum concentration from which one could escape within 30 minutes without any escape-impairing symptoms, or any irreversible health effects. The IDLH for methanol is based on a LC₅₀ of 37594 ppm for two hours in the mouse (Izmerov et al., 1982).

^f NIOSH REL-TWA (National Institute of Occupational Safety and Health, Recommended Exposure Limits - Time Weighted Average) (NIOSH, 1992)
is defined analogous to the ACGIH-TLV-TWA.

^g NIOSH REL-STEL (Recommended Exposure Limits - Short Term Exposure Limit) (NIOSH, 1992)
is defined analogous to the ACGIH-TLV-STEL.

^h ACGIH TLV-TWA (American Conference of Governmental Industrial Hygienists, Threshold Limit Value - Time Weighted Average) (ACGIH, 1996)
is the time-weighted average concentration for a normal 8-hour workday and a 40-hour workweek, to which nearly all workers may be repeatedly exposed, day after day, without adverse effect.

2159 ⁱ **ACGIH TLV-STEL (Threshold Limit Value - Short Term Exposure Limit)** (ACGIH, 1996)

2160 is defined as a 15 minute TWA exposure which should not be exceeded at any time during the workday even
2161 if the 8-hour TWA is within the TLV-TWA. Exposures above the TLV-TWA up to the STEL should not be
2162 longer than 15 minutes and should not occur more than 4 times per day. There should be at least 60 minutes
2163 between successive exposures in this range.

2164 ^j **MAK (Maximale Arbeitsplatzkonzentration [Maximum Workplace Concentration], Deutsche Forschungs-**
2165 **gemeinschaft [German Research Association], Germany)** (Greim, 1995; DFG, 1999)

2166 is defined analogous to the ACGIH-TLV-TWA.

2167 ^k **MAK Spitzenbegrenzung (Kategorie II,2) [Peak Limit Category II,2]** (DFG, 1999)

2168 constitutes the maximum average concentration to which workers can be exposed for a period up to 30
2169 minutes, with no more than 2 exposure periods per work shift; total exposure may not exceed 8-hour MAK.

2170 ^l **Einsatztoleranzwert [Action Tolerance Levels] (Vereinigung zur Förderung des deutschen Brandschutzes**
2171 **e.V. [Federation for the Advancement of German Fire Prevention])** (Greim, 1996)

2172 constitutes a concentration to which unprotected firemen and the general population can be exposed to for
2173 up to 4 hours without any health risks. The value is based on the estimation that the Biologischer-
2174 Arbeitsstoff-Toleranzwert [Biological Exposure Index] of 30 mg/l methanol in urine could be reached
2175 following a 4-hour exposure to 500 ppm methanol.

2176 ^m **MAC ([Maximum Workplace Concentration], Dutch Expert Committee for Occupational Standards, The**
2177 **Netherlands)** (MSZW, 1999)

2178 is defined analogous to the ACGIH-TLV-TWA.

2179 8.3. Data Adequacy and Research Needs

2180 Definitive exposure-response data for irreversible or lethal methanol toxicity in humans are not
2181 available. However, qualitative information on the human experience affirms that methanol vapor is toxic
2182 and can cause irreversible effects (blindness) as well as lethality. Data from occupational exposure studies
2183 are often compromised by uncertain quantitation of exposure.

2184 For the derivation of AEGL-3 values studies on lethal effects of inhalation exposure in rodents
2185 were not considered appropriate due to the considerable differences in methanol metabolism kinetics and
2186 mechanisms of methanol toxicity between primates (humans and monkeys) and rodent species. Since well-
2187 described case reports of fatalities after inhalation were not available, the derivation was based on the
2188 extensive clinical experience with methanol intoxications. The American Academy of Clinical Toxicology
2189 (AACT, 2002) published clinical practice guidelines on the treatment of methanol poisoning. According to
2190 these guidelines, peak blood methanol concentrations >500 mg/l indicate serious poisoning for which
2191 hemodialysis is recommended. Based on the human experience, a peak blood methanol concentration of
2192 500 mg/l was chosen as the basis for AEGL-3 derivation.

2193 Although methanol intoxication can cause blindness in humans, it is not possible to derive a
2194 threshold for this irreversible effect from the available data. However, available reports indicate that
2195 blindness results only after live-threatening poisoning. There was thus no basis for the derivation of
2196 AEGL-2 on health effects in humans. Therefore, the derivation of AEGL-2 values was based on
2197 developmental toxic effects in rodents. A number of teratogenicity studies in mice and rats is available
2198 including a two studies reporting developmental toxic effects in mice after single inhalation exposures.
2199 There is experimental evidence that developmental toxic effects are caused by methanol itself and not by a

metabolite, such as formate. It therefore was considered adequate to derived AEGL-2 values on the basis of blood methanol concentrations. The total uncertainty factor was applied to the measured end-of-exposure blood methanol concentration. Using a pharmacokinetic model, methanol concentrations in air were calculated which would result in this blood methanol concentration at the end of relevant AEGL time periods. With respect to developmental toxic effects, no information regarding human occupational, accidental or intentional exposure via the inhalation, dermal or oral route is available. More research is needed for an adequate evaluation of the developmental toxic effects of methanol reported in monkeys.

Based on the extremely wide range of reported odor thresholds, the odor threshold data were not considered appropriate for derivation of AEGL-1. A number of high quality, human studies on asymptomatic effects of low methanol concentrations on the central nervous system are available. These studies usually used exposure at 200 ppm which was considered lower than the thresholds for irritation and discomfort. A level of 1000 ppm caused headache and eye irritation in workers and was considered above the discomfort level. Therefore, the pharmacokinetic study by Batterman et al. (1998) employing exposure at 800 ppm was used for the derivation of AEGL-1 values. It has to be noted though, that the study did not formally evaluate and report health effects. In a personal communication by one of the studies' coauthors it was stated that none of the subjects reported symptoms. Some uncertainty to this data is conferred by this fact that the evaluation of health effects was not the focus of the study.

With respect to lethal and severe toxic effects, additional inhalation studies on monkeys using single inhalation exposure could support the derived AEGL-2 and AEGL-3 values.

9. REFERENCES

AACT, American Academy of Clinical Toxicology Ad Hoc Committee on the Treatment Guidelines for Methanol Poisoning: D.G. Barceloux, G.R. Bond, E.P. Krezelok, H. Cooper, and J.A. Vale, 2002. American Academy of Clinical Toxicology Practice Guidelines on the Treatment of Methanol Poisoning. *Clin. Toxicol.* 40, 415-446.

ACGIH, American Conference of Governmental Industrial Hygienists, 1986. Documentation of the Threshold Limit Values and Biological Exposure Indices. Cincinnati, OH, USA, pp.372.

ACGIH, American Conference of Governmental Industrial Hygienists, 1996. Documentation of the Threshold Limit Values and Biological Exposure Indices. Cincinnati, OH, USA, pp.903-905.

ACGIH, American Conference of Governmental Industrial Hygienists, 1999. 1999 TLVs and BEIs. ACGIH, Cincinnati, OH, USA.

AIHA, American Industrial Hygiene Association, 1989. Odor thresholds for chemicals with established occupational health standards. American Industrial Hygiene Association, Fairfax, VA, USA, 1989.

AIHA, American Industrial Hygiene Association, 1994. Emergency Response Planning Guidelines, Methanol. AIHA, Akron, OH, USA.

Amoore, J.E. and E. Hautala, 1983. Odor as an aid to chemical safety: odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. *J. Appl. Toxicol.* 3, 272-290.

2235 Andrews, L.S., J.J. Clary, J.B. Terrill and H.F. Bolte, 1987. Subchronic inhalation toxicity of methanol. *J. Toxicol. Environ. Health* 20, 117-124.

2237 Andrews, J.E., M. Ebron-McCoy, J.E. Schmid, and D. Svendsgaard D, 1998. Effects of combinations of methanol and formic acid on rat embryos in culture. *Teratology* 58, 54-61; cited in NTP-CEHRH, 2003.

2236

2239 Anonymous, 1932. Unpublished report files of Massachusetts Division of Occupational Hygiene, Massachusetts, cited in ACGIH, 1986.

2240

2241 ATSDR, Agency for Toxic Substances and Disease Registry, 1993. Methanol toxicity. *Am. Fam. Phys.* 47, 163-171.

2242 BASF AG, 1980a. Bestimmung der akuten Inhalationstoxizität LC₅₀ von Methanol (Merck min. 99,8%) als Dampf bei 4stündiger Exposition an Sprague-Dawley-Ratten. Unpublished report, dated 20.11.1980.

2243

2244 BASF AG, 1980b. Bestimmung der akuten Inhalationstoxizität LC₅₀ von Methanol (Merck min. 99,8%) als Dampf bei 6stündiger Exposition an Sprague-Dawley-Ratten. Unpublished report, dated 07.08.1980.

2245

2246 Batterman, S.A., A. Franzblau, J.B. D'Arcy, N.E. Sargent, K.B. Gross and R.M. Schreck, 1998. Breath, urine, and blood measurements as biological exposure indices of short-term inhalation exposure to methanol. *Int. Arch. Occup. Environ. Health* 71, 325-335.

2247

2248

2249 Becker, C.E., 1983. Methanol poisoning. *J. Emerg. Med.* 1, 51-58.

2250 Bennett, I., F.H. Cary, G.L. Mitchell and M.N. Cooper, 1953. Acute methyl alcohol poisoning: a review based on experiences in an outbreak of 323 cases. *Medicine* 32, 431-463.

2251

2252 Bolon, B., D.C. Dorman, D. Janszen, K.T. Morgan, and F. Welsch, 1993. Phase-specific developmental toxicity in mice following maternal methanol inhalation. *Fundam. Appl. Toxicol.* 21, 508-516.

2253

2254 Bouchard, M., 2003. Personal Communication. Email dated 19 September 2003.

2255 Bouchard, M., R.C. Brunet, P.O. Droz, and G. Carrier, 2001. A biologically based dynamic model for predicting the disposition of methanol and its metabolites in animals and humans. *Toxicol. Sci.* 64, 169-184.

2256

2257 Browning, E., 1965. *Toxicity and Metabolism of Organic Solvents*. Elsevier Publishing Co., Amsterdam, pp. 311-323.

2258

2259 Bruckner, J.V. and D.A. Warren, 2001. Toxic effects of solvents and vapors. In Casarett and Doull's Toxicology. C.D. Klassen (Ed.), McGraw-Hill, New York, pp. 869-916.

2260

2261 Buller, F. and C.A. Wood, 1904. Poisoning by wood alcohol. *J. Am. Med. Assoc.*, 43, 972-977, 1058-1062, 1117-1123.

2262

2263 Burbacher, T., D. Shen, K. Grant, L. Sheppard, D. Damian, S. Ellis and N. Liberato, 1999a. Reproductive and offspring developmental effects following maternal inhalation exposure to methanol in nonhuman primates. Part I: methanol disposition and reproductive toxicity in adult females. *Res. Rep. Health Eff. Inst.* 89, 9-68.

2264

2265

2266 Burbacher, T., K. Grant, D. Shen, D. Damian, S. Ellis and N. Liberato, 1999b. Reproductive and offspring developmental effects following maternal inhalation exposure to methanol in nonhuman primates. Part II: developmental effects in infants exposed prenatally to methanol. *Res. Rep. Health Eff. Inst.* 89, 69-117.

2267

2268

2269 Burbacher, T.M., D.D. Shen, B. Lalovic, K.S. Grant, L. Sheppard, D. Damian, S. Ellis, and N. Liberato, 2004a.
2270 Chronic maternal methanol inhalation in nonhuman primates (*Macaca fascicularis*): exposure and toxicokinetics prior
2271 to and during pregnancy. *Neurotoxicol. Teratol.* 26, 201-221.

2272 Burbacher, T.M., K.S. Grant, D.D. Shen, L. Sheppard, D. Damian, S. Ellis, and N. Liberato, 2004b. Chronic maternal
2273 methanol inhalation in nonhuman primates (*Macaca fascicularis*): reproductive performance and birth outcome.
2274 *Neurotoxicol. Teratol.* 26, 639-650.

2275 Butterworth, C.E. and A. Bendich, 1996. Folic acid and the prevention of birth defects. *Annu. Rev. Nutr.* 16, 73-97.

2276 Campbell, J.A., D.R. Howard, L.C. Backer and J.W. Allen, 1991. Evidence that methanol inhalation does not induce
2277 chromosome damage in mice. *Mutat. Res.*, 260, 257-264, cited in WHO (1997).

2278 Chao, C.-T., 1959. Materials on the standardization of the maximally permissible concentration of methanol vapors in
2279 the atmosphere (Russian). *Gig. Sanit.* 24, 7-12, cited in NIOSH (1976).

2280 Chuwers, P., J. Osterloh, T. Kelly, A. D'Alessandro, P. Quinlan and C. Becker, 1995. Neurobehavioral effects of
2281 low-level methanol vapor exposure in healthy human volunteers. *Environ. Res.* 71, 141-150.

2282 Cook, M.R., F.J. Bergman, H.D. Cohen, M.M. Gerkovich, C. Graham, R.K. Harris and L.G. Siemann, 1991. Effects
2283 of methanol vapor on human neurobehavioral measures. *Res. Rep. Health Eff. Inst.* 42, 1-45.

2284 Crebelli, R. G. Conti, L. Conti and A. Carere, 1989. A comparative study on ethanol and acetaldehyde as inducers of
2285 chromosome malsegregation in *Aspergillus nidulans*. *Mutat. Res.* 215, 187-195, cited in WHO (1997) .

2286 Czeizel, A.E., 1996. Prevention of the first occurrence of neural tube defects by periconceptional vitamin
2287 supplementation. *N. Engl. J. Med.* 327, 1832-1835.

2288 Dafeldecker, W.P., P.E. Meadow, X. Pares and B.L. Vallee, 1981. Simian liver alcohol dehydrogenase: isolation and
2289 characterization of isoenzymes from *Macaca mulata*. *Biochemistry* 20, 6729-6734.

2290 D'Alessandro, A., J.D. Osterloh, P. Chuwers, P.J. Quinlan, T.J. Kelly and C.E. Becker, 1994. Formate in serum and
2291 urine after controlled methanol exposure at the threshold limit value. *Environ. Health Perspec.* 102, 178-181.

2292 DeFlora, S., P. Zanacchi, A. Camoirano, C. Bennicelli and G.S. Badolati, 1984. Genotoxic activity and potency of
2293 135 compounds in the Ames reversion test and in a bacterial DNA-repair test. *Mutat. Res.* 133, 161-198, cited in
2294 WHO (1997).

2295 DFG, Deutsche Forschungsgemeinschaft, 1999. MAK- und BAT-Werte-Liste 1999. Senatskommission zur Prüfung
2296 gesundheitsschädlicher Arbeitsstoffe, Deutsche Forschungsgemeinschaft, Wiley-VCH Verlag GmbH, Weinheim,
2297 Germany, 1999.

2298 Dorman, D.C., B. Bolon, M.F. Struve, K.M. LaPerle, B.A. Wong, B. Elswick and F. Welsch, 1995. Role of formate
2299 in methanol-induced exencephaly in CD-1 mice. *Teratology* 52, 30-40.

2300 Dorman, D.C., O.R. Moss, G.M. Farris, D. Janszen, J.A. Bond, and M.A. Medinsky, 1994. Pharmacokinetics of
2301 inhaled [¹⁴C]methanol and methanol-derived [¹⁴C]formate in normal and folate-deficient cynomolgus monkeys.
2302 *Toxicol. Appl. Pharmacol.* 128, 229-238.

2303 DuPont Co., Haskell Laboratory, 1974. Report No. MR-5052-1, HL31-74. Unpublished. E.I. Du Pont de Nemours &
2304 Co., Haskell Laboratory, Elkton Rd., P.O. Box 50, Newark, DE 19714, USA; cited in AIHA (1994).

2305 Dutkiewicz, B. J. Konczalik and W. Karwacki, 1980. Skin absorption and per os administration of methanol in men.
2306 Int. Arch. Occup. Environ. Health 47, 81-88, cited in WHO (1997).

2307 Eells, J.T., 1991. Methanol-induced visual toxicity in the rat. J. Pharmacol. Exp. Ther. 257, 56-63, cited in WHO
2308 (1997).

2309 Eells, J.T., A. Black, C.E. Tedford and T.R. Tephly, 1983. Methanol toxicity in the monkey: effects of nitrous oxide
2310 and methionine. J. Pharmacol. Exp. Therapeutics 227, 349-353.

2311 Erlanson, P., H. Fritz, K.-E. Hagstam, B. Liljenberg, N. Tryding and G. Voigt, 1965. Severe methanol intoxication.
2312 Acta Medica Scand. 177, 393-408.

2313 Fisher, J.W., D.C. Dorman, M.A. Medinsky, F. Welsch F, and R.B. Conolly, 2000. Analysis of respiratory exchange
2314 of methanol in the lung of the monkey using a physiological model. Toxicol. Sci. 53, 185-193.

2315 Flury, F. and W. Wirth, 1933. Zur Toxikologie der Lösungsmittel. Arch. Gewerbepathol. Gewerbehyg. 5, 1-90.

2316 Flury, F. and F. Zernik, 1931. Schädliche Gase - Dämpfe, Nebel, Rauch- und Staubarten, J. Springer Verlag, Berlin,
2317 Germany, pp. 345-348.

2318 Forman, R., N. Singal, V. Perelman, S. Chou, L. Hoffman, P. Parkin and G. Koren, 1996. Folic acid and prevention
2319 of neural tube defects: a study of Canadian mothers of infants with spina bifida. Clin. Invest. Med. 19, 195-201.

2320 Franzblau, A., 1999. Dr. Alfred Franzblau, University of Michigan School of Public Health, Ann Arbor, Michigan,
2321 personal communication, e-mail dated 14 June 1999.

2322 Franzblau, A., 2000 Dr. Alfred Franzblau, University of Michigan School of Public Health, Ann Arbor, Michigan,
2323 personal communication, e-mail dated 3 October 2000.

2324 Frederick, L.J., P.A. Schulte, A. Apol, 1984. Investigation and control of occupational hazards associated with the
2325 use of spirit duplicators. Am. Ind. Hyg. Assoc. J. 45, 51-55.

2326 Fu, S.S., T.M. Sakanashi, J.M. Rogers, K.H. Hong and C.L. Keen, 1996. Influence of dietary folic acid on the
2327 developmental toxicity of methanol and the frequency of chromosomal breakage in the CD-1 mouse. Reprod.
2328 Toxicol. 10, 455-463.

2329 Gilger, A.P. and A.M. Potts, 1955. Studies on the visual toxicity of methanol. V. The role of acidosis in experimental
2330 methanol poisonings. Am. J. Ophthalmol. 39, 63-86.

2331 Gonda, A., H. Gault, D. Churchill and D. Hollomby, 1978. Hemodialysis for methanol intoxication. Am. J. Med. 64,
2332 749-758.

2333 Greim, H., 1995. Gesundheitsschädliche Arbeitsstoffe, Toxikologisch-arbeitsmedizinische Begründungen von MAK-
2334 Werten, Loseblattsammlung, 21. Lfg. DFG, Deutsche Forschungsgemeinschaft, VCH Verlag Weinheim, Germany.

2335 Greim, H., 1996. Entwicklung von Verfahren zur Abschätzung der gesundheitlichen Folgen von Großbränden.
2336 Bericht zum Forschungsvorhaben 4b/92 des Bundesamtes für Zivilschutz, Germany.

2337 Hayreh, M.S., S.S. Hayreh, G.L. Baumbach, P. Cancilla, G. Martin-Amat, T.R. Tephly, K.E. McMartin and A.B.
2338 Makar, 1977. Methyl alcohol poisoning: III. Ocular toxicity. *Arch. Ophthalmol.* 95, 1851-1858, cited in WHO
2339 (1997).

2340 Hellman, T.M. and F.H. Small, 1974. Characterization of the odor properties of 101 petrochemicals using sensory
2341 methods. *J. Air Pollution Control Assoc.* 24, 979-982.

2342 Henschler, D. and G. Lehnert, 1983. *Biologische Arbeitsstoff-Toleranz-Werte (BAT-Werte) und*
2343 *Expositionäquivalente für krebserzeugende Arbeitsstoffe (EKA).* Arbeitsmedizinisch-toxikologische Begründungen,
2344 Band 1. Deutsche Forschungsgemeinschaft, VCH Verlag, Weinheim.

2345 Horton, V.L., M.A. Higuchi and D.E. Rickert, 1992. Physiologically-based pharmacokinetic models for methanol in
2346 rats, monkeys, and humans. *Toxicol. Appl. Pharmacol.* 117, 26-36.

2347 Humperdinck, K. (1941). Über das Problem der chronischen Intoxikation mit Methanolräumen. *Arch. Gewerbeopath.*
2348 *Gewerbehyg.* 10, 569-574, cited in NIOSH (1976).

2349 IUCLID (International Uniform Chemical Information Database) CD-ROM (1996), European Commission, European
2350 Chemicals Bureau, Joint Research Centre, Ispra, Italy.

2351 Izmerov, N.F., I.V. Sanotsky and K.K. Sidorov, 1982. Toxicometric parameters of industrial toxic chemicals under
2352 single exposure. Centre of International Projects, GKNT, Moscow.

2353 Jacobsen, D. and K.E. McMartin, 1986. Methanol and ethylene glycol poisonings. *Med. Toxicol.* 1, 309-314.

2354 Jacobsen, D., R. Webb, T.D. Collins and K.E. McMartin, 1988. Methanol and formate kinetics in late diagnosed
2355 methanol intoxication. *Med. Toxicol.* 3, 418-423.

2356 Johlin, F.C., C.S. Fortman, D.D. Nghiem and T.R. Tephly, 1987. Studies on the role of folic acid and folate-
2357 dependent enzymes in human methanol poisoning. *Mol. Pharmacol.* 21, 21-50, cited in Ward et al. (1995).

2358 Kahn, A. and D. Blum, 1979. Methyl alcohol poisoning in an 8-month-old boy: An unusual route of intoxication. *J.*
2359 *Pediatrics* 94, 841-842.

2360 Kane, L.E., R. Dombroske and Y. Alarie, 1980. Evaluation of sensory irritation from some common industrial
2361 solvents. *Am. Ind. Hyg. Assoc. J.* 41, 451-455.

2362 Kane, R.I., W. Talbert, J. Harlan, G. Sizemore and S. Cataland, 1968. A methanol poisoning outbreak in Kentucky.
2363 *Arch. Environ. Health* 17, 119-129.

2364 Katoh, M., 1989. New Energy Development Organization data. Presented at the Methanol Vapors and Health Effects
2365 Workshop: What we know and what we need to know - Summary Report. Washington, DC, ILSI Risk Science
2366 Institute/US Environmental Protection Agency/Health Effects Institute/American Petroleum Institute, p. A-7, cited in
2367 WHO (1997).

2368 Kavet, R. and K.M. Nauss, 1990. The toxicity of inhaled methanol vapors. *Crit. Rev. Toxicol.* 21, 21-50.

2369 Kawai, T., T. Yasugi, K. Mizunuma, S. Horiguchi, Y. Hirase, Y. Uchida and M. Ikeda, 1991. Methanol in urine as a
2370 biological indicator of occupational exposure to methanol vapor. *Int. Arch. Occup. Environ. Health* 63, 311-318.

2371 Kawai, T., T. Yasugi, K. Mizunuma, S. Horiguchi, I. Morioka, K. Miyashita, Y. Uchida and M. Ikeda, 1992.
2372 Monitoring of workers exposed to a mixture of toluene, styrene and methanol vapours by means of diffusive air
2373 sampling, blood analysis and urianalysis. *Int. Arch. Occup. Environ. Health* 63, 429-435.

2374 Keeney, A. and S.M. Mellinkoff, 1949. Methyl alcohol poisoning. *Ann. Intern. Med.* 34, 331-338.

2375 Kingsley, W.H. and F.C. Hirsch, 1955. Toxicologic considerations in direct process spirit duplication machines.
2376 *Compen. Med.* 40, 7-8, cited in NIOSH, 1976.

2377 Leaf, G. and L.J. Zatman, 1952. A study of the conditions under which methanol may exert a toxic hazard in industry.
2378 *Brit. J. Ind. Med.* 9, 19-31.

2379 Lee, E.W., C.D. Garner and T.S. Terzo, 1994a. Animal model for the study of methanol toxicity: Comparison of
2380 folate-reduced rat responses with published monkey data. *J. Toxicol. Environ. Health* 41, 71-82.

2381 Lee, E.W., C.D. Garner and T.S. Terzo, 1994b. A rat model manifesting methanol-induced visual dysfunction suitable
2382 for both acute and long-term exposure studies. *Toxicol. Appl. Pharmacol.* 128, 199-206.

2383 Lee, E.W., T.S. Terzo, J.B. D'Arcy, K.B. Gross and R.M. Schreck, 1992. Lack of blood formate accumulation in
2384 humans following exposure to methanol vapor at the current permissible exposure limit of 200 ppm. *Am. Ind. Hyg.*
2385 *Assoc. J.* 53, 99-104

2386 Lehmann, K.B. and F. Flury, 1943. Toxicology and hygiene of industrial solvents. Williams and Wilkins, Baltimore,
2387 cited in IUCLID (1996).

2388 Leonardos, G., D. Kendall, N. Barnard, 1969. Odor threshold determinations of 53 odorant chemicals. *J. Air*
2389 *Pollution Control Assoc.* 19, 991-995.

2390 Loewy, A. and R. von der Heide, 1914. Die Aufnahme von Methylalkohol durch Inhalation [The uptake of methyl
2391 alcohol by inhalation]. *Biochem. Ztg.* 65, 230-252, cited in Flury and Zernik (1931) (for rat data) and WHO (1997)
2392 (for dog data).

2393 Lorente, C., S. Cordier, A. Bergeret, H.E.K. De Walle, J. Goujard, S. Ayme, R. Knill-Jones, E. Calzolari, and F.
2394 Bianchi, 2000. Maternal occupational risk factors for oral clefts. *Scand. J. Work Environ. Health* 26, 137-145.

2395 Makar, A.B., K.E. McMartin, M. Palese and T.R. Tephly, 1975. Formate assay in body fluids: application in methanol
2396 poisoning. *Biochem. Med.* 13, 117-126.

2397 Makar, A.B., T.R. Tephly and G.J. Mannering, 1968. Methanol metabolism in the monkey. *Mol. Pharmacol.* 4, 471-
2398 483.

2399 Marshbitz, L.M., R.M. Sklianskaya and F.I. Urieva, 1936. The relative toxicity of acetone, methyl alcohol and their
2400 mixtures. II. Their action on white mice. *J. Ind. Hyg. Toxicol.* 18, 117-122.

2401 Martinasevic, M.K., M.D. Green, J. Baron and T.R. Tephly, 1996. Folate and 10-formyltetrahydrofolate
2402 dehydrogenase in human and rat retina: relation to methanol toxicity. *Toxicol. Appl. Pharmacol.* 141, 373-382, cited
2403 in WHO (1997).

2404 May, J. 1966. Odor thresholds of solvents for evaluating solvent odors in air (German). *Staub - Reinhaltung Luft* 26,
2405 385-389, cited in NIOSH (1976).

2406 2407 McCord, C.P., 1931. Toxicity of methyl alcohol following skin absorption and inhalation. *Ind. Eng. Chem.* 23, 931-936.

2408 2409 2410 McGregor, D.B., R. Martin, C.G. Riach and W.J. Caspary, 1985. Optimization of a metabolic activation system for use in the mouse lymphoma L5178Y tk⁺tk⁻ mutation system. *Environ. Mutagen* 7 (Suppl. 3), 10, cited in WHO (1997).

2411 2412 2413 McMarn, K.E., A.B. Makar, G. Martin, M. Palese and T.R. Tephly, 1976. Methanol poisoning: I. The role of formic acid in the development of metabolic acidosis in the monkey and the reversal by 4-methylpyrazole. *Biochem. Med.* 13, 319-333.

2414 2415 McMarn, K.E., G. Martin-Amat, A.B. Makar and T.R. Tephly, 1977. Methanol poisoning. V. Role of formate metabolism in the monkey. *J. Pharmacol. Exp. Therapeutics* 201, 564-572.

2416 2417 2418 Medinsky, M. A., D.C. Dorman, J.A. Bond, O.R. Moss, D.B. Janszen and J.I. Everitt, 1997. Pharmacokinetics of methanol and formate in female cynomolgus monkeys exposed to methanol vapors. Cambridge, Massachusetts. Health Effects Institute Research Report No. 77, 31-38.

2419 2420 Meyer, R.J., M.E.J. Beard, M.W. Ardagh and S. Henderson, 2000. Methanol poisoning. *New Zealand Med. J.* 113, 11-13.

2421 2422 MSZW, Ministerie van Sociale Zaken en Werkgelegenheid, 1999. Nationale MAC-lijst 2000. Sdu Vitgeers, Den Haag, 1999.

2423 2424 Muttray, A., R. Kürten, D. Jung, K.-H. Schicketanz and J. Konietzko, 2001. Acute effects on the human EEG after an external exposure to 200 ppm methanol. *Int. Arch. Occup. Environ. Health* 74, 43-48.

2425 2426 Naraqi, S., R.F. Dethlefs, R.A. Slobodniuk, and J.S. Sairere, 1979. An outbreak of acute methyl alcohol intoxication. *Aust. N.Z. J. Med.* 9, 65-68.

2427 2428 2429 NEDO (New Energy Development Organization), 1987. Toxicological testing of methanol as a fuel for power station: summary report on tests with monkeys, rats and mice. New Energy Development Organization, Tokyo, Japan, pp. 1-296.

2430 2431 Nelson, B.K., W.S. Brightwell, D.R. MacKenzie, A. Khan, J.R. Burg, W.W. Weigel and P.T. Goad, 1985. Teratological assessment of methanol and ethanol at high inhalation levels in rats. *Fundam. Appl. Toxicol.* 5, 727-736.

2432 2433 Nicholls, P., 1975. Formate as an inhibitor of cytochrome c oxidase. *Biochem. Biophys. Res. Commun.* 67, 610-616, cited in WHO (1997).

2434 2435 2436 NIOSH, National Institute for Occupational Safety and Health, 1976. Criteria for a recommended standard ... occupational exposure to methyl alcohol. NIOSH Publication 76-148, U.S. Department of Health, Education, and Welfare.

2437 2438 2439 NIOSH, National Institute for Occupational Safety and Health, 1980. Hazard evaluation and technical assistance report TA 80-32. Everett school district, Everett, Washington. National Institute of Occupational Safety and Health, Cincinnati, OH, USA.

2440 NIOSH, National Institute for Occupational Safety and Health, 1981. Health hazard evaluation report No. HETA-81-
2441 177, 178-988, University of Washington, Seattle. National Institute of Occupational Safety and Health, Cincinnati,
2442 OH, USA.

2443 NIOSH, National Institute of Occupational Safety and Health, 1992. NIOSH Pocket Guide to Chemical Hazards.
2444 [Http://www.cdc.gov/niosh/npg/npgd0397.html](http://www.cdc.gov/niosh/npg/npgd0397.html).

2445 NIOSH, National Institute of Occupational Safety and Health, 1996. Documentation for Immediately Dangerous to
2446 Life and Health Concentrations. [Http://www.cdc.gov/niosh/idlh/67561.html](http://www.cdc.gov/niosh/idlh/67561.html).

2447 NIPRI, 1974. Raw materials data handbook, physical and chemical properties, fire hazard and health hazard data.
2448 Vol. 1. Organic solvents. National Printing Ink Research Institute, Bethlehem, PA, USA, cited in NIOSH (1996).

2449 NLM, U. S. National Library of Medicine, 1998. Hazardous Substances Data Bank. U.S. NLM, CD-ROM Databank,
2450 Silver Platter, November 1998.

2451 Noker, P.E., J.T. Eells and T.R. Tephly, 1980. Methanol toxicity: treatment with folic acid and 5-
2452 formyltetrahydrofolic acid alcoholism. *Clin. Exp. Res.* 4, 378-383.

2453 NTP-CERHR, National Toxicology Program - Center for the Evaluation of Risks to Human Reproduction, 2003.
2454 NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Methanol. National
2455 Toxicology Program, US Department of Health and Human Services, NIH Publication No. 03-4478; available on the
2456 internet at <http://cerhr.niehs.nih.gov>.

2457 NRC, National Research Council, 1985. Emergency and continuous exposure guidance levels for selected airborne
2458 contaminants. Vol. 4. National Research Council, Commission of Life Sciences, Board on Toxicology and
2459 Environmental Health Hazards, Committee on Toxicology, National Academy Press, Washington, DC, USA, pp. 69-
2460 81.

2461 O'Neill, D.H. and V.R. Phillips, 1992. A review of the control of odour nuisance from livestock buildings: Part 3:
2462 Properties of the odorous substances which have been identified in livestock wastes or in the air around them. *J.*
2463 *Agricul. Eng. Res.* 53, 23-50.

2464 Obe, G. and H. Ristow, 1977. Acetaldehyde, but not ethanol induces sister chromatid exchanges in Chinese hamster
2465 cells in vitro. *Mutat. Res.* 56, 211-213, cited in WHO (1997).

2466 OSHA, Occupational Health and Safety Administration, 1994. Code of Federal Regulations 29, Part 1910,
2467 1910.1000.

2468 Palese, M. and T.R. Tephly, 1975. Metabolism of formate in the rat. *J. Toxicol. Environ. Health* 1, 13-24.

2469 Pavlenko, S.M., 1972. [Certain common traits in the action of industrial non-electrolyte poisons entering the body
2470 simultaneously with the water and air] (in Russian). *Gig. I. Sanit.* 37, 40-45; cited in WHO (1997).

2471 Perkins, R.A., K.W. Ward and G.M. Pollack, 1995a. A pharmacokinetic model of inhaled methanol in humans and
2472 comparison to methanol disposition in mice and rats. *Environ. Health Perspec.* 103, 726-733.

2473 Perkins, R.A., K.W. Ward and G.M. Pollack, 1995b. Comparative toxicokinetics of inhaled methanol in the female
2474 CD-1 mouse and Sprague-Dawley rat. *Fund. Appl. Toxicol.* 28, 245-254.

2475 Pollack, G.M., K.L. Brouwer, 1996. Maternal-fetal pharmacokinetics of methanol. *Res. Rep. Health Eff. Inst.* 74,
2476 1-48; discussion 49-53; cited in NTP-CEHRH, 2003.

2477 Rippen, G., 1998. *Handbuch Umwelt-Chemikalien, Stoffdaten - Prüfverfahren - Vorschriften, Loseblattsammlung.*
2478 ecomed Verlag, Landsberg/Lech, Germany.

2479 Röe, O., 1982. Species differences in methanol poisoning. *Crit. Rev. Toxicol.* 10, 275-286.

2480 Rogers, J.M., M.L. Mole, N. Chernoff, B.D. Barbee, C.I. Turner, T.R. Logsdon and R.J. Kavlock, 1993. The
2481 developmental toxicity of inhaled methanol in the CD-1 mouse, with quantitative dose-response modeling for
2482 estimation of benchmark doses. *Teratology* 47, 175-188.

2483 Rogers, J.M., 1995. Methanol causes the holoprosencephaly spectrum of malformations at lower dosages than
2484 ethanol in C57BL/6J mice. *Teratology* 51, 195 (abstract).

2485 Rogers, J.M., B.D. Barbee and M.L. Mole, 1995. Exposure concentration and time (C x T) relationships in the
2486 developmental toxicity of methanol in mice. *Toxicologist* 15, 164 (abstract).

2487 Rogers, J.M. and M.L. Mole, 1997. Critical periods of sensitivity to the developmental toxicity of inhaled methanol in
2488 the CD-1 mouse. *Teratology* 55, 364-72.

2489 Rogers, J.M., 1999. US-EPA, National Health and Environmental Effects Research Laboratory, Research Triangle
2490 Park, North Carolina, personal communication, letter dated 27 May 1999.

2491 Ruth, J.H., 1986. Odor thresholds and irritation levels of several chemical substances: a review. *Am. Ind. Hyg. Assoc.*
2492 J. 47, A142-A151.

2493 Ryazanov, V. A., 1961. Sensory physiology as basis for air quality standards. *Arch. Environ. Health* 3, 668-675.

2494 Sakanashi, T.M., J.M. Rogers, S.S. Fu, L.E. Connelly and C.L. Keen, 1996. Influence of maternal folate status on the
2495 developmental toxicity of methanol in the CD-1 mouse. *Teratol.* 54, 198-206.

2496 Scherberger, R.F., Happ, G.P., Miller, F.A., Fassett, D.W., 1958. A dynamic apparatus for preparing air-vapor
2497 mixtures of known concentrations. *Am. Ind. Hyg. Assoc. J.* 19, 494-498, cited in NIOSH (1976).

2498 Scott, J.B., F.A. Smith and R.H. Garman, 1979. Exposure of mice to CH_2Cl_2 and CH_3OH alone and in combination.
2499 *Toxicol. Appl. Pharmacol.* 48, A105 (abstract).

2500 Sedivec, V., M. Mraz and J. Fiek, 1981. Biological monitoring of persons exposed to methanol vapors. *Int. Arch.*
2501 *Occup. Environ. Health* 48, 257-271.

2502 Simmon, V.F., K. Kauhanen and R.G. Tardiff, 1977. Mutagenic activity of chemicals identified in drinking water. In
2503 D. Scott, B.A. Bridges and F.H. Sobels (Eds.) *Progress in genetic toxicology*, Vol. 2., Elsevier/North Holland Press,
2504 Amsterdam, Netherlands, pp. 249-268, cited in WHO (1997).

2505 Stanton, M.E., K.M. Crofton, L.E. Gray, C.J. Gordon, W.K. Boyes, M.L. Mole, D.B. Peele and P.J. Bushnell, 1995.
2506 Assessment of offspring development and behavior following gestational exposure to inhaled methanol in the rat.
2507 *Fund. Appl. Toxicol.* 28, 100-110.

2508 Stern, S., C. Cox, R. Preston, A. Sharma, G.B. Inglis, M. Balys and B. Weiss, 1997. Perinatal methanol exposure in
2509 the rat. II. Behavioral effects in neonates and adults. *Fund. Appl. Toxicol.* 36, 163-176.

2510 Stern, S., K. Reuhl, S. Soderholm, C. Cox, A. Sharma, M. Balys, R. Gelein, C. Yin and B. Weiss, 1996. Perinatal
2511 methanol exposure in the rat. I. Blood methanol concentrations and neural cell adhesion molecules. *Fund. Appl.*
2512 *Toxicol.* 34, 36-46.

2513 Sterner, J.J., and D. W. Fassett, 1958. Personal Communication cited in *Am. Ind. Hyg. Assoc. Q.* 18, 368-369, cited
2514 in ACGIH (1996).

2515 Tolarova, M. and J. Harris, 1995. Reduced recurrence of orofacial clefts after periconceptional supplementation with
2516 high-dose folic acid and multivitamins. *Teratol.* 51, 71-78.

2517 Tyson, H.H. and M.J. Schoenberg, 1914. Experimental researches in methyl alcohol inhalation. *J. Am. Med. Assoc.*
2518 63, 912; cited in Kavet and Nauss, 1990.

2519 Ubaidullaev, R., 1966. [Effect of small concentrations of methanol vapours on the body of men and animals] (in
2520 Russian). *Gig. I. Sanit.* 31, 9-12, cited in WHO (1997).

2521 US-EPA, Environmental Protection Agency, 2001. Notice of denial of a petition to delist methanol from the list of
2522 hazardous air pollutants. *Federal Register* 66, May 2, 2001, 21929-21940.

2523 Verschueren, K., 1983. *Handbook of Environmental Data on Organic Chemicals* . 2nd edition, Van Nostrand
2524 Reinhold, New York, USA.

2525 Wallace, K.B., J.T. Eells, V.M. Madeira, G. Cortopassi and D.P. Jones, 1997. Mitochondria-mediated cell injury.
2526 Symposium overview. *Fundam. Appl. Toxicol.* 38, 23-37.

2527 Ward, K.W., G.M. Blumenthal, F. Welsch and G.M. Pollack, 1997. Development of a physiologically based
2528 pharmacokinetic model to describe the disposition of methanol in pregnant rats and mice. *Toxicol. Appl. Pharmacol.*
2529 145, 311-322.

2530 Ward, K.W., R.A. Perkins, J.L. Kawagoe and G.M. Pollack, 1995. Comparative toxicokinetics of methanol in the
2531 female mouse and rat. *Fund. Appl. Toxicol.* 26, 258-264.

2532 Watkins, W.D., J.I. Goodman and T.R. Tephly, 1970. Inhibition of methanol and ethanol oxidation by pyrazole in the
2533 rat and monkey in vivo. *Mol. Pharmacol.* 6, 567-572.

2534 Weese, H., 1928. Vergleichende Untersuchungen über die Wirksamkeit und Giftigkeit der Dämpfe niederer
2535 aliphatischer Alkohole. *Arch. Exptl. Pathol. Pharmakol.* 135, 118-130, cited in WHO (1997).

2536 White, L.R., A.B.L. Martinsen and O.G. Nilsen, 1983. Biochemical and cytological studies of rat lung after inhalation
2537 of methanol vapor. *Toxicol. Lett.* 17, 1-5, cited in WHO (1997).

2538 WHO (World Health Organization), 1997. Methanol. *Environmental Health Criteria* 196. IPCS, International
2539 Programme on Chemical Safety; World Health Organization, Geneva, 180 pp.

2540 WHO (World Health Organization), 1999. Principles for the Assessment of Risks to Human Health from Exposure to
2541 Chemicals. *Environmental Health Criteria* 210. IPCS, International Programme on Chemical Safety; World Health
2542 Organization, Geneva, 110 pp.

2543 Van Doorn, R., M. Ruijten and T. Van Harreveld (2002). Guidance for the application of odor in chemical emergency
2544 response. Version 2.1, 29.08.2002.

2545 Yant, W.P. and H.H. Schrenk, 1937. Distribution of methanol in dogs after inhalation and administration by stomach
2546 tube and subcutaneously. *J. Ind. Hyg. Toxicol.* 19, 337-345, cited in WHO (1997).

2547 Yasugi, T., T. Kawai, K. Mizunuma, S. Horguchi, O. Iwami, H. Iguchi and M. Ikeda, 1992. Formic acid excretion in
2548 comparison with methanol excretion in urine of workers occupationally exposed to methanol. *Int. Arch. Occup.*
2549 *Environ. Health* 63, 429-435, cited in Perkins et al. (1995a).

2550 Youssef, A., K. Madkour, C. Cox, B. Weiss, 1992. Comparative lethality of methanol, ethanol and mixtures in female
2551 rats. *J. Appl. Toxicol.* 12, 193-197.

2552

APPENDIX A

2553

Time Scaling Calculations for AEGLs

2554

AEGL-1

2555 Key study: Batterman et al. (1998) and Franzblau (1999; 2000; personal communication);
 2556 Frederick et al. (1984); NIOSH (1980); NIOSH (1981)

2557 Toxicity endpoint: Pharmacologic study exposing 3 female and 12 male subjects to 800 ppm
 2558 methanol for 8 hours. One of the study's coauthors stated in a personal
 2559 communication that none of the subjects reported symptoms.

2560 Scaling: $C^3 \times t = k$ for extrapolation to 4, hours, 1 hour and 30 minutes
 2561 $k = 800^3 \text{ ppm}^3 \times 8 \text{ hours} = 4.1 \times 10^9 \text{ ppm}^3 \text{ h}$
 2562 The AEGL-1 for 10 minutes was set at the same concentration as the 30-minute
 2563 value.

2564 Uncertainty factors: 3 for intraspecies variability
 2565

2566 Calculations:

2567 10-minute AEGL-1 10-min AEGL-1 = 670 ppm (880 mg/m³)

2568 30-minute AEGL-1 $C^3 \times 0.5 \text{ h} = 4.1 \times 10^9 \text{ ppm}^3 \text{ h}$
 2569 C = 2017 ppm
 2570 30-min AEGL-1 = 2017 ppm/3 = 670 ppm (880 mg/m³)

2571 1-hour AEGL-1 $C^3 \times 1 \text{ h} = 4.1 \times 10^9 \text{ ppm}^3 \text{ h}$
 2572 C = 1600 ppm
 2573 1-hour AEGL-1 = 1600 ppm/3 = 530 ppm (690 mg/m³)

2574 4-hour AEGL-1 $C^3 \times 4 \text{ h} = 4.1 \times 10^9 \text{ ppm}^3 \text{ h}$
 2575 C = 1008 ppm
 2576 4-hour AEGL-1 = 1008 ppm/3 = 340 ppm (450 mg/m³)

2577 8-hour AEGL-1 8-hour AEGL-1 = 800 ppm/3 = 270 ppm (350 mg/m³)

2578

AEGL-22579
2580

Key study: Rogers et al. (1993; 1995, abstract; 1997); Rogers (1999, personal communication)

2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598

Toxicity endpoint: Using repeated 7-hour/day exposures during gestational days 6 to 15, a dose-related, significant increase in cervical ribs was observed at 2000 ppm or higher; other malformations, such as exencephaly and cleft palate occurred dose-dependently at concentrations of 5000 ppm or higher (Rogers et al., 1993). The same type of malformations occurred after a single 7-hour exposure to 10000 ppm (Rogers et al., 1997). In another study of Rogers and coworkers, which has not been formally published up until now, mice were exposed on gestational day 7 to different concentration-time combinations (Rogers et al. 1995, abstract; Rogers, 1999, personal communication). The most sensitive endpoint was cervical rib induction, which occurred at concentration-time products greater than or equal to 15000 ppm · h, but not at concentration-time products below 15000 ppm · h (i.e. no effects were observed after exposure to 2000 ppm x 5 h, 2000 ppm x 7 h and 5000 ppm x 2 h; authors expressed data only as CxT values). In these experiments, the highest no-observed-effect CxT product was 2000 ppm for 7 hours. The corresponding end-of-exposure blood concentration in mice after exposure was measured as 487 mg/l (Rogers et al., 1993). The uncertainty factors were applied to the blood methanol concentration resulting in a concentration of 48.7 mg/l, on which calculations of AEGL-2 exposure concentrations were based.

2599
2600
2601

Scaling: A pharmacokinetic model was used to calculate exposure concentrations that would lead to blood methanol concentrations at the end of periods of 8 hours, 4 hours, 1 hour and 30 and 10 minutes. Calculations are shown in Appendix B, Table 15.

2602
2603

Uncertainty factors: 1 for interspecies variability
10 for intraspecies variability

2604
2605

Calculations: The concentrations calculated using the pharmacokinetic (PK) model were set as AEGL-2 values:

2606

10-minute AEGL-2 = 11350 ppm (from PK model) = 11000 ppm (14000 mg/m³)

2607

30-minute AEGL-2 = 3980 ppm (from PK model) = 4000 ppm (5200 mg/m³)

2608

1-hour AEGL-2 = 2110 ppm (from PK model) = 2100 ppm (2800 mg/m³)

2609

4-hour AEGL-2 = 730 ppm (from PK model) = 730 ppm (960 mg/m³)

2610

8-hour AEGL-2 = 524 ppm (from PK model) = 520 ppm (680 mg/m³)

2611

AEGL-3

2612

Key study: AACT (2002)

2613

Toxicity endpoint: Case studies reported measured blood methanol concentrations and time periods between intoxication and measurement. Given the time that elapsed until blood sampling, during which part of the methanol was metabolized, it can be concluded that peak blood methanol concentrations have been above 1000 mg/l in all fatal cases. Based on the extensive clinical experience with methanol intoxications, the American Academy of Clinical Toxicology (AACT, 2002) published clinical practice guidelines on the treatment of methanol poisoning. According to these guidelines, peak blood methanol concentrations >500 mg/l indicate serious poisoning for which hemodialysis is recommended. Based on the human experience, a peak blood methanol concentration of 500 mg/l was chosen as the basis for AEGL-3 derivation.

2624

Scaling: A pharmacokinetic model was used to calculate exposure concentrations that would lead to blood methanol concentrations at the end of periods of 8 hours, 4 hours, 1 hour and 30 and 10 minutes. Calculations are shown in Appendix B, Table 16.

2627

Uncertainty factor: 3 for intraspecies variability

2628

Calculations: The concentrations calculated using the pharmacokinetic (PK) model were set as AEGL-3 values:

2630

10-minute AEGL-3 10-min AEGL-3 = 39500 ppm (from PK model) = 40000 ppm (52000 mg/m³)

2631

30-minute AEGL-3 30-min AEGL-3 = 13700 ppm (from PK model) = 14000 ppm (18000 mg/m³)

2632

1-hour AEGL-3 1-hour AEGL-3 = 7220 ppm (from PK model) = 7200 ppm (9400 mg/m³)

2633

4-hour AEGL-3 4-hour AEGL-3 = 2380 ppm (from PK model) = 2400 ppm (3100 mg/m³)

2634

8-hour AEGL-3 8-hour AEGL-3 = 1620 ppm (from PK model) = 1600 ppm (2100 mg/m³)

2635

APPENDIX B

2636

Pharmacokinetic Calculations

2637

Calculation of Exposure Concentrations for Humans

2638

Study: Perkins et al. (1995a)
 Pharmacokinetic model for blood methanol concentrations after inhalation exposure.

2640

Equation:

$$\frac{dC}{dt} = \frac{\Phi \cdot V_h \cdot C_{inh}}{V_d} - \frac{V_{max} \cdot C}{K_m + C}$$

2641

Parameters: C blood methanol concentration [mg/l]
 C_{inh} methanol concentration in air [mg/l]
 t time [h]
 Φ fraction of inhaled methanol absorbed into systemic circulation
 V_h ventilation rate [l/kg h]
 V_d volume of distribution [l/kg]
 V_{max} maximum rate of enzymatic methanol oxidation [mg/l h]
 K_m Michaelis-Menten constant of enzymatic methanol oxidation [mg/l]

2649

Parameter values: Since the presentation of parameters used for calculations and the reasoning for the parameter values is not clear in the article of Perkins et al. (1995a), for calculations the parameters were not taken over automatically. Instead, the following parameters were used:

2653

TABLE 14: PARAMETERS OF PHARMACOKINETIC MODEL

2654

Parameter	Value used for calculation
Φ	0.7 The mean value of the range (0.53-0.85) reported Leaf and Zatman (1952) and Sedivec et al. (1981) (see Section 4.1.1) was used (value used in Perkins model: 0.75)
V_h (l/kg h)	17.8 (a body weight of 70 kg and a ventilation rate of 10 m ³ /8 h for occupational situations were used) (value used in Perkins model: 10.3)
V_d (l/kg)	0.65 The mean value of the range (0.6-0.7) reported by Yant and Schrenk (1937) was used (see Section 4.1.1) (value used in Perkins model: 0.7)
V_{max} (mg/l h)	115 (value used in Perkins model)
K_m (mg/l)	460 (value used in Perkins model)

2660 Procedure: The simulations were performed on a spreadsheet program by converting the differentials
 2661 to finite differences with a time step of 0.1 hours. For the continuous, instantaneous
 2662 values for the blood concentration of methanol (C), the value from the previous time step
 2663 (C_{t-1}) was used. Background blood methanol in humans is approximately 1.0 mg/l (see
 2664 Table 8 for references) from both endogenous and exogenous sources and this level was
 2665 used for the initial time step (C_0). Using three significant figures, the lowest exposure
 2666 concentration was calculated that resulted at or above the desired blood methanol
 2667 concentration.

2668 Equation:
$$C_t = \frac{\Phi \cdot V_h \cdot C_{inh}}{V_d} \cdot 0.1h - \frac{V_{max} \cdot C_{t-1}}{K_m + C_{t-1}} \cdot 0.1h$$

2669 Calculations: The following exposure concentrations were calculated to result in a blood methanol
 2670 concentration of 48.7 mg/l in humans:

TABLE 15: CALCULATION OF CONCENTRATIONS FOR INHALATION EXPOSURE I		
Exposure time	Calculated exposure concentration (ppm)	Rounded value (ppm)
8 h	524	520
4 h	730	730
1 h	2110	2100
30 min	3980	4000
10 min	11350	11000

2678 Calculations: The following exposure concentrations were calculated to result in a blood methanol
 2679 concentration of 167 mg/l in humans:

TABLE 16: CALCULATION OF CONCENTRATIONS FOR INHALATION EXPOSURE II		
Exposure time	Calculated exposure concentration (ppm)	Rounded value (ppm)
8 h	1620	1600
4 h	2380	2400
1 h	7220	7200
30 min	13700	14000
10 min	39500	40000

2687 **Comparison of the Perkins et al. (1995a) and Bouchard et al. (2001) models**

2688 In order to demonstrate that the pharmacokinetic model of Perkins et al. (1995a) gives results
 2689 consistent with newer models, its predictions of methanol concentrations in air, that would lead cause
 2690 selected blood methanol concentrations were compared with those of the model described by Bouchard et
 2691 al. (2001). Calculations using the latter model were done by Professor Michele Bouchard, University of
 2692 Montreal, Canada (Bouchard, personal communication, 2003). Model parameters were chosen as
 2693 described in the original publication by Professor Bouchard, except that the values for the volume of
 2694 distribution V_d and for the ventilation rate V_h were adjusted to the used in the Perkins model (see Table
 2695 14).

2696 Exposure concentrations in air were calculated for end-of-exposure blood methanol concentrations
 2697 of 30, 100 and 250 mg/l. As can be seen from the results tables below, both pharmacokinetic models gave
 2698 consistent results.

2699 **TABLE 17: CALCULATION OF METHANOL CONCENTRATIONS RESULTING IN A**
 2700 **BLOOD CONCENTRATION OF 30 mg/l**

Exposure time	Perkins et al. (1995a) model	Bouchard et al. (2001) model
8 h	330	450
4 h	460	560
1 h	1300	1400
30 min	2500	2600
10 min	7000	7500

2707 **TABLE 18: CALCULATION OF METHANOL CONCENTRATIONS RESULTING IN A**
 2708 **BLOOD CONCENTRATION OF 100 mg/l**

Exposure time	Perkins et al. (1995a) model	Bouchard et al. (2001) model
8 h	1100	1200
4 h	1500	1700
1 h	4400	4600
30 min	8300	8600
10 min	24000	25000

2715
2716
2717
2718
2719
2720
2721
2722

**TABLE 19: CALCULATION OF METHANOL CONCENTRATIONS RESULTING IN A
BLOOD CONCENTRATION OF 250 mg/l**

Exposure time	Perkins et al. (1995a) model	Bouchard et al. (2001) model
8 h	2300	2400
4 h	3500	3600
1 h	11000	11000
30 min	21000	21000
10 min	60000	61000

2723

APPENDIX C

2724

Level of Distinct Odor Awareness

2725

Derivation of the Level of Distinct Odor Awareness (LOA)

2726 The level of distinct odor awareness (LOA) represents the concentration above which it is
2727 predicted that more than half of the exposed population will experience at least a distinct odor intensity,
2728 about 10 % of the population will experience a strong odor intensity. The LOA should help chemical
2729 emergency responders in assessing the public awareness of the exposure due to odor perception. The LOA
2730 derivation follows the guidance given by van Doorn et al. (2002).

2731 For derivation of the odor detection threshold (OT_{50}), a study is available in which the odor
2732 threshold for the reference chemical n-butanol (odor detection threshold 0.04 ppm) has also been
2733 determined:

2734 Hellman and Small (1974):
2735 odor detection threshold for methanol: 4.26 ppm
2736 odor detection threshold for n-butanol: 0.3 ppm
2737 corrected odor detection threshold (OT_{50}) for methanol: $4.26 \text{ ppm} * 0.04 \text{ ppm} / 0.3 \text{ ppm} = 0.57 \text{ ppm}$

2738 The concentration (C) leading to an odor intensity (I) of distinct odor detection (I=3) is derived
2739 using the Fechner function:

$$I = k_w * \log(C / OT_{50}) + 0.5$$

2740 For the Fechner coefficient, the default of $k_w = 2.33$ will be used due to the lack of chemical-specific data:

$$3 = 2.33 * \log(C / 0.57) + 0.5 \quad \text{which can be rearranged to}$$

$$\log(C / 0.57) = (3-0.5) / 2.33 = 1.07 \quad \text{and results in}$$

$$C = (10^{1.07}) * 0.57 = 11.8 * 0.57 = 6.7 \text{ ppm}$$

2745 The resulting concentration is multiplied by an empirical field correction factor. It takes into
2746 account that in every day life factors, such as sex, age, sleep, smoking, upper airway infections and allergy
2747 as well as distraction, increase the odor detection threshold by a factor of 4. In addition, it takes into
2748 account that odor perception is very fast (about 5 seconds) which leads to the perception of concentration
2749 peaks. Based on the current knowledge, a factor of 1/3 is applied to adjust for peak exposure. Adjustment
2750 for distraction and peak exposure lead to a correction factor of $4 / 3 = 1.33$

$$LOA = C * 1.33 = 6.7 \text{ ppm} * 1.33 = 8.9 \text{ ppm}$$

2752 The LOA for methanol is 8.9 ppm.

2753

APPENDIX D

2754

Derivation Summary for Methanol AEGLs

ACUTE EXPOSURE GUIDELINES FOR METHANOL (CAS NO. 67-56-1)

AEGL-1 VALUES				
10 minutes	30 minutes	1 hour	4 hours	8 hours
670 ppm	670 ppm	530 ppm	340 ppm	270 ppm
Reference: Batterman, S.A., A. Franzblau, J.B. D'Arcy, N.E. Sargent, K.B. Gross and R.M. Schreck, 1998. Breath, urine, and blood measurements as biological exposure indices of short-term inhalation exposure to methanol. <i>International Archives of Occupational and Environmental Health</i> 71, 325-335; Franzblau, A., University of Michigan School of Public Health, Ann Arbor, Michigan, personal communication, e-mail dated 14 June 1999; Franzblau, A., University of Michigan School of Public Health, Ann Arbor, Michigan, personal communication, e-mail dated 3 October 2000; Frederick, L.J., P.A. Schulte, A. Apol, 1984. Investigation and control of occupational hazards associated with the use of spirit duplicators. <i>American Industrial Hygiene Association Journal</i> 45, 51-55; NIOSH, National Institute for Occupational Safety and Health, 1980. Hazard evaluation and technical assistance report TA 80-32. Everett school district, Everett, Washington. National Institute of Occupational Safety and Health, Cincinnati, OH, USA.; NIOSH, National Institute for Occupational Safety and Health, 1981. Health hazard evaluation report No. HETA-81-177, 178-988, University of Washington, Seattle. National Institute of Occupational Safety and Health, Cincinnati, OH, USA				
Test Species/Strain/Number: Humans / not applicable / in total 7 women and 12 men				
Exposure Route/Concentrations/Durations: Inhalation / 0 and 800 ppm / 0.5, 1, 2 and 8 hours				
Effects: In this pharmacokinetic study no statement was made on the presence or absence of any signs or symptoms of the methanol exposure. In a personal communication, the second author, Dr. Franzblau, stated that although no formal mechanism of recording symptoms was used, the subjects were generally asked during exposure if they experienced any symptoms. He wrote that individual symptoms were certainly asked of some subjects and that "none of the subjects reported odor, irritation, headache or other non-specific symptoms"; likewise "none of the subjects reported any difficulties or alterations of visual function". Dr. Franzblau wrote that it is possible that some subjects were not queried and that no written notes were made.				

2783	Endpoint/Concentration/Rationale: Several experimental human studies are available that used
2784	methanol concentrations of about 200 ppm. Chuwers et al. (1995) found no significant effects in a
2785	panel of neurophysiological and neuropsychological tests after exposure for 4 hours to 200 ppm. After
2786	the same exposure, Muttray et al. (2001) observed electroencephalogram alterations which the authors
2787	did not consider adverse; no clinical symptoms were reported by the subjects. Likewise, the
2788	NAC/AEGL committee considered these findings as below the threshold for AEGL-1. Batterman et al.
2789	(1998) exposed volunteers at a higher level (i.e. 800 ppm for 8 hours). As this was a pharmacokinetic
2790	study, health effects were not formally evaluated. In a personal communication the coauthor Dr.
2791	Franzblau stated that individual symptoms were asked of some subjects, other subjects were only
2792	asked generally if they had symptoms, and that in some exposure sessions subjects might not have
2793	been queried. According to Dr. Franzblau, none of the subjects reported symptoms. Since the subjects
2794	knew the exposure concentration by means of a meter showing the actual concentration, it might be
2795	expected that this would have increased the inclination of subjects to report symptoms.
2796	NIOSH (1980) and Frederick et al. (1984) reported significantly higher frequencies of
2797	headaches, dizziness, blurred vision after occupational exposure at 1060 ppm (mean concentration).
2798	NIOSH (1981) reported eye irritation in a worker after exposure at 1025 ppm for 25 minutes. Since
2799	the 1000-ppm level was considered already a discomfort level, the 800 ppm for 8 hour exposure from
2800	the Batterman et al. (1998) study was chosen as a starting point for AEGL-derivation. Since the local
2801	irritation effects are determined by the concentration of methanol in air and not to the blood methanol
2802	level, calculation of AEGL-1 values was not done using a pharmacokinetic model (as done for AEGL-
2803	2 and -3) based on the end-of-exposure blood methanol level of 30.7 mg/l reported by Batterman et al.
2804	(1998). Instead, exposure to 800 ppm for 8 hours was used as the basis for AEGL-1 derivation.
2805	Uncertainty Factors/Rationale:
2806	Total uncertainty factor: 3
2807	Interspecies: not applicable
2808	Intraspecies: 3 - because interindividual variability with regard to slight central nervous system
2809	effects (e.g. headache) is likely to exist (although it cannot be quantified exactly from
2810	the existing experimental and epidemiological studies) and because subpopulations
2811	with a less than optimal folate status may be more susceptible to the health effects of
2812	methanol.
2813	Modifying Factor: Not applicable
2814	Animal to Human Dosimetric Adjustment: Not applicable
2815	Time Scaling: $C^n \times t = k$ where the default of $n = 3$ was used due to the lack of substance-specific
2816	data.. For the 10-minute AEGL-1 the 30-minute value was applied because no studies were available
2817	that demonstrated the absence of notable discomfort (with respect to irritation) in the general
2818	population, including susceptible subpopulations, at 970 ppm (extrapolated value for 10-minute
2819	period).

2820 Data Adequacy: Some uncertainty to the key study used for AEGL-1 derivation is conferred by the
2821 fact that no formal evaluation of health effects was performed and that with regard to effects only a
2822 personal communication by one of the key studies' coauthors is available, who stated that none of the
2823 subjects has reported symptoms. Other controlled studies using comparable exposure concentrations
2824 are not available. Other studies describing asymptomatic effects on the central nervous system a lower
2825 concentration of about 200 ppm (Chuwers et al., 1995; Muttray et al., 2001) were not used because no
2826 dose-response relationships were established and in light of the study of Batterman et al. (1998) and
2827 several occupational exposure studies, this exposure concentration is considered lower than the
2828 threshold for irritation and discomfort.

ACUTE EXPOSURE GUIDELINES FOR METHANOL (CAS NO. 67-56-1)

AEGL-2 VALUES				
10 minutes	30 minutes	1 hour	4 hours	8 hours
11000 ppm ^a	4000 ppm	2100 ppm	730 ppm	520 ppm

^aThe 10-minute AEGL-2 value is higher than 1/10 of the lower explosive limit (LEL) of methanol in air (LEL = 55,000; 1/10th LEL = 5500 ppm). Therefore, safety considerations against the hazard of explosion must be taken into consideration.

Reference: Rogers, J.M., M.L. Mole, N. Chernoff, B.D. Barbee, C.I. Turner, T.R. Logsdon and R.J. Kavlock, 1993. The developmental toxicity of inhaled methanol in the CD-1 mouse, with quantitative dose-response modeling for estimation of benchmark doses. *Teratology* 47, 175-188; Rogers, J.M., B.D. Barbee and M.L. Mole, 1995. Exposure concentration and time (C x T) relationships in the developmental toxicity of methanol in mice. *Toxicologist* 15, 164 (abstract); Rogers, J.M. and M.L. Mole, 1997. Critical periods of susceptibility to the developmental toxicity of inhaled methanol in the CD-1 mouse. *Teratology* 55, 364-72; Rogers, J.M., 1999. US-EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, personal communication, letter dated 27 May 1999.

Test Species/Strain/Sex/Number: mouse / CD-1 / pregnant females / variable (see below)

Exposure Route/Concentrations/Durations:

Inhalation exposure to the following concentration-time combinations (number of pregnant females or litters given in brackets) were used:

Rogers et al. (1995); Rogers (1999):

0 ppm (time not given); 2000 ppm x 5 / 7 h; 5000 ppm x 2 / 3 / 5 / 7 h; 10000 ppm x 2 / 3 / 5 / 7 h; 15000 ppm x 1 / 2 / 3 / 5 / 7 h (number of litters 5 to 39 for CxT combinations in methanol-exposed and 106 in control groups)

Rogers et al. (1993):

0 / 1000 / 2000 / 5000 / 7500 / 10000 / 15000 ppm x 7 h/d, bd 6-15 (number of exposed females 20 to 61 per group)

Rogers et al. (1997):

0 / 10000 ppm x 7 h/d for 1 d during period of gd 5-9 / for 2 d during period of gd 6-13 (number of pregnant females 12 to 17 per group)

Effects:

Rogers et al. (1995); Rogers (1999):

- no increased malformations after $CxT < 15000 \text{ ppm} \cdot \text{h}$,
- significantly increased incidences of cervical ribs after $CxT \geq 15000 \text{ ppm} \cdot \text{h}$,
- in addition significantly increased incidences of fetal death, cleft palate and other skeletal defects after $CxT \geq 70000 \text{ ppm} \cdot \text{h}$;

2866	Effects (cont.):
2867	Rogers et al. (1993):
2868	<ul style="list-style-type: none">- no increased malformations after 1000 ppm,- significantly increased incidences of cervical ribs after \geq2000 ppm,- in addition significantly increased incidences of exencephaly and cleft palate after \geq5000 ppm,- in addition significantly increased number of dead fetuses/litter after \geq7500 ppm,- in addition significantly increased number of full-litter resorptions after \geq10000 ppm;
2873	Rogers et al. (1997): several types of malformations were observed. The critical periods differed with
2874	maximum effects (% of fetuses per litter affected) on the following exposure days:
2875	<ul style="list-style-type: none">- increased resorptions per litter after exposure on gd 7 or on gd 6-7,- exencephaly after exposure on gd 7 (20 %) or gd 6-7 (30 %),- cleft palate after exposure on gd 7 (47 %) or gd 6-7 (20 %),- first cervical vertebra defect after exposure on gd 5 (56 %) or gd 6 (55 %) or gd 6-7 (72 %),- second cervical vertebra defect after exposure on gd 7 (29 %) or gd 6-7 (22 %),- cervical ribs on vertebra after exposure on gd 7 (45 %) or gd 6-7 (74 %)
2876	
2877	
2878	
2879	
2880	

2881 Endpoint/Concentration/Rationale:
2882 Although methanol intoxication can cause blindness in humans, it is not possible to derive a threshold
2883 for this effect from the available data. Moreover, available reports indicate that blindness results only
2884 after life-threatening poisoning (Naraqi et al., 1979; WHO, 1997; IUCLID, 1996; NIOSH, 1976).
2885 The epidemiological studies evaluating reversible effects on humans, such as slight neurotoxic and
2886 irritative effects at the workplace, though evaluating a relevant toxicological endpoint, will not be used
2887 for derivation of AEGL-2 values because data on exposure time and exposure concentration were not
2888 considered sufficient. However, these reports provide valuable supporting evidence.
2889 The derivation of AEGL-2 values was based on developmental toxic effects in animals. The available
2890 data have been reviewed by US-EPA (2001) and NTP-CEHRH (2003) and the developmental toxic
2891 effects in rodents were considered relevant for humans.
2892 In mice, repeated 7-hour/day exposures during gestational days 6 to 15 caused a dose-related,
2893 significant increase in cervical ribs at 2000 ppm or higher; other malformations, such as exencephaly
2894 and cleft palate occurred concentration-dependently at 5000 ppm or higher (Rogers et al., 1993). The
2895 same type of malformations was found after a single 7-hour exposure at 10000 ppm (no other
2896 concentrations tested) (Rogers et al., 1997). In another study, which has not been formally published
2897 up until now, Rogers and coworkers (Rogers et al. 1995, abstract; Rogers, 1999, personal
2898 communication) exposed mice on gestational day 7 to different concentration-time combinations. The
2899 most sensitive endpoint was cervical rib induction, which occurred at concentration-time products
2900 greater than or equal to 15000 ppm · h, but not at concentration-time products below 15000 ppm · h
2901 (i.e. no effects were observed at 2000 ppm for 5 h, 2000 ppm for 7 h or 5000 ppm for 2 h; authors
2902 expressed data only as CxT values). Thus, while 2000 ppm for 7 hours was a LOEL in the repeated
2903 exposure study (Rogers et al., 1993), it was a NOEL after single exposure. Although the single
2904 exposure study had shortcomings in the reporting, it was very consistent with the well-documented
2905 repeated exposure study. It was therefore considered adequate to use an exposure at 2000 ppm for 7
2906 hours as a starting point for AEGL-2 derivation.
2907 The corresponding end-of-exposure blood concentration was measured as 487 mg/l (Rogers et al.,
2908 1993). There is experimental evidence that developmental toxic effects are caused by methanol itself
2909 and not by a metabolite, such as formate (Dorman et al., 1995). It therefore was considered adequate
2910 to derived AEGL-2 values on the basis of blood methanol concentrations. The total uncertainty factor
2911 was applied to the blood methanol concentration resulting in a value of 48.7 mg/l.

2912 Uncertainty Factors/Rationale:
2913

2914 Total uncertainty factor: 10
2915

2916 Interspecies: 1 - because a sensitive species was used for derivation of AEGL-2 values and because
2917 toxicokinetic differences between species were accounted for by using a
2918 pharmacokinetic model for calculating exposure concentrations.
2919

2920 Intraspecies: 10 - because no information on developmental toxic effects of methanol on humans is
2921 available and because also for other chemicals the variability in susceptibility of
2922 humans for developmental toxic effects is not well characterized. Moreover, pregnant
2923 women are a subpopulation with a less than optimal folate status and, thus, may be
more susceptible to the health effects of methanol

2924 Modifying Factor: Not applicable

2925 Animal to Human Dosimetric Adjustment: Not applicable

2924 Time Scaling: Using a total uncertainty factor of 10, a blood methanol concentration of 48.7 mg/l was
2925 derived as the basis for calculation of exposure concentrations. Application of the uncertainty factor to
2926 the blood methanol concentration was preferred because the calculated exposure concentrations in air
2927 stayed better in the concentration range for which the pharmacokinetic model was validated and the
2928 effect of methanol metabolism for longer exposure periods was more adequately taken into account. In
2929 contrast, first calculating exposure concentrations that would lead to a blood methanol level of 487
2930 mg/l, and then applying a factor of 10 to the derived exposure concentration would result in
2931 calculation of extremely high concentrations in the first step at which metabolic pathways would be
2932 saturated. After application of the uncertainty factor, concentrations would be below saturation level
2933 which would mean that the end-of-exposure methanol levels would vary for the AEGL-2 exposure
2934 concentration-time combinations.

2935 Using the pharmacokinetic model of Perkins et al. (1995a), inhalation exposure concentrations
2936 were calculated for appropriate time periods that would lead to a blood methanol concentration of 48.7
2937 mg/l at the end of the time period. The calculated exposure concentrations were set as AEGL-2 values.

2938 Data Adequacy: The derived AEGL-2 values are supported by the occupational exposure study of
2939 Kawai et al. (1991), in which 8-hour mean concentrations of 3000-5500 ppm in 5 samples and 1000-
2940 2000 ppm in another 10 samples were measured and resulted in dimmed vision (the authors suggested
2941 that visibility was temporarily reduced by fog in the workroom) and nasal irritation, but not in severe
2942 or irreversible toxicity.

ACUTE EXPOSURE GUIDELINES FOR METHANOL (CAS NO. 67-56-1)

AEGL-3 VALUES				
10 minutes	30 minutes	1 hour	4 hours	8 hours
#	15000 ppm ^a	7900 ppm ^a	2500 ppm	1600 ppm

^aThe 1-hour AEGL-3 values are higher than 1/10 of the lower explosive limit (LEL) of methanol in air (LEL = 55,000; 1/10th LEL = 5500 ppm). Therefore, safety considerations against the hazard of explosion must be taken into consideration.

[#]The 10-minute AEGL-3 value of 40,000 ppm is higher than 50% of the lower explosive limit of methanol in air (LEL = 55,000 ppm; 50% of the LEL = 27,500 ppm). Therefore, extreme safety considerations against the hazard of explosion must be taken into account.

Reference: AACT, American Academy of Clinical Toxicology Ad Hoc Committee on the Treatment Guidelines for Methanol Poisoning: D.G. Barceloux, G.R. Bond, E.P. Krezelok, H. Cooper, and J.A. Vale, 2002. American Academy of Clinical Toxicology Practice Guidelines on the Treatment of Methanol Poisoning. *Clinical Toxicology* 40, 415-446

Test Species/Strain/Sex/Number: Humans / (not applicable) / (not applicable)

Exposure Route/Concentrations/Durations: Oral / measured blood methanol concentrations are available, but no reliable information on ingested dose / exact information during which time period the methanol dose was consumed is not available, it was assumed that the time period for ingestion was short (up to a few hours)

Effects: In fatal cases, death occurred 1.5-4 days after intoxication; when admitted to hospital (0.5-2 days after intoxication), subjects usually showed severe signs of intoxication (e.g. coma); for all cases measured blood methanol concentrations and time between measurement and intoxication were reported.

Endpoint/Concentration/Rationale: The minimum lethal oral dose of about 1 g/kg reported in review articles by Buller and Wood (1904) and Röe (1982) was not used as the basis for AEGL derivation because the value was not sufficiently supported by data in these articles. However, the reported minimum lethal oral dose which corresponds to a peak blood methanol level of about 1540 mg/l is supported by information from case studies on intoxication with methanol only (i.e. without concomitant ethanol consumption) (Naraqi et al., 1979; Erlanson et al., 1965; Bennett et al., 1955; Gonda et al., 1978; Meyer et al., 2000). These studies reported measured blood methanol concentrations and time periods between intoxication and measurement. Given the time that elapsed until blood sampling, during which part of the methanol was metabolized, it can be concluded that peak blood methanol concentrations have been above 1000 mg/l in all fatal cases (see Figure 2). Based on the extensive clinical experience with methanol intoxications, the American Academy of Clinical Toxicology (AACT, 2002) published clinical practice guidelines on the treatment of methanol poisoning. According to these guidelines, peak blood methanol concentrations >500 mg/l indicate serious poisoning for which hemodialysis is recommended. Based on the human experience, a peak blood methanol concentration of 500 mg/l was chosen as the basis for AEGL-3 derivation

2982	Uncertainty Factors/Rationale:
2983	Total uncertainty factor: 3
2984	Interspecies: not applicable
2985	Intraspecies: 3 - because clinical experience with methanol intoxications is mainly based
2986	on cases involving adult men while much less data is available for women, children or
2987	elderly persons, and because subpopulations with a less than optimal folate status
2988	may be more susceptible to the health effects of methanol
2989	Modifying Factor: Not applicable
2990	Animal to Human Dosimetric Adjustment: Not applicable
2991	Time Scaling: Using a total uncertainty factor of 3, a blood methanol concentration of 167 mg/l was
2992	derived as the basis for calculation of exposure concentrations. Application of the uncertainty factor to
2993	the blood methanol concentration was preferred because the calculated exposure concentrations in air
2994	stayed better in the concentration range for which the pharmacokinetic model was validated and the
2995	effect of methanol metabolism for longer exposure periods was more adequately taken into account. In
2996	contrast, first calculating exposure concentrations that would lead to a blood methanol level of 500
2997	mg/l and then applying a factor of 3 to the derived exposure concentration would result in calculation
2998	of extremely high concentrations in the first step at which metabolic pathways would be saturated.
2999	Using the pharmacokinetic model of Perkins et al. (1995a), inhalation exposure concentrations
3000	were calculated for appropriate time periods that would lead to a blood methanol concentration of 167
3001	mg/l at the end of the time period. The calculated exposure concentrations were set as AEGL-3 values.
3002	Data Adequacy: AEGL-3 values were based on studies reporting lethality in humans after oral
3003	intoxication. Available studies on lethal effects of inhalation exposure in rodents were not considered
3004	appropriate due to the considerable differences between primates (humans and monkeys) and rodent
3005	species in the kinetics of methanol metabolism and the mechanisms of methanol toxicity.
3006	The derived values are supported by the occupational exposure study of Kawai et al. (1991) (no effects
3007	more severe than dimmed vision (the authors suggested that visibility was temporarily reduced by fog
3008	in the workroom) and nasal irritation occupational exposure against up to 3000-5500 ppm during an 8-
3009	hour work shift) and by studies on monkeys (Andrews et al., 1987) (no toxic effects after repeated
3010	exposure to 5000 ppm for 6 hours/day).
3011	In teratogenicity studies in mice, no fetal death was found after single or repeated exposure to 5000
3012	ppm for 7 hours (measured blood methanol concentration was 2126 mg/l at the end of exposure)
3013	(Rogers et al., 1993; 1995; Rogers, 1999). This blood methanol concentration is about 11-fold higher
3014	than the blood methanol concentration of 185 mg/l, which was used to derive AEGL-3 values.