

**MONOCHLOROACETIC ACID
(CAS Reg. No. 79-11-8)****ACUTE EXPOSURE GUIDELINE LEVELS
(AEGLs)****February 2006**

7

PREFACE

8 Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 1972, the
9 National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances
10 (NAC/AEGL Committee) has been established to identify, review and interpret relevant toxicologic and
11 other scientific data and develop AEGLs for high priority, acutely toxic chemicals.

12 AEGLs represent threshold exposure limits for the general public and are applicable to
13 emergency exposure periods ranging from 10 minutes to 8 hours. AEGL-2 and AEGL-3 levels, and
14 AEGL-1 levels as appropriate, will be developed for each of five exposure periods (10 and 30 minutes, 1
15 hour, 4 hours, and 8 hours) and will be distinguished by varying degrees of severity of toxic effects. It is
16 believed that the recommended exposure levels are applicable to the general population including infants
17 and children, and other individuals who may be sensitive or susceptible. The three AEGLs have been
18 defined as follows:

19 AEGL-1 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
20 is predicted that the general population, including susceptible individuals, could experience notable
21 discomfort, irritation, or certain asymptomatic, non-sensory effects. However, the effects are not
22 disabling and are transient and reversible upon cessation of exposure.

23 AEGL-2 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
24 is predicted that the general population, including susceptible individuals, could experience irreversible or
25 other serious, long-lasting adverse health effects, or an impaired ability to escape.

26 AEGL-3 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
27 is predicted that the general population, including susceptible individuals, could experience
28 life-threatening health effects or death.

29 Airborne concentrations below the AEGL-1 represent exposure levels that could produce mild
30 and progressively increasing odor, taste, and sensory irritation, or certain asymptomatic, non-sensory
31 effects. With increasing airborne concentrations above each AEGL level, there is a progressive increase
32 in the likelihood of occurrence and the severity of effects described for each corresponding AEGL level.
33 Although the AEGL values represent threshold levels for the general public, including sensitive
34 subpopulations, it is recognized that certain individuals, subject to unique or idiosyncratic responses,
35 could experience the effects described at concentrations below the corresponding AEGL level.

TABLE OF CONTENTS

37	PREFACE	ii
38	TABLE OF CONTENTS	iii
39	EXECUTIVE SUMMARY	vi
40	1. INTRODUCTION	1
41	2. HUMAN TOXICITY DATA	3
42	2.1. Acute Lethality	3
43	2.2. Nonlethal Toxicity	3
44	2.3. Developmental/Reproductive Toxicity	5
45	2.4. Genotoxicity	5
46	2.5. Carcinogenicity	5
47	2.6. Summary	5
48	3. ANIMAL TOXICITY DATA	6
49	3.1. Acute Lethality	6
50	3.1.1. Non-human Primates	6
51	3.1.2. Rats	6
52	3.1.3. Mice	7
53	3.1.4. Other Species	8
54	3.2. Nonlethal Toxicity	9
55	3.2.1 Rats	10
56	3.2.2. Mice	12
57	3.3. Developmental/Reproductive Toxicity	12
58	3.4. Genotoxicity	13
59	3.5. Carcinogenicity	13
60	3.6. Summary	14
61	4. SPECIAL CONSIDERATIONS	15
62	4.1. Metabolism and Disposition	15
63	4.2. Mechanism of Toxicity	15
64	4.3. Structure-Activity Relationships	17
65	4.3.1. Studies Using Alkyl Esters of MCAA	17
66	4.3.2. Studies with Other Monohaloacetic Acids	18
67	4.3.3. Conclusions from Structure-Activity Relationships	18
68	4.4. Other Relevant Information	19
69	4.4.1. Species Variability	19
70	4.4.2. Intraspecies Variability	19
71	5. DATA ANALYSIS FOR AEGL-1	21
72	5.1. Human Data Relevant to AEGL-1	21
73	5.2. Animal Data Relevant to AEGL-1	21
74	5.3. Derivation of AEGL-1	21

75	6. DATA ANALYSIS FOR AEGL-2	23
76	6.1. Human Data Relevant to AEGL-2	23
77	6.2. Animal Data Relevant to AEGL-2	23
78	6.3. Derivation of AEGL-2	23
79	7. DATA ANALYSIS FOR AEGL-3	25
80	7.1. Human Data Relevant to AEGL-3	25
81	7.2. Animal Data Relevant to AEGL-3	25
82	7.3. Derivation of AEGL-3	26
83	8. SUMMARY OF AEGLs	29
84	8.1. AEGL Values and Toxicity Endpoints	29
85	8.2. Comparison with Other Standards and Criteria	30
86	8.3. Data Adequacy and Research Needs	31
87	9. REFERENCES	33
88	APPENDIX A	
89	Time Scaling Calculations for AEGLs	39
90	AEGL-2	40
91	APPENDIX B	
92	Derivation Summary for Monochloroacetic Acid AEGLs	41
93	AEGL-1	42
94	AEGL-2	43
95	AEGL-3	45

LIST OF TABLES

97	TABLE 1: CHEMICAL AND PHYSICAL DATA	2
98	TABLE 2: RESULTS OF MCAA MEASUREMENTS AT WORKPLACE	4
99	TABLE 3: SUMMARY OF ACUTE ORAL LETHAL DOSES IN LABORATORY ANIMALS	8
100	TABLE 4: AEGL-1 VALUES FOR MONOCHLOROACETIC ACID	22
101	TABLE 5: AEGL-2 VALUES FOR MONOCHLOROACETIC ACID	24
102	TABLE 6: AEGL-3 VALUES FOR MONOCHLOROACETIC ACID	27
103	TABLE 7: SUMMARY/RELATIONSHIP OF AEGL VALUES	29
104	TABLE 8. EXTANT STANDARDS AND GUIDELINES FOR MONOCHLOROACETIC ACID ..	31

LIST OF FIGURES

106	FIGURE 1: RELATIONSHIP BETWEEN MCAA DOSE AND LETHAL EFFECTS	28
107	FIGURE 2: CATEGORICAL REPRESENTATION OF ALL MCAA INHALATION DATA	30

108

EXECUTIVE SUMMARY

109 Monochloroacetic acid (MCAA) is a colorless crystalline material, which is highly soluble in
110 water and soluble in organic solvents. Its vapor pressure at room temperature is moderate with reported
111 values between 0.2 hPa (crystalline substance) and 10 hPa (solution in water). MCAA has a pungent odor.

112 MCAA is produced by chlorination of acetic acid or hydrolysis of trichloroethene using sulfuric
113 acid. The world production capacity was estimated at 362,500 metric tons/year in 1987. MCAA or its
114 sodium salt, sodium monochloroacetate, are used primarily in the industrial production of carboxymethyl-
115 cellulose, herbicides, thioglycolic acid as well as in the production plastics, pharmaceuticals, flavors,
116 cosmetics and other organic chemicals.

117 MCAA is an acid (pK_a 2.85) and therefore can cause eye and skin irritation upon contact with a
118 diluted MCAA solution and skin corrosion and conjunctival burns upon contact with more concentrated
119 solutions. The systemic toxicity of MCAA is caused by inhibition of enzymes of the glycolytic pathway
120 and the tricarboxylic acid cycle. This metabolic blockage damages organs with a high energy-demand,
121 such as heart, CNS and muscles, and leads to metabolic acidosis due to the accumulation of lactic acid
122 and citric acid in the body.

123 No studies are available reporting severe toxic effects in humans after inhalation exposure to
124 MCAA. Mortality was reported in a child after oral uptake of 5-6 ml of an 80 % MCAA solution (Rogers,
125 1995). Several lethal accidents have been reported, in which workers were dermally exposed to hot, liquid
126 MCAA. An inadequately described study reported an irritation threshold of 1.48 ppm (Maksimov and
127 Dubinina, 1974); no respiratory tract irritation, effects on lung function parameters or irritation of skin
128 and mucous membranes were reported for >33 workers potentially exposed to MCAA concentrations
129 between <0.13 ppm for 3 hours and 0.31 ppm for 7 hours (Clariant GmbH, 2000).

130 The only animal study reporting lethal effects after inhalation exposure was an inadequately
131 described study in which a LC_{50} of 46.8 ppm for 4 hours was reported for rats (Maksimov and Dubinina,
132 1974). Several studies report lethal effects after oral exposure with LD_{50} values mostly between 50-200
133 mg/kg for rats, mice and guinea pigs. In a single inhalation experiment on rats, eye squint and slight
134 lethargy were observed during exposure to an analytical concentration of 66 ppm for 1 hour (Dow
135 Chemical Co., 1987). In an inadequately reported study, an irritation threshold in rats of 6.16 ppm and a
136 NOEL for histological changes in the respiratory tract in rats and guinea pigs of 1.5 ppm after 4 months
137 have been reported (Maksimov and Dubinina, 1974).

138 No relevant studies of adequate quality were available for the derivation of the AEGL-1.
139 Therefore, AEGL-1 values were not recommended due to insufficient data. Due to the lack of an
140 adequately performed study reporting an odor threshold for MCAA, no level of distinct odor awareness
141 (LOA) was derived.

142 The AEGL-2 was based on a single inhalation study in rats (Dow Chemical Co., 1987) in which
143 eye squint and lethargy were observed in rats exposure to 66 ppm for 1 hour. A total uncertainty factor of
144 10 was used. An uncertainty factor of 3 was applied for interspecies variability because 1) the effect level
145 was considered below that of an AEGL-2, 2) because the available data on acute oral lethality do not

146 point at a large interspecies variability for more severe (lethal) effects, and 3) because of the limited
 147 toxicodynamic variability as the enzymes inhibited by MCAA do not vary considerably within and
 148 between species. An uncertainty factor of 3 was applied for intraspecies variability because of the limited
 149 toxicokinetic variability with respect to local effects and because of the limited toxicodynamic variability
 150 with respect to systemic effects since the enzymes inhibited by MCAA do not vary considerably within
 151 and between species. The other exposure duration-specific values were derived by time scaling according
 152 to the dose-response regression equation $C^n \times t = k$, using the default of $n=3$ for shorter exposure periods
 153 and $n=1$ for longer exposure periods, due to the lack of suitable experimental data for deriving the
 154 concentration exponent.

155 No relevant studies of adequate quality were available for the derivation of the AEGL-3 value.
 156 Therefore, due to insufficient data and the uncertainties of a route-to-route extrapolation, AEGL-3 values
 157 were not recommended.

158 The AEGLs are summarized in the table below.

SUMMARY TABLE OF AEGL VALUES FOR MONOCHLOROACETIC ACID ^a						
Classification	10-Minute	30-Minute	1-Hour	4-Hour	8-Hour	Endpoint (Reference)
AEGL-1 (Nondisabling)	N.R. ^b	N.R.	N.R.	N.R.	N.R.	Insufficient data
AEGL-2 (Disabling)	12 ppm (47 mg/m ³)	8.3 ppm (33 mg/m ³)	6.6 ppm (26 mg/m ³)	1.7 ppm (6.7 mg/m ³)	0.83 ppm (3.3 mg/m ³)	eye squint and lethargy in rats (Dow Chemical Co., 1987)
AEGL-3 (Lethal)	N.R.	N.R.	N.R.	N.R.	N.R.	Insufficient data

167 ^a Skin contact with molten MCAA or MCAA solutions should be avoided; dermal penetration is rapid and
 168 fatal intoxications have been observed when 10 % or more of the body surface was involved.

169 ^b not recommended due to insufficient data

170 171 References

172 Clariant GmbH, 2000. Unpublished. Letter of Dr. Kreiling dated 23.08.2000.

173 Dow Chemical Co., 1987. Monochloroacetic acid: an acute vapor inhalation limit study with Fischer 344
 174 rats. Unpublished report, Dow Chemical Company, Midland, USA.

175 Maksimov G.G. and O.N. Dubinina, 1974. Materials of experimental substantiation of maximally
 176 permissible concentration of monochloroacetic acid in the air of production area. *Gigiena Truda i*
 177 *Professional nye Zabolevarija* 9, 32-35.

178 Rogers D.R., 1995. Accidental fatal monochloroacetic acid poisoning. *American Journal of Forensic
179 Medicine and Pathology* 16, 115-116.

180 1. INTRODUCTION

181 Monochloroacetic acid (MCAA) is a colorless crystalline material, which is highly soluble in
182 water and soluble in organic solvents.183 MCAA is produced by a) chlorination of acetic acid or b) hydrolysis of trichloroethene using
184 sulfuric acid (BUA, 1994). A) the chlorination of acetic acid is carried out in liquid phase at temperatures
185 between 85 and 120 °C. Acetic anhydride and/or acetylchloride may be used as catalysts. The
186 chlorination product contains considerable amounts of acetic acid and/or dichloroacetic acid. Purification
187 takes place either by selective dechlorination of dichloroacetic acid and subsequent distillation, or by
188 recrystallization from suitable solvents (ECB, 2003). B) trichloroethylene and sulphuric acid are heated to
189 130-140 °C in the reactor. A mixture of trichloroethylene and sulphuric acid is continuously fed to the
190 bottom of the reactor. The chloroacetic acid and sulphuric acid are permitted to overflow into a cascade,
191 where the chloroacetic acid is distilled at 20 mm Hg and the sulphuric acid is recycled. The hydrolysis of
192 trichloroethylene yields high-purity monochloroacetic acid, but has the disadvantage of utilising a
193 relatively more expensive starting material (ECB, 2003).194 The world production capacity was estimated at 362,500 metric tons/year in 1987 (KEMI, 1994).
195 In Europe about 145,000 metric tons were produced in 1999 (ECB, 2003); in the US about 39,000 metric
196 tons were produced in 1989 (UN, 1996). Imports into the US comprised about 17,000 metric tons of
197 chloroacetic acids in 2003 (USITC, 2004). The TRI database (DHHS, 2004) lists 17 sites in the US where
198 production and/or use of MCAA causes emissions to the air.199 MCAA is pumped in molten form (about 80 °C) or as 80 % aqueous solution through pipes on
200 industrial sites and is also transported in molten form in tank trucks and rail tank cars between industrial
201 sites (ECETOC, 1999; ECB, 2003). Therefore, an inhalation exposure during accidental releases cannot
202 be ruled out (ECETOC, 1999), although no case of severe intoxication by inhalation has been published
203 in the literature.204 MCAA or its sodium salt, sodium monochloroacetate, are used primarily in the industrial
205 production of carboxymethylcellulose, herbicides, thioglycolic acid as well as in the production of
206 plastics, pharmaceuticals, flavors, cosmetics and other organic chemicals (KEMI, 1994; ECB, 2003).207 Haloacetic acids, including MCAA, are a group of chemicals that are formed along with other
208 drinking water disinfection byproducts (e.g. trihalomethanes) when chlorine or other disinfectants used to
209 control microbial contaminants in the water, react with naturally occurring organic and inorganic matter
210 in water. Depending on the amount of bromide in the source water varying amounts of chlorinated,
211 brominated and mixed bromochlorohaloacetic acids are produced. The U.S. EPA (1998) has published the
212 Stage 1 Disinfectants/Disinfection Byproducts Rule to regulate a group of five haloacetic acids at a
213 maximum contaminant level of 0.06 mg/l (60 ppb) annual average. A very small inhalation exposure
214 might result from this water contamination. Xu and Weiser (2003) have measured an aerosol-bound
215 concentration of 6.3 ng/m³ of haloacetic acids during showering with water containing 250 µg/l haloacetic
216 acids.

217 Chemical and physical properties of MCAA are listed in Table 1.

MONOCHLOROACETIC ACID

FINAL 1:
2/2006

TABLE 1: CHEMICAL AND PHYSICAL DATA

Parameter	Value	Reference
Molecular formula	$\text{ClCH}_2\text{-COOH}$ ($\text{C}_2\text{H}_3\text{ClO}_2$)	NTP, 1992
Molecular weight	94.5 g/mol	NTP, 1992
CAS Registry Number	79-11-8	NTP, 1992
Physical state	solid	NTP, 1992
Color	colorless	NTP, 1992
Synonyms	Chloroacetic acid; monochloroethanoic acid; chloroethanoic acid; Monochloressigsäure; Chlorethansäure	UN, 1996; Greim, 1998
Vapor pressure	0.1 mm Hg (at 20 °C) ca. 0.2 hPa (crystalline substance at 20 °C) 1 hPa (at 20 °C) 10 hPa (solution in water at 20 °C) 1 mm Hg (at 43 °C) 4.4 hPa (liquid at 65 °C) 8.23 mm Hg (at 80 °C) 10 mm Hg (at 81 °C) 40 mm Hg (at 109.2 °C) 100 mm Hg (at 130.7 °C) 400 hPa (at 169 °C)	Dow Chemical Co., 1987 Greim, 1998 IUCLID, 1996 IUCLID, 1996 Weast, 1984 IUCLID, 1996 Dow Chemical Co., 1987 Weast, 1984 Weast, 1984 Weast, 1984 Weast, 1984 Weast, 1984
Density	1.58 g/cm³ (solid) 1.3707 g/cm³ (liquid)	UN, 1996
Melting point	63 °C (α -crystalline form, common form) 56.2 °C (β -crystalline form) 52.5 °C (γ -crystalline form)	Weast, 1984
Boiling point	187.8 °C (α -crystalline form) 187.9 °C (β -crystalline form) 187.8 °C (γ -crystalline form)	Weast, 1984
Solubility	very soluble in water (4210 g/l at 20 °C); soluble in methanol, ethanol, acetone, ether, dioxane, DMF, DMSO	IUCLID, 1996; BG Chemie, 1992; Weast, 1984
Acidity, pK_a	2.85	Weast, 1984
Odor	pungent odor	ICPS & CEC, 1993
Explosive limits in air	no data	
Conversion factors	1 ppm = 3.92 mg/m³ (at 1013 hPa, 25 °C) 1 mg/m³ = 0.26 ppm (at 1013 hPa, 25 °C)	BG Chemie, 1992

235 **2. HUMAN TOXICITY DATA**236 **2.1. Acute Lethality**

237 Deaths after inhalation of MCAA have not been reported in the literature (ECETOC, 1999).
238 Lethal effects have occurred after oral intoxication and after dermal exposure to hot, liquid MCAA
239 (ECETOC, 1999; IUCLID, 1996; BUA, 1994). Some of these incidences are described in the following
240 paragraphs.

241 *Studies with non-inhalation exposure*

242 Feldhaus et al. (1993) and Rogers (1995) reported a case study of a fatal acute oral exposure. A 5-
243 year old girl was accidentally given 5-6 ml of an 80 % MCAA containing wart remover. After 1.5 hours
244 post exposure, she developed refractory ventricular tachycardia, pulmonary edema and acidemia. The
245 patient died 8 hours post-ingestion despite medical intervention. An autopsy revealed diffuse gastric
246 erosions, fatty infiltration of the liver and pulmonary and cerebral edema. The post mortem MCAA
247 concentration in serum was 100 mg/l as determined by gas chromatography/mass spectroscopy. The
248 exposure corresponds to an oral dose of about 200-240 mg/kg (see Section 7.1).

249 Fatal cases and life-threatening poisonings in workers have been described after skin contact
250 (IUCLID, 1996; BUA, 1994): Christofano et al. (1970) reported a case, in which about 10 % of the body
251 surface was contaminated with warm MCAA solution. Although the contaminated skin was immediately
252 rinsed with water for more than 1 hour, first-grade burns, anxiety, restlessness and shock developed,
253 followed by death about 10 hours after the accident. Ruty et al. (1987) reported on the case of a 47-year-
254 old worker, whom pressurized, molten (about 90 °C) MCAA squirted on both legs. Although the legs
255 were immediately rinsed with water, 6 % of the body area showed first-grade burns. Four hours after the
256 accident, nausea, vomiting, cardiovascular shock, unconsciousness and coma developed. Arrhythmia,
257 hypotension and severe metabolic acidosis were found. The patient was treated with ethanol, an effective
258 antidot for fluoroacetic acid intoxications. His symptoms ameliorated after 24 hours and the patient
259 returned to work 3 months later. Kulling et al. (1992) reported the case of a 38 year-old man who was
260 splashed with an 80 % MCAA solution on 25-30 % of his body surface. On admission to hospital 1 hour
261 after the accident, he had epidermal and dermal superficial burns and showed slight disorientation. One
262 hour later, he developed agitation, cardiac failure and coma. He later developed severe metabolic acidosis,
263 rhabdomyolysis, renal insufficiency and cerebral edema and died on day 8 after the accident due to severe
264 CNS damage.

265 **2.2. Nonlethal Toxicity**

266 Clariant GmbH (2000) reported that routine medical examinations of workers of two plants,
267 producing MCAA and sodium monochloroacetate, respectively, revealed no respiratory tract irritation,
268 effects on lung function parameters or irritation of skin and mucous membranes. The number of
269 potentially exposed workers was 33 in one plant and not stated for the other. Concentrations of MCAA
270 and sodium monochloroacetate, respectively, were measured at individual workplaces about every 1 to 2
271 years between 1991 and 2000. Measurements were carried out either as area or personal sampling by

272 drawing a defined volume of air through a 0.01 mol/l sodium hydroxide solution during a time period
 273 between 275 and 430 minutes followed by ion chromatography analysis. Results are given in Table 2.

TABLE 2: RESULTS OF MCAA MEASUREMENTS AT WORKPLACE; adopted from Clariant GmbH, 2000			
Plant	Workplace situation	Individual MCAA concentrations measured between 1991 and 2000	No. workers and exposure time per workshift
SMCA ^a production	area of rollers for production of MCAA flakes	area sampling; 1, <1, <1, 1, 1, 1 mg/m ³ (MCAA measured) (0.26, <0.26, <0.26, 0.26, 0.26, 0.26 ppm)	1 person for 1 hour
SMCA production	filling of MCAA flakes	personal sampling; <1, 1.2, 1, <1, 1 mg/m ³ (MCAA measured) (<0.26, 0.31, 0.26, <0.26, 0.26 ppm)	max. 4 persons for 7 hours
SMCA production	SMCA mixer	area sampling; 0.81, 0.89 mg/m ³ (SMCA measured) (0.21, 0.23 ppm)	1 person for 1 hour
SMCA production	filling of bags with SMCA	personal sampling; 0.49, 0.45, <0.40 mg/m ³ (SMCA measured) (0.13, 0.12, <0.10 ppm)	1 person for 6 hours
MCAA production	round and sampling men workarea in five different buildings	personal sampling; <1, <1, <1, <1, <1, <1, <1, <1, 0.8, <0.5, <0.5, <0.5, <0.5, <0.5 mg/m ³ (MCAA measured) (<0.26, <0.26, <0.26, <0.26, <0.26, <0.26, <0.26, <0.26, <0.26, 0.21, <0.13, <0.13, <0.13, <0.13, <0.13 ppm)	8 persons for 3 hours

287 ^a SMCA; sodium monochloroacetate

288 Maksimov and Dubinina (1974) and Rodionova and Ivanov (1979) reported an irritation
 289 threshold for humans of 5.7 mg/m³ (1.48 ppm) (for this study an exposure time of 1 minute was stated in
 290 Izmerov et al., 1982). The experimental details were not described by the authors.

291 An odor threshold of 0.01 ppm cited from an unpublished correspondence from Dow Chemical
 292 Co. was reported by AIHA (1993). Oelert and Florian (1972) cited an odor threshold of 0.045 ppm;
 293 however, the authors did not state whether this value was taken from the literature or whether and how
 294 they measured the odor threshold.

295 Knapp (1923) reported a case in which occupational exposure to MCAA had resulted in severe
 296 damage of the cornea (keratitis traumatica), but did not provide details of the exposure.

298 ***Studies with non-inhalation exposure***299 Morrison and Leake (1941) reported that daily oral exposure for 60 days to 300 ml of a 0.05 %
300 MCAA solution in water did not result in adverse effects in three human volunteers. The exposure
301 corresponds to an oral dose of about 2.1 mg/kg/day (see Section 6.1).302 **2.3. Developmental/Reproductive Toxicity**303 No studies documenting developmental or reproductive effects of MCAA in humans were
304 identified (IUCLID, 1996; Medline and Toxline search November 2003).305 **2.4. Genotoxicity**306 No studies documenting genotoxic effects of MCAA in humans were identified (IUCLID, 1996;
307 Greim, 1998; Medline and Toxline search November 2003).308 **2.5. Carcinogenicity**309 No studies documenting carcinogenic effects of MCAA in humans were identified (IUCLID,
310 1996; Greim, 1998; Medline and Toxline search November 2003).311 **2.6. Summary**312 No studies are available reporting severe toxic effects in humans after inhalation exposure to
313 MCAA. An inadequately described study reported an irritation threshold of 1.48 ppm (Maksimov and
314 Dubinina, 1974; Rodionova and Ivanov, 1979); no respiratory tract irritation, effects on lung function
315 parameters or irritation of skin and mucous membranes were reported for >33 workers potentially
316 exposed to MCAA concentrations between <0.13 ppm for 3 hours and 0.31 ppm for 7 hours (Clariant
317 GmbH, 2000). Mortality was reported in a child after oral uptake of 5-6 ml of an 80 % MCAA solution
318 (Feldhaus et al., 1993; Rogers, 1995). Several lethal accidents have been reported, in which workers were
319 dermally exposed to hot, liquid MCAA or aqueous MCAA solutions (ECETOC, 1999, IUCLID, 1996;
320 BUA, 1994).

321 **3. ANIMAL TOXICITY DATA**322 **3.1. Acute Lethality**

323 Several studies are available that report oral lethal doses of MCAA in different animal species.
324 The oral lethality data are summarized in Table 3. Only one study reporting lethal effects after inhalation
325 exposure was located.

326 **3.1.1. Non-human Primates**327 *Studies with non-inhalation exposure*

328 In a metabolic study, Dow Chemical Co. (1976) administered MCAA intravenously to one male
329 rhesus monkey. The animal was given 75 mg/kg on day 1 and 200 mg/kg on day 2. It died 2 hours after
330 the second dose. No signs of toxicity other than vomiting were reported, the cause of death remained
331 undetermined. [Note: The study would be ethically unacceptable nowadays.]

332 **3.1.2. Rats**

333 Maksimov and Dubinina (1974) observed no deaths in albino rats exposed at 5 mg/m³ (1.3 ppm)
334 MCAA vapor (the authors stated that this was the maximum achievable vapor concentration at 20 °C).
335 When MCAA was heated to 95 °C and rats were exposed to the condensed aerosol, the authors reported a
336 LC₅₀ of 180 (146-221) mg/m³ (46.8 ppm) for 4 hours (exposure duration taken from Izmerov et al.,
337 1982). The experimental details were not described by the authors.

338 *Studies with single non-inhalation exposure*

339 Hoechst AG (1979a) administered 1 % (w/v) solutions of MCAA in water to groups of 10 female
340 Wistar rats that were deprived of food for 16 hours before and 2 hours after gavage. The post exposure
341 observation period was 14 days. Mortality rates were 0/10 animals at a dose of 40 mg/kg, 2/10 at 63
342 mg/kg, 5/10 at 100 mg/kg and 10/10 at 160 mg/kg. Death occurred between 128 minutes and 24 hours
343 after gavage. Symptoms before death included restlessness, crouching, balance disturbance, prone
344 position, passiveness, drowsiness, incomplete eyelid closure, discharge from the eyes and dyspnea. Gross
345 pathologic examination revealed brownish-red livers with prominent lobular structuring and light-red to
346 pink spotted lungs. In surviving animals, the same symptoms occurred to a lesser extent, but were not
347 observed longer than until 48 hours after exposure. Using Probit analysis, an oral LD₅₀ of 90.4 mg/kg (95
348 % C.I. (95 % confidence interval) 73.6-112 mg/kg) was calculated by the study authors.

349 Using subcutaneous injection of a 50 % solution of MCAA in saline, a LD₅₀ of 97.4 (89.9-105.5)
350 mg/kg was reported for Wistar rats (10 animals/group) (Hoechst AG, 1979d). Dermal LD₅₀ were 305
351 (242-384) mg/kg for a 40 % non-neutralized MCAA solution in water (Hoechst AG, 1979e) and >2000
352 mg/kg for sodium monochloroacetate in saline (Hoechst AG, 1988c).

353 Berardi (1986) reported an oral LD₅₀ of 102 mg/kg (95 % C.I. 51-204 mg/kg) using groups of 4
354 Sprague-Dawley rats and gavage of a non-neutralized MCAA solution in water.

355 Woodard et al (1941) reported an oral LD₅₀ of 76.2 mg/kg (95 % C.I. 70.7-82.2 mg/kg) using a
356 neutralized MCAA solution and groups of 5 to 20 rats (strain not specified).

357 Maksimov and Dubinina (1974) investigated oral LD₅₀ values in albino rats administered a 10 %
358 of MCAA solution. A value of 55 mg/kg was found when the acid solution was used, and a value of 580
359 mg/kg was determined for the neutralized solution. No experimental details were provided.

360 Using subcutaneous injection, Hayes et al. (1973) determined a LD₅₀ in groups of 5-10 male
361 Sprague-Dawley rats of 108 mg/kg (95 % C.I. 88-133 mg/kg).

362 Using intravenous injection of a 20 % MCAA solution in phosphate buffer, pH 7, Elf Atochem
363 (1995) reported a LD₅₀ of 75 (53-117) mg/kg in Sprague-Dawley rats. Clinical signs were hypokinesia,
364 sedation, dyspnea, lateral decubitus, suffocation, coma and death (after 1-3 hours).

365 Mitroka (1989) reported the following 24-hour mortality rates in Sprague-Dawley rats injected
366 intravenously with 20, 40, 80 and 100 mg/kg neutralized MCAA solution: 0/6, 1/6, 4/5 and 6/6 animals,
367 respectively. Intoxication was characterized by a fixed posture, slight tremors, hyperreactivity to stimuli
368 and a dark ruddy eye color. Death usually occurred 1-4 hours after treatment. Death was usually preceded
369 by slow, labored respiration, wheezing, gasping for breath and unconsciousness. No consistent
370 differences were observed in the gross appearance of organs of untreated and treated animals upon
371 necropsy.

372 Using MCAA administration via implanted mini pumps, Rozman (2000a) found that the
373 relationship between dose and time to MCAA-induced coma in male Sprague-Dawley rats followed the C
374 x T = k relationship. The time-dose combinations were between about 125 mg/kg for about 60 minutes to
375 about 50 mg/kg for about 120 minutes. The details of these experiments are not provided in the
376 publication and have not been published until now.

377 3.1.3. Mice

378 Studies with single non-inhalation exposure

379 Berardi (1986) reported an oral LD₅₀ of 260 mg/kg (95 % C.I. 214-316 mg/kg) using groups of 8-
380 10 Swiss-Webster mice and gavage of a non-neutralized MCAA solution in water. Reported symptoms
381 included immobility, head bobbing, ataxia, hyperreactivity to stimuli, slight tremors, clasping of front
382 paws, labored respiration. Death occurred 3-6 hours after MCAA administration. Using dermal
383 application of molten (65 °C) MCAA for 2 minutes followed by rinsing with water, a LD₅₀ of 490 (428-
384 562) mg/kg was found. After subcutaneous injection of MCAA into Swiss-Webster mice (8
385 animals/group), reported LD₅₀ values were 150 (129-175) mg/kg for non-neutralized MCAA solution in
386 water and 130 (105-160) mg/kg for neutralized MCAA solution.

387 Woodard et al (1941) found an oral LD₅₀ of 255 mg/kg (95 % C.I. 196-334 mg/kg) using a
388 neutralized MCAA solution and groups of 10 mice (strain not specified).

389 Morrison and Leake (1941) published an oral LD₅₀ of 165 mg/kg for MCAA in mice.

Mitroka (1989) reported the following 24-hour mortality rates in Swiss-Webster mice injected intravenously with 100, 125, 160 and 200 mg/kg neutralized MCAA solution: 0/7, 1/4, 5/7 and 4/4 animals, respectively. Signs of intoxication appeared within 2 hours of treatment. Intoxication was characterized by a fixed posture, slight tremors, hyperreactivity to stimuli and a dark ruddy eye color. Death usually occurred 3-12 hours after treatment. Death was usually preceded by slow, labored respiration, wheezing, gasping for breath and unconsciousness. No consistent differences were observed in the gross appearance of organs of untreated and treated animals upon necropsy.

3.1.4. Other Species

Studies with single non-inhalation exposure

Woodard et al (1941) reported an oral LD₅₀ of 79.8 mg/kg (95 % C.I. 71.8-88.6 mg/kg) for guinea pigs (10 animals/group) and about 90 mg/kg for rabbits (1-10 animals/group) using a neutralized MCAA solution (respective strains not specified).

Dalgaard-Mikkelsen and Rasmussen (1961) evaluated oral toxicity in cattle. Doses of 0, 50, 100 and 150 mg/kg were given to one animal each by stomach tube. A dose of 50 mg/kg resulted in inappetence of 24 hours duration. A dose of 100 mg/kg produced severe symptoms of intoxication with anorexia, ruminal atony, diarrhea and fibrillar muscle twitchings. The animal recovered within 2 weeks. Administration of 150 mg/kg caused colic, diarrhea, generalized fibrillar muscle twitching and dyspnea. The animal died 9 hours after dosing.

Christiansen and Dalgaard-Mikkelsen (1961) gave doses of 50 mg/kg by oral gavage to two geese. No symptoms were observed. The same animals were given 75 mg/kg two weeks later. After 3 hours, incoordination and seizures were observed; the animals died after 4 to 6 hours.

TABLE 3: SUMMARY OF ACUTE ORAL LETHAL DOSES IN LABORATORY ANIMALS

Species	Dose (mg/kg)	Study Type/Size	Type of MCAA solution	Signs and Symptoms	Reference
cattle	100	1 animal	no details reported	anorexia, ruminal atony, diarrhea, fibrillar muscle twitchings, survived	Dalgaard-Mikkelsen and Rasmussen, 1961
	150	1 animal		colic, diarrhea, generalized muscle twitching, dyspnea, death after 9 h	
rabbit	≈ 90	LD ₅₀ (no details reported)	neutralized solution	apathy	Woodard et al., 1941
guinea pig	79.8	LD ₅₀ (10 animals/group)	neutralized solution	apathy	Woodard et al., 1941

MONOCHLOROACETIC ACID

FINAL 1:
2/2006

	Species	Dose (mg/kg)	Study Type/Size	Type of MCAA solution	Signs and Symptoms	Reference
417	rat	102	LD ₅₀ (4 rats/group)	non-neutralized solution in water	central nervous system effects, death after 1-4 h	Berardi, 1986
418	rat	90.4	LD ₅₀ (10 rats/ group)	1 % solution in water	restlessness, crouching, balance disturbance, prone position, passiveness, drowsiness, incomplete eyelid closure, discharge from the eyes and dyspnea	Hoechst AG, 1979a
419	rat	76.2	LD ₅₀ (5-20 rats/group)	neutralized solution	apathy	Woodard et al., 1941
420	rat	55	LD ₅₀ (no details reported)	10 % non-neutralized solution in water	not reported	Maksimov and Dubinina, 1974
		580	LD ₅₀ (no details reported)	10 % neutralized solution		
421	mouse	260	LD ₅₀ (8-10 mice/group)	non-neutralized solution	immobility, ataxia, slight tremors, labored respiration, death after 3-6 h	Berardi and Snyder, 1983
422	mouse	255	LD ₅₀ (10 mice/group)	neutralized solution	apathy	Woodard et al., 1941
423	mouse	165	LD ₅₀ (no details reported)	no details reported	respiratory paralysis	Morrison and Leake, 1941
424	goose	50	2 animals	no details reported	no symptoms	Christiansen and Dalgaard-Mikkelsen, 1961
		75	same animals, two weeks later		incoordination, seizures, death after 4-6 h	

3.2. Nonlethal Toxicity

A limited number of studies describe nonlethal effects after inhalation exposure. Signs of irritation were observed after inhalation and after oral exposure of animals to MCAA.

428

3.2.1 Rats

429 Dow Chemical Co. (1987) exposed a group of 6 female and 6 male Fisher 344 rats to MCAA
430 vapor by inhalation for 1 hour. The test material was vaporized into a stainless steel and glass 112 1
431 Rochester-type inhalation chamber. The targeted concentration was 1000 ppm MCAA. The nominal
432 chamber concentration was calculated based on the amount of test material used and the total air passed
433 through the chamber during each exposure period. The nominal concentration was 964 ppm. The
434 analytical concentration in the chamber was determined by taking an air sample from the chamber by
435 pulling air through a glass tube containing silica gel during exposure and subjecting this sample to ion
436 chromatography. The actual analytical concentration of MCAA vapor during exposure was calculated to
437 be 66 ppm. It was stated that an analytical concentration of 1000 ppm was not feasible due to "substantial
438 recrystallization of MCAA in the presence of room temperature (23 °C) air".

439 During all exposures, all rats (12/12) showed eye squint and slight lethargy. While in the text the
440 expression "slight lethargy" is used, "lethargy" is used in the corresponding table. "The observations
441 [prior to and after exposure] included an evaluation of fur, eyes, mucous membranes, and respiration.
442 Behavior pattern and nervous system activity was also assessed by specific observation for tremors,
443 convulsions, salivation, lacrimation, and diarrhea, as well as slight lethargy and other signs of altered
444 central nervous system function." During the two-week observation period, MCAA-exposed rats lost
445 weight initially (day 2) and regained weight during the remainder period (day 4-15). Gross pathologic
446 examination of rats revealed no exposure-related effects.

447 Hercules (1969a) exposed groups of 3 rats, mice and guinea pigs by inhalation to MCAA-
448 saturated vapor generated at 75 °C (nominal concentration 27000 mg/m³; 7020 ppm). No deaths occurred
449 after exposure for 3, 5 or 10 minutes, while nasal discharge and lung hyperemia were observed. In a
450 similar study involving exposure of groups of 2 rats, mice and guinea pigs to saturated MCAA vapor
451 (nominal concentration 31000 mg/m³; 8060 ppm) mild lacrimation, nasal discharge and dyspnea, but no
452 mortality, was found (Hercules, 1969b). No experimental details were reported. The relevance of these
453 studies is compromised by the fact that no information about the analytical concentrations was provided.

454 Maksimov and Dubinina (1974) reported an irritation threshold in rats of 23.7 mg/m³ (6.16 ppm)
455 based on changes in the respiration rate. The exposure duration and other experimental details were not
456 stated by the authors.

457

Studies with repeated inhalation exposure

458 Maksimov and Dubinina (1974) exposed 75 rats and 18 guinea pigs at 5.8±3.0 and 20.8±1.0
459 mg/m³ (1.5±0.8 and 5.4±0.3 ppm) MCAA over a period of 4 months (probably continuous exposure,
460 exact exposure conditions were not stated by the authors). In the high dose group the following
461 observations were made: a reduction in body weights of guinea pigs and rats during the second and tenth
462 week; a reduction in oxygen uptake on day 3 and 15; a lowering of the rectal body temperature on day 2
463 and 15; a reduction in the chloride concentration in urine at the end of the second month and
464 hemoglobinemia in the forth month. The pathomorphological investigation revealed inflammatory
465 changes in the respiratory organs and tracheal catarrh, bronchitis and bronchopneumonia. In the low dose
466 group only very slight effects were found: a lower oxygen uptake on the third day; a lower rectal

467 temperature on the 7th and 14th day and a reduction in the chloride concentration of the urine in the forth
468 month. Morphological examinations revealed only slight effects on the respiratory organs, which were not
469 considered significant compared to the control group by the authors. The experimental details were not
470 described by the authors.

471 ***Studies with repeated non-inhalation exposure***

472 NTP (1992) exposed groups of 5 male and 5 female F344 rats by gavage to 0, 7.5, 15, 30, 60 and
473 120 mg/kg MCAA in water once daily for a total of 12 dose days over a 16-day period. One male rat of
474 the high dose group died on the third day of dosing (symptoms observed within 4 hours after dosing were
475 lacrimation, prostration, bradypnea, decreased limb tone, ataxia and an impaired gasping reflex); no other
476 deaths occurred. Lacrimation was also observed in males receiving 60 or 120 mg/kg and females
477 receiving 15 mg/kg or higher. No gross or histologic lesions were observed.

478 Bryant et al. (1992), also described in NTP (1992), exposed groups of 20 male and 20 female
479 F344 rats to oral doses of 0, 30, 60, 90, 120 or 150 mg/kg MCAA in water by gavage once daily, 5 d/w
480 for up to 13 weeks. All rats receiving 120 or 150 mg/kg and all but one receiving 90 mg/kg died before
481 the end of the exposure period. Other deaths included two male rats and one female rat receiving 60
482 mg/kg and one female rat receiving 30 mg/kg. A complete pathologic and histopathologic examination on
483 all early deaths and all surviving animals at the end of the exposure period was done. The final mean
484 body weights of rats surviving to the end of the study were similar to those of the controls. Relative heart
485 weights of male and female rats in the 60 mg/kg groups as well as those of female rats in the 30 mg/kg
486 group were significantly lower than controls. Relative weights of liver and kidney of male and female rats
487 at 60 mg/kg were significantly greater than those of the controls. Blood urea nitrogen was increased in a
488 dose-related trend in males at 90-150 mg/kg and in females at 60-150 mg/kg. Male rats at 150 mg/kg and
489 females at 60, 120 and 150 mg/kg had a significant increase in serum alanine aminotransferase activity
490 compared to controls. Chemical related degenerative and inflammatory changes (including
491 cardiomyopathy) were observed in the hearts of male and female rats receiving 60, 90, 120 or 150 mg/kg.
492 Acute or subacute cardiomyopathy was observed in rats in these dose groups that died before the end of
493 the study and was considered to be the cause of death in these animals. No cardiomyopathy or other
494 histological effects were observed at a dose of 30 mg/kg.

495 Bhat et al. (1991) gave a neutralized solution of 1.9 mmol/l MCAA in water as drinking water to
496 male Sprague-Dawley rats (number not stated) for 90 days. On day 90, body weights were not
497 significantly reduced compared to controls (426.8 ± 22.1 g vs. 448.2 ± 22.8 g); liver weights were
498 reduced (13.25 ± 0.64 g vs. 14.68 ± 0.78 g). Minimal to mild morphological liver alterations were
499 observed (enlarged portal veins, increased numbers of bile ducts, areas of edema and inflammatory cells
500 surrounding the portal veins). Increased perivascular inflammation compared to controls was observed in
501 the lungs. The dose tested was equivalent to about 20 mg/kg/day (BIBRA, 1997).

502 Daniel et al. (1991) administered the sodium salt of MCAA by oral gavage for a period of 90
503 consecutive days to Sprague-Dawley rats. Groups of 10 male and 10 female rats received daily doses of 0,
504 15, 30, 60 or 120 mg/kg. At 120 mg/kg, 30 % of females and 80 % of the males died, 7 of the 11 deaths
505 occurred within the first 3 days of treatment, while the other 4 deaths occurred between the 14th and 90th
506 day. In the early deaths hemorrhagic and congested lungs were observed but considered a postmortem

507 change. In the later deaths liver lesions were found. One male in each of the 60 and 15 mg/kg groups
508 died. No apparent dose-response related differences between treated and control groups in body or organ
509 weights were found with the exception of significant increased liver and kidney weights in females at 120
510 mg/kg. Relative liver weights were increased in both females and males at 60 and 120 mg/kg.
511 Histopathologic examination revealed a significantly increase in chronic renal nephropathy and increased
512 splenic pigmentation at 60 mg/kg/day (120 mg/kg/day group excluded due to mortality). In female, but
513 not in male rats, significantly increased numbers of white blood cells were found at 30, 60 and 90 mg/kg
514 and sporadic, but not dose-related changes in subpopulations (lymphocytes and monocytes) were seen at
515 doses of 15 mg/kg or higher. Increased blood urea nitrogen levels in females at 120 mg/kg and in males at
516 15 and 30, but not 60 and 120 mg/kg as well as increased creatinine levels in females at 15 and 30, but
517 not at 60 and 120 mg/kg and in males at all dose levels were found.

518 3.2.2. Mice

519 *Studies with repeated non-inhalation exposure*

520 NTP (1992) exposed groups of 5 male and 5 female B6C3F₁ mice by gavage to MCAA in water
521 once daily using doses of 0, 15, 30, 60, 120 and 240 mg/kg for males and 0, 30, 60, 120, 240 and 480
522 mg/kg for females for a total of 12 dose days over a 16-day period. All mice receiving 240 mg/kg or
523 higher died within 2 days; no other deaths occurred except for one male in the 15-mg/kg group. Clinical
524 findings in animals that died included lacrimation, ataxia, hypoactivity, bradypnea, bradycardia,
525 hypothermia, prostration, piloerection, decreased limb tone and impaired gasping. Lacrimation was also
526 observed in females receiving 120 mg/kg. No changes in organ weights and gross or histologic lesions
527 were observed.

528 Bryant et al. (1992), also described in NTP (1992), exposed groups of 20 male and 20 female
529 B6C3F₁ mice to oral doses of 0, 25, 50, 100, 150 or 200 mg/kg MCAA in water by gavage once daily, 5
530 d/w for up to 13 weeks. All mice receiving 200 mg/kg died or were killed moribund before the end of the
531 exposure period (all but two died within the first week). Two males given 200 mg/kg and one female
532 given 100 mg/kg died from gavage trauma; two male controls died from unknown causes. With the
533 exception of females receiving 200 mg/kg, the mean body weights of dosed mice were similar to those of
534 controls. Cholinesterase levels were significantly decreased in female mice receiving 150 or 200 mg/kg at
535 weeks 8 and 13. No chemical related lesions were observed in mice of either sex. Hepatocellular
536 vacuolization was seen in mice in the 200-mg/kg group that died during the study. No effects were
537 observed at a dose of 100 mg/kg.

538 3.3. Developmental/Reproductive Toxicity

539 No studies evaluating developmental or reproductive toxic effects after inhalation exposure were
540 located in the literature (Medline and Toxline search November 2003).

541 *Studies with non-inhalation exposure*

542 Smith et al. (1990) exposed pregnant Long-Evans rats to 0, 17, 35, 70 and 140 mg/kg (daily
543 gavage) during gestational day 6 to 15. The body weight increase was significantly reduced in the highest
544 exposure group. No effects on the number of resorptions and birth weight was found. The rate of visceral

545 malformations (especially of the heart and cardiovascular system) was between 1.2 % in controls and 6.4 % in the highest dose group, but no dose-dependency was observed. No skeletal malformations were 546 found. This study has only been published as an abstract and no details were reported. 547

548 Johnson et al. (1998) exposed pregnant Sprague-Dawley rats during gestational days 1-22 to 1570 549 ppm MCAA in drinking water as well as to other halogenated hydrocarbons. The authors calculated the 550 dose for exposure to MCAA as 33 mg/kg/day. No signs of maternal toxicity were observed. No effects on 551 the number of mean implantation sites and resorption sites was found. MCAA produced no cardiac 552 abnormalities. Of the substances tested only trichloroacetic acid caused a significant increase in the 553 number of cardiac abnormalities.

554 Bhunya and Das (1987) injected single doses of 12.5, 25 and 50 mg/kg MCAA intraperitoneally 555 into groups of 3 male Swiss mice. After 35 days an increased number of malformed sperm was found in 556 the two highest dose groups.

557 3.4. Genotoxicity

558 In genetic toxicity testing in the NTP study (NTP, 1992), MCAA was not mutagenic in 559 *Salmonella typhimurium* strains TA100, TA1535, TA1537 and TA98 (with and without metabolic 560 activation using rat liver S9 mix). It induced trifluorothymidine resistance in L5178Y mouse lymphoma 561 cells in the absence of S9 mix and induced sister chromatid exchanges in Chinese hamster ovary cells in 562 the absence of S9 mix, but not in its presence. MCAA did not induce chromosomal aberrations in Chinese 563 hamster ovary cells (with and without activation). MCAA administered in feed was negative for the 564 induction of sex-linked recessive lethal mutations in germ cells of male *Drosophila melanogaster*, while 565 results were equivocal when MCAA was administered by injection.

566 Several other reports on negative results in assays for mutations in bacteria and positive as well as 567 negative results in tests for mutations and sister chromatid exchanges in eucaryotic cells in vitro have 568 been published (see BG Chemie, 1992; IUCLID, 1996; ECETOC, 1999).

569 Bhunya and Das (1987) injected 12.5, 25 and 50 mg/kg one time or 5 times 10 mg/kg MCAA 570 intraperitoneally into male and female Swiss mice. A significantly increased rate of chromosomal 571 aberrations was observed for all doses after 6-120 hours in the bone marrow. No effect was seen 24 hours 572 after oral gavage or subcutaneous injection of 50 mg/kg.

573 3.5. Carcinogenicity

574 In a NTP carcinogenicity study (NTP, 1992) male and female F344 rats were given 0, 15 or 30 575 mg/kg and male and female B6C3F₁ mice were given 0, 50 and 100 mg/kg by gavage of a MCAA 576 solution in water for 5 days/week for 2 years. In both species there was no evidence of carcinogenic 577 activity of MCAA. In mice, but not in rats, a dose-dependent increase in inflammation of the nasal 578 mucosa and metaplasia of the olfactory epithelium was found, as well as squamous metaplasia of the 579 forestomach.

580 DeAngelo et al. (1997) performed a 2-year carcinogenicity study in F344 rats. Animals were
581 given 50, 500 and 2000 mg MCAA/l in drinking water. Due to severe inhibition of body weight gain, the
582 high dose was reduced to 1500 mg/l at 8 weeks and further to 1000 mg/l at 24 weeks. The authors
583 calculated time-weighted mean daily doses of 3.5, 26.1 and 59.9 mg MCAA/kg/day. They found no
584 significant differences in animal survival between the control and treatment groups. No increased
585 incidence of neoplastic lesions were found.

586 **3.6. Summary**

587 The only animal study reporting lethal effects after inhalation exposure was an inadequately
588 described study in which a LC₅₀ of 46.8 ppm for 4 hours was reported for rats (Maksimov and Dubinina,
589 1974). Several studies report lethal effects after oral exposure. LD₅₀ data presented in Table 3 are mostly
590 between 50-200 mg/kg for rats, mice and guinea pigs. In addition, lethal doses in other species were 200
591 mg/kg in a rhesus monkey (Dow Chemical Co., 1976), 150 mg/kg in a cow (Dalgaard-Mikkelsen and
592 Rasmussen, 1961) and 75 mg/kg in geese (Christiansen and Dalgaard-Mikkelsen, 1961).

593 In a single inhalation experiment on rats, eye squint and slight lethargy were observed during
594 exposure at 66 ppm for 1 hour (Dow Chemical Co., 1987). In an inadequately reported study, an irritation
595 threshold in rats of 6.16 ppm and a NOEL for histological changes in the respiratory tract in rats and
596 guinea pigs of 1.5 ppm after 4 months have been reported (Maksimov and Dubinina, 1974).

597 After repeated oral gavage for 2 weeks, lacrimation was observed in male rats receiving 60 or 120
598 mg/kg and in female rats receiving 15 mg/kg or higher (NTP, 1992). In experiments performed in
599 parallel, lacrimation was also observed in female mice receiving 120 mg/kg (NTP, 1992). In subchronic
600 studies using oral exposure by gavage or drinking water, a doses of 30 mg/kg in rats and 100 mg/kg in
601 mice had no or only minor effects (Bryant et al., 1992; NTP, 1992; Bhat et al., 1991; Daniel et al., 1991).

602 The study by Smith et al. (1990) suggests that high doses of MCAA (close to the LD₅₀ in other rat
603 strains) can cause maternal toxicity and malformations in the offspring. The effect on fertility upon
604 intraperitoneal injection (Bhunya and Das, 1987) requires further studies using other exposure routes.
605 There is no evidence of genotoxic potential in bacterial mutagenicity studies, in in-vitro chromosomal
606 aberration tests, in in-vitro and in-vivo primary DNA damage assays. Gene mutation tests in mammalian
607 cells gave contradictory results and in one study increased chromosomal aberrations were found after
608 intraperitoneal injection in mice. No carcinogenic activity of MCAA was found in mice and rats after oral
609 administration of MCAA by gavage or drinking water.

610 **4. SPECIAL CONSIDERATIONS**611 **4.1. Metabolism and Disposition**

612 No quantitative absorption rate data are available for inhalation exposure. An oral absorption rate
613 of 82 % (^{14}C recovery in urine was 70 %) was found in a rat that was given 1- ^{14}C -labelled MCAA (Dow
614 Chemical Co., 1976). A rate of 90 % in 24 hours for the cumulative excretion of MCAA in urine was
615 reported in Sprague-Dawley rats after an oral dose of 9.4 mg/kg 1- ^{14}C -labelled MCAA (Kaphalia et al.,
616 1992). Berardi (1986) reported values for cumulative excretion in urine of 51 % in 24 hours and 52.5 %
617 in 72 hours in Sprague-Dawley rats and 32.0-59.3 % in 24 hours and 33.7-60.8 % in 72 hours in Swiss-
618 Webster mice. Lethal effects in humans after dermal contact with liquid MCAA indicate a considerable
619 dermal absorption.

620 Yllner (1971) injected doses of 0.07, 0.09 and 0.1 g/kg 1- ^{14}C -labelled MCAA subcutaneously
621 into mice and measured radioactivity after 24, 48 and 72 hours in urine, faeces and expired air. Within 72
622 hours, 82-88 % of the radioactivity were eliminated in urine, 8 % via the lungs and 0.2-0.3 % in faeces
623 and 2-3 % remained in the body. The main metabolites found in urine were S-carboxymethyl-L-cysteine
624 (33-43 % in free form and 1-6 % as glutathione conjugate) and thiodiacetic acid (33-42 %) as well as
625 MCAA (6-22 %), glycolic acid (3-5 %) and oxalic acid (0.1-0.2 %). The authors suggested two metabolic
626 pathways: 1) conjugation with glutathione resulting in formation of S-carboxymethyl-glutathione which
627 can be further metabolized to S-carboxymethyl-L-cysteine and further on to thiodiacetic acid and 2)
628 enzymatic hydrolysis of the chlorine-carbon bond and formation of glycolic acid that can be degraded
629 completely to carbon dioxide.

630 In the urine of rats thioglycolic acid, but not S-carboxymethyl-L-cysteine was found. However,
631 according to the study, S-carboxymethyl-L-cysteine may have been present in bile, but could not be
632 identified unequivocally (Dow Chemical Co., 1976).

633 Hayes et al. (1972; 1973) injected 162 mg/kg 1- ^{14}C -labelled MCAA subcutaneously into rats.
634 After 2 hours higher radioactivity was found in kidneys and liver than in plasma, while heart and brain
635 had similar levels as plasma. A similar distribution was found after administration of 53 mg/kg. A
636 biphasic elimination curve was observed with half-life times of 90 minutes and 17 hours.

637 The fact that rodents can be exposed for long periods of time (90 days or 2 years) (Bryant et al.,
638 1992; NTP, 1992; Daniel et al., 1991; DeAngelo et al., 1997) at daily doses close to the oral LD₅₀ (see
639 Table 3) argues for rapid clearance of MCAA after each exposure.

640 **4.2. Mechanism of Toxicity**

641 The biochemical basis of systemic MCAA toxicity is the inhibition of single enzymes of the
642 glycolytic and tricarboxylic acid metabolic pathways. The blockage of these metabolic processes results
643 in inhibition of energy metabolism (ATP generation) and in the accumulation of lactic acid in the
644 glycolytic pathway, which causes metabolic acidosis.

646 Prolonged incubation of isolated rat heart mitochondria with MCAA inhibits both pyruvate
647 dehydrogenase and α -ketoglutarate dehydrogenase (van Hinsbergh and Vermeer, 1994), via an indirect
648 inhibition through formation of oxalate from MCAA (Mitroka, 1989), or a direct inhibition through slow
649 alkylation or sulphydryl groups (van Hinsbergh and Vermeer, 1994). Since the inhibition of these
650 enzymes of the glycolytic (pyruvate dehydrogenase) and tricarboxylic acid (α -ketoglutarate
651 dehydrogenase) metabolic pathways has a major impact on cellular energy production, the cell would
652 then revert to anaerobic glycolysis, which results in lactate accumulation (van Hinsbergh and Vermeer,
653 1994). In vitro, MCAA inhibited oxidation of radiolabelled acetate to carbon dioxide by rat liver
654 homogenate (Hayes et al., 1973), indicating an inhibitory effect on the tricarboxylic acid cycle. Blockade
655 of aerobic energy metabolism can be expected to especially damage organs and tissue with a high energy-
656 demand, such as heart, CNS and skeletal muscles (Kulling et al., 1992).

657 It has been suggested that in analogy to monofluoroacetic acid, MCAA could also inhibit the
658 tricarboxylic-acid-cycle enzyme aconitase (IUCLID, 1996). Experimental evidence suggests organ-
659 specific differences with respect to aconitase inhibition by MCAA and monofluoroacetic acid: about 1.5-
660 2 hours after oral administration of 24, 48 or 96 mg MCAA/kg to F344 rats, an inhibition of aconitase
661 was detected in the heart (54, 55 and 46 % inhibition, respectively), but not in the liver (0 % inhibition at
662 all doses), while monofluoroacetic acid inhibited aconitase in both organs (4.0, 10.5 and 21.0 %
663 inhibition, respectively; same inhibition in both organs) (NTP, 1992; Bryant et al., 1992). These findings
664 suggest, that different isoenzymes with different susceptibility to the inhibitory effect of MCAA are
665 expressed in the two organs. In the experiments, no dose-response relationship was revealed: a 33-55 %
666 inhibition was found after doses between 4 and 150 mg/kg.

667 After intravenous injection of 40 or 80 mg/kg MCAA (neutralized solution in phosphate buffer)
668 to rats, blood and cerebrospinal fluid lactate concentrations increased progressively with time until death
669 (1-2 hours after dosing) (Mitroka, 1989). In the blood, a significant increase in lactate concentrations was
670 found for the 80-mg/kg dose starting at 60 minutes, while a very slight increase was seen for the 40-
671 mg/kg dose. In the cerebrospinal fluid, significant increases were found for the 40-mg/kg dose from 120
672 minutes and for the 80-mg/kg dose from 60 minutes (Mitroka, 1989). The accumulation of lactate in the
673 brain can contribute to the lethal effects of MCAA, especially since the removal of lactate from the brain
674 via the blood-brain barrier is slow. The damage of the blood-brain barrier by MCAA has also been shown
675 by Berardi (1986) and Berardi et al. (1987): nearly lethal doses administered orally to mice (257 and 380
676 mg/kg) led to an increased entry of radiolabeled dopamine and inulin into all brain regions; in addition,
677 red blood cells were found in the brain parenchyma. The associated neurologic dysfunction was
678 characterized by front paw rigidity. At doses that caused no or little mortality (80, 118 and 174 mg/kg)
679 the concentration of radioactive inulin did not differ from controls.

680 Unlike monofluoroacetate and like monoiodoacetic acid, MCAA can bind to sulphydryl groups
681 (van Hinsbergh and Vermeer, 1994; Yllner, 1971; Hayes et al., 1973). After oral administration, MCAA
682 was shown to bind to sulphydryl groups in the kidney and liver of rats. Direct inhibition of sulphydryl
683 groups in the kidney may account for the anuria present in animals receiving toxic levels of MCAA,
684 which could contribute to enzyme inhibition and renal dysfunction (Hayes et al., 1973). Renal
685 insufficiency was also found in humans after oral intoxication (Kulling et al. 1992) and renal nephropathy
686 was found after subchronic oral exposure in rats (Daniel et al., 1991).

687 MCAA causes severe local effects on skin and eyes: after occlusive application of 100 and 500
688 mg MCAA paste (solution in 0.05 ml 0.9 % NaCl) to the skin of rabbits, corrosion (at both doses) and
689 mortality (all animals died at the higher dose) were observed (Hoechst AG, 1979f). After occlusive
690 application for 24 hours of a 10 % solution to the intact rabbit skin, there was marked hyperemia and
691 edema (Rodionova and Ivanov, 1979). Sodium monochloroacetate did not produce any signs of irritation
692 when applied for 4 hours to the skin of rabbits (Hoechst AG, 1988d). While MCAA was extremely
693 irritant to the rabbit eye (instillation of 100 mg MCAA as paste into conjunctival sac; Hoechst AG,
694 1979f), sodium monochloroacetate induced moderate irritation (instillation of 100 mg sodium
695 monochloroacetate into conjunctival sac; Hoechst AG, 1988d). From this it can be expected that
696 inhalation of MCAA vapor or MCAA aerosol can cause local irritation and tissue damage in the
697 respiratory tract either by local decrease of the pH or by local enzyme inhibition.

698 4.3. Structure-Activity Relationships

699 4.3.1. Studies Using Alkyl Esters of MCAA

700 Hoechst AG (1988a) determined the acute inhalation toxicity of chloroacetic acid methyl ester.
701 Groups of 5 female and 5 male Wistar rats were exposed whole-body for 4 hours in an exposure
702 chamber at 90, 210, 315 and 385 ppm. The concentration in the exposure chamber was measured by
703 infrared spectroscopy using a Miran analyzer and by gas chromatography. The post-exposure observation
704 period was 14 days. Mortality rates were 0/10 animals at 90 and 210 ppm, 7/10 at 315 ppm and 10/10 at
705 385 ppm. Death occurred between 270 minutes and 6 days after exposure.

706 Torkelson et al. (1971) exposed groups of 4-5 female rats in an exposure chamber to different
707 concentrations of chloroacetic acid methyl ester for different exposure times. The following mortality
708 rates were observed for different exposure periods: 2/4 animals at 1000 ppm for 1 hour, 4/5 at 2000 ppm
709 and 0/4 at 500 ppm for 2 hours, 5/5 at 2000 ppm, 5/5 at 500 ppm and 0/4 at 250 ppm for 4 hours, and 0/4
710 at 100 ppm at 7 hours. The authors noted severe irritation at 250-1000 ppm and slight irritation at 100
711 ppm. In rabbits, 7- and 4-hour exposures to 100 ppm caused delayed conjunctival and corneal irritation,
712 while 50 ppm did not cause eye irritation.

713 *Studies with repeated inhalation exposure*

714 Hoechst AG (1988b) exposed groups of 10 female and 10 male Wistar rats repeatedly to
715 chloroacetic acid methyl ester at 0, 10, 33 and 100 ppm (6 h/d, 5 d/w, total of 20 exposures). Mean
716 concentrations measured in the exposure chamber by a Miran infrared analyzer were 10.4, 32.3 and 100.1
717 ppm, respectively. Gross morphological and histological examinations were performed in half of the
718 animals after the last exposure and in the other half after a 14-day recovery period. At 10 ppm narrowed
719 palpebral fissures were observed only during the first exposure, which was interpreted as a sign of
720 irritation. Additional signs in the 33-ppm group were sneezing and increased hair grooming, which were
721 observed only during individual exposures. Additional signs in the 100-ppm group were incoordination,
722 retracted flanks, irregular respiration, passiveness and standing hair, some of which persisted until the
723 next morning and into the recovery period. A decreased food consumption and body weight increase and
724 significantly increased relative lung weights were found in the 100-ppm group. No histopathological
725 alterations or differences in hematological and clinical chemistry parameters were observed.

726

Studies with non-inhalation exposure

727 Hoechst AG (1979b) determined the acute oral toxicity of chloroacetic acid ethyl ester
728 administered to groups of 10 female Wistar rats by gavage of a 5 % (w/v) solution in sesame oil. The post
729 exposure observation period was 14 days. Mortality rates were 0/10 animals at a dose of 80 mg/kg, 2/10
730 at 125 mg/kg, 5/10 at 200 mg/kg and 10/10 at 315 mg/kg. Death occurred between 136 minutes and 24
731 hours after gavage. Symptoms before death included crouching, balance disturbance, prone position, and
732 passiveness. No abnormal findings were observed in gross pathologic examinations. Using Probit
733 analysis, a LD₅₀ of 180 (151-215) mg/kg was calculated by the authors.

734 Using the same study design, a 0.5% (w/v) solution of chloroacetic acid methyl ester in sesame oil
735 was used (Hoechst AG, 1979c). Mortality rates were 0/10 animals at doses of 50 and 80 mg/kg, 4/10 at
736 100 mg/kg, 8/10 at 125 mg/kg and 10/10 at 200 and 315 mg/kg. Using Probit analysis, a LD₅₀ of 107 (95
737 % C.I. 97.2-121) mg/kg was calculated by the authors.

738 **4.3.2. Studies with Other Monohaloacetic Acids**

739 Hayes et al. (1973) found that the subcutaneous LD₅₀ for three haloacetic acids varied
740 considerably in rats and that toxicity is probably caused by differing mechanisms. LD₅₀ (95 % C.I.) were
741 5 (4-6) mg/kg for monofluoroacetic acid, 60 (54-67) mg/kg for monoiodoacetic acid and 108 (88-133)
742 mg/kg for MCAA. The mean time to death was 130 (112-151) minutes for MCAA, 310 (292-360)
743 minutes for monofluoroacetic acid and 480 (343-672) minutes for monoiodoacetic acid. MCAA and
744 monoiodoacetic acid, but not monofluoroacetic acid, significantly reduced the total sulphydryl
745 concentration in rat liver at a LD₉₀ dose after 5 % of the time to death. In vitro, MCAA did not acylate
746 sulphydryl groups of cysteine.

747 In mice, Morrison and Leake (1941) found oral LD₅₀ values of 63 mg/kg for monoiodoacetate,
748 100 mg/kg for monobromoacetate and 165 mg/kg for MCAA.

749 **4.3.3. Conclusions from Structure-Activity Relationships**

750 Several studies evaluated the toxicity of monochloroacetic acid esters on rats. While the LD₅₀
751 values for oral administration are comparable to the LD₅₀ values for MCAA (see Table 3), lethal effects
752 after inhalation exposure to monochloroacetic acid esters occurred at considerably higher concentrations:
753 while Maksimov and Dubinina (1974) reported a 4-hour LC₅₀ of 46.8 ppm for MCAA, a 4-hour exposure
754 at 210 ppm chloroacetic methyl ester did not result in deaths and at 315 ppm, 7/10 rats died (Hoechst AG,
755 1988a). This difference suggests toxicokinetic and toxicodynamic differences between MCAA and its
756 alkyl esters. Compared with MCAA, local effects of its esters are less likely, because a) the esters are not
757 acidic and thus do not cause local effects by lowering the tissue pH value; and b) local effects due to
758 glutathione binding or enzyme inhibition can be expected to be smaller because the esters have to get
759 hydrolyzed enzymatically to free MCAA first; although quantitative data for the hydrolysis are lacking, it
760 is likely that due to its rapid distribution in the body, much of the deposited ester will enter systemic
761 circulation before it is hydrolyzed and thus the concentration of MCAA in respiratory tract tissue is likely
762 to be much smaller during inhalation exposure to monochloroacetic esters compared to MCAA. In

763 summary, the inhalation studies using monochloroacetic acid esters cannot be used as supportive evidence
764 for MCAA data.

765 Oral lethality data for different monohaloacetic acids found a considerable difference in LD₅₀
766 values. These findings and the probable differences in biochemical mechanism presented in Section 4.2
767 argue for different toxicodynamic properties of the different monohaloacetic acids and do not support the
768 use of data on other monohaloacetic acids as supportive evidence for MCAA data.

769 **4.4. Other Relevant Information**

770 **4.4.1. Species Variability**

771 With regard to lethal effects, it has been suggested that these are mediated by damage of the
772 blood-brain barrier and by metabolic acidosis, which is especially due to lactate accumulation in the brain
773 which, in turn is secondary to inhibition of single enzymes of the glycolysis and tricarboxylic acid cycle
774 (pyruvate dehydrogenase, α -ketoglutarate dehydrogenase and aconitase). Since these enzymes are
775 evolutionary highly conserved, a limited interspecies variability can be assumed. The available oral
776 lethality data support this conclusion and indicate that the variability in LD₅₀ values is small: LD₅₀ values
777 for different species (mean values of LD₅₀ values given in Table 3) were 90 mg/kg for rabbits, 79.8
778 mg/kg for guinea pigs, 80.9 mg/kg for rats (mean of all LD₅₀s except the 580 mg/kg value) and 227 mg/kg
779 in mice; moreover, one cattle survived an oral dose of 100 mg/kg showing only moderate toxic effects
780 (another died at 150 mg/kg) (Dalgaard-Mikkelsen and Rasmussen, 1961) and a rhesus monkey survived
781 intravenous injection of 75 mg/kg (and died after another dose of 200 mg/kg the next day) (Dow
782 Chemical Co., 1976). It should be noted that good data are available for two of these species only, namely
783 rats and mice, and that the difference between these two species is also in line with what can be expected
784 on the basis of a standard body weight^{0.75} scaling. No data are available that would suggest a large species
785 difference for local effects in the respiratory tract.

786 **4.4.2. Intraspecies Variability**

787 With regard to lethal effects, it has been suggested that these are mediated by damage of the
788 blood-brain barrier and by metabolic acidosis, which is especially due to lactate accumulation in the brain
789 which, in turn is secondary to inhibition of single enzymes of the glycolysis and tricarboxylic acid cycle
790 (pyruvate dehydrogenase, α -ketoglutarate dehydrogenase and aconitase). Since these enzymes are
791 housekeeping enzymes, which are required for energy metabolism and show a constant expression level, a
792 limited intraspecies variability can be assumed. The available oral lethality data support this conclusion
793 and indicate that the variability in LD₅₀ values within individual species is small because the reported
794 LD₅₀ values for different species varied within each species by less than a factor of 2 (see Table 3). Some
795 variation is indicated by the finding that repeated oral exposure of rats to 120 mg/kg/day led to death in
796 8/10 males, but only in 3/10 females (Daniel et al., 1991). The contribution to death of local effects in the
797 respiratory tract upon inhalation is unknown.

798 At lower concentrations that do not lead to systemic effects, MCAA is irritating to the eye and
799 mucosal surfaces. The mechanism for this effect may involve both, local lowering of the pH value and
800 local metabolic blockage by enzyme inhibition. A limited interindividual variability can be assumed for

801 this local effect because it involves direct effects on the tissue (acidity) or effects on highly conserved
802 enzymes, which are expected not to differ considerably between individuals.

803 **5. DATA ANALYSIS FOR AEGL-1**804 **5.1. Human Data Relevant to AEGL-1**

805 Clariant GmbH (2000) found no respiratory tract irritation, effects on lung function parameters or
806 irritation of skin and mucous membranes in >33 workers potentially exposed to MCAA concentrations
807 between <0.13 ppm for 3 hours and 0.31 ppm for 7 hours.

808 Maksimov and Dubinina (1974) and Rodionova and Ivanov (1979) reported an irritation
809 threshold for humans of 5.7 mg/m³ (1.48 ppm) (for this study an exposure time of 1 minute was stated in
810 Izmerov et al., 1982). The experimental details were not stated by the authors and, therefore, evaluation of
811 the studies is impossible.

812 Reported odor thresholds are 0.01 ppm, cited from an unpublished correspondence from Dow
813 Chemical Co. in AIHA (1993), and 0.045 ppm (Oelert and Florian, 1972) (in the latter study it was
814 unclear if the value was cited from the literature or measured by the authors).

815 **5.2. Animal Data Relevant to AEGL-1**

816 Maksimov and Dubinina (1974) reported an irritation threshold in rats of 23.7 mg/m³ (6.16 ppm)
817 based on changes in the respiration rate.

818 After exposure of rats and guinea pigs at 5.8 and 20.8 mg/m³ (1.5 and 5.4 ppm) MCAA over a
819 period of 4 months (probably continuous exposure, exact exposure conditions were not stated by the
820 authors) slightly reduced body weights, effects on metabolism (reduced oxygen uptake and lower rectal
821 body temperature); kidney function (reduced chloride concentration in urine and hemoglobinemia) and
822 inflammatory alterations of respiratory organs were found in the high dose group. In the low dose group
823 only very slight effects (lower oxygen uptake and lower rectal temperature, lower urine chloride
824 concentration) were found (Maksimov and Dubinina, 1974).

825 **5.3. Derivation of AEGL-1**

826 No definitive study was available for the derivation of AEGL-1 values.

827 The human irritation threshold reported by Maksimov and Dubinina (1974) was inadequately
828 described and, therefore, was not considered an adequate basis for the derivation of AEGL-1 values. The
829 report by Clariant GmbH (2000) was not considered an adequate basis because the depth of the routine
830 medical examination was not reported and the time point of the examination was not linked to an actual
831 exposure assessment. Moreover, the exposure assessment using about 1 to 2 measurements per year was
832 considered insufficient.

833 Therefore, due to insufficient data, AEGL-1 values were not recommended.

834 Due to the lack of an adequately performed study reporting an odor threshold for MCAA, no
835 level of distinct odor awareness (LOA) was derived.

836 TABLE 4: AEGL-1 VALUES FOR MONOCHLOROACETIC ACID

AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-1	N.R. ^a	N.R.	N.R.	N.R.	N.R.

837 ^a not recommended due to insufficient data

840 **6. DATA ANALYSIS FOR AEGL-2**841 **6.1. Human Data Relevant to AEGL-2**

842 Morrison and Leake (1941) reported that daily oral exposure for 60 days to 300 ml of a 0.05 %
843 MCAA solution in water did not result in adverse effects in three human volunteers. Assuming a body
844 weight of 70 kg and 0.05 % as 500 mg/l, this oral exposure corresponds to a daily dose of
845 $500 \text{ mg/l} \times 0.3 \text{ l/d} \times 1/70 \text{ kg} = 2.1 \text{ mg/kg/day}$

846 **6.2. Animal Data Relevant to AEGL-2**

847 Dow Chemical Co. (1987) exposed a group of 6 female and 6 male Fischer 344 rats to MCAA
848 vapor by inhalation for 1 hour. The targeted concentration was 1000 ppm MCAA and the nominal
849 concentration was 964 ppm, however, the analytical concentration of MCAA vapor during exposure was
850 found to be 66 ppm. It was stated that a concentration of 1000 ppm could not be achieved due to
851 "substantial recrystallization of MCAA in the presence of room temperature (23 °C) air". During
852 exposure, all rats squinted and appeared "slightly lethargic" (stated in the text) / "lethargic" (stated in the
853 tables). During the two-week observation period, MCAA-exposed rats lost weight initially (day 2) and
854 regained weight during the remainder period (day 4-15). Gross pathologic examination of rats revealed no
855 exposure-related effects.

856 **6.3. Derivation of AEGL-2**

857 For the derivation of AEGL-2 values, the study in rats by Dow Chemical Co. (1987) was used
858 because it was the only relevant inhalation study available. Exposure of rats to 66 ppm for 1 hour resulted
859 in eye squint and in some lethargy, which might be interpreted as an effect on the central nervous system.
860 No severe effects occurred. There is some uncertainty as to the exposure because of the large discrepancy
861 between the nominal exposure concentration of 964 ppm and the analytically measured exposure
862 concentration of 66 ppm. The authors did not discuss whether recrystallization of MCAA took place
863 completely outside the exposure chamber (i.e. before the air stream entered the chamber) or whether
864 uptake of recrystallized MCAA by routes other than inhalation (e.g. dermal and oral uptake after
865 deposition on the hair) might have occurred. In case of an additional exposure, the measured air
866 concentration of 66 ppm and be regarded as an conservative exposure assumption. The AEGL-2 values
867 were based on a 1-hour exposure to 66 ppm.

868 Time scaling using the equation $C^n * t = k$ was done to derive the other exposure duration-
869 specific values. Due to lack of a definitive data set, an n of 3 was used in the exponential function for
870 extrapolation from the experimental period (1 hour) to shorter exposure periods and an n of 1 was used
871 for extrapolation to longer exposure periods. The calculations of exposure concentrations scaled to
872 AEGL-2 time periods are shown in Appendix A.

873 A total uncertainty factor of 10 was used. An uncertainty factor of 3 was applied for interspecies
874 variability because 1) the effect level was considered below that of an AEGL-2, 2) because the available
875 data on acute oral lethality do not point at a large interspecies variability for more severe (lethal) effects
876 (see Section 4.4.1), and 3) because of the limited toxicodynamic variability as the enzymes inhibited by

877 MCAA do not vary considerably within and between species. An uncertainty factor of 3 was applied for
878 intraspecies variability because of the limited toxicokinetic variability with respect to local effects and
879 because of the limited toxicodynamic variability with respect to systemic effects since the enzymes
880 inhibited by MCAA do not vary considerably within and between species.

881 The values are listed in the Table 5 below.

882 **TABLE 5: AEGL-2 VALUES FOR MONOCHLOROACETIC ACID**

AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-2	12 ppm (47 mg/m ³)	8.3 ppm (33 mg/m ³)	6.6 ppm (26 mg/m ³)	1.7 ppm (6.7 mg/m ³)	0.83 ppm (3.3 mg/m ³)

885 **7. DATA ANALYSIS FOR AEGL-3**886 **7.1. Human Data Relevant to AEGL-3**

887 No reports on deaths after inhalation of MCAA are available in the literature. Fatal cases and life-
888 threatening poisonings in workers have been described after skin contact (Kulling et al., 1992; IUCLID,
889 1996; BUA, 1994), however, exact doses have not been reported.

890 Only one study reporting lethality after oral uptake was located: Feldhaus et al. (1993) and
891 Rogers (1995) reported the case of a 5-year old girl that was accidentally given 5-6 ml of an 80 % MCAA
892 containing wart remover, resulting in a dose of 4.0-4.8 g MCAA corresponding to 200-240 mg/kg
893 assuming a body weight of 20 kg. The girl died 8 hours post-ingestion despite medical intervention. An
894 autopsy revealed diffuse gastric erosions, fatty liver and pulmonary and cerebral edema. The post mortem
895 MCAA concentration in serum was 100 mg/l (assuming a serum volume of 750 ml, this concentration
896 corresponds to a total MCAA amount of about 75 mg in serum) as determined by gas chromatography/
897 mass spectroscopy.

898 Morrison and Leake (1941) reported that daily oral exposure for 60 days to 300 ml of a 0.05 %
899 MCAA solution in water did not result in adverse effects in three human volunteers. Assuming a body
900 weight of 70 kg and 0.05 % as 500 mg/l, this oral exposure corresponds to a daily dose of
901 $500 \text{ mg/l} \times 0.3 \text{ l/d} \times 1/70 \text{ kg} = 2.1 \text{ mg/kg/day}$.

902 **7.2. Animal Data Relevant to AEGL-3**

903 Maksimov and Dubinina (1974) reported a LC₅₀ in rats of 180 (146-221) mg/m³ (46.8 ppm) for 4
904 hours without providing experimental details. Assuming a body weight of 0.3 kg for rats (EPA, 1986), a
905 pulmonary absorption rate of 100 % and deriving a respiration rate using the allometric relationship
906 published by EPA (EPA, 1988)

$$907 \quad \text{ventilation rate (m}^3/\text{d}) = 0.80 \times \text{body weight (kg)}^{0.8206} \text{ (EPA, 1988)}$$
$$908 \quad \text{ventilation rate} = 0.80 \times 0.3^{0.8206} = 0.298 \text{ m}^3/\text{d}$$

909 the corresponding dose can be calculated as:

$$910 \quad \text{dose (mg/kg)} = \text{exp. conc. (mg/m}^3) \times \text{ventilation rate (m}^3/\text{d}) \times \text{exp. time (d)} \times 1/\text{body weight (kg)}$$
$$911 \quad \text{dose} = 180 \text{ mg/m}^3 \times 0.298 \text{ m}^3/\text{d} \times 4/24 \text{ d} \times 1/0.3 \text{ kg} = 29.8 \text{ mg/kg.}$$

912 Hercules (1969a; 1969b) reported that exposure of rats, mice and guinea pigs to MCAA-saturated
913 vapor generated at 75 °C (reported nominal concentrations 7020-8060 ppm) for up to 10 minutes resulted
914 in irritation (mild lacrimation, nasal discharge), dyspnea and lung hyperemia, but did not cause lethality.
915 Since no experimental details, especially no analytical concentrations, were reported these studies provide
916 little meaningful information.

917 Oral LD₅₀ data are presented in Table 3. Hoechst AG (1979a) administered doses of 0, 40, 63,
918 100 and 160 mg/kg MCAA to groups of 10 female Wistar rats using gavage of 1 %(w/v) solutions of
919 MCAA in water. Using Probit analysis, a LD₅₀ of 90.4 (95 % C.I. 73.6-112) mg/kg was calculated by the
920 authors. The very high LD₅₀ of 580 mg/kg for neutralized MCAA solution found in rats by Maksimov and
921 Dubinina (1974) will not be considered further because 1) this value is much higher than other values

922 reported for neutralized MCAA solutions (see Table 3), which are similar to non-neutralized MCAA
923 solutions and 2) due to inadequate data presentation it can not be excluded that neutralization was carried
924 out by addition of sodium hydroxide (solid or as solution) to the acidic MCAA solution; this could give
925 rise to high pH either locally in the solution or temporarily due to overtitration and thus cause
926 nucleophilic substitution (hydrolysis) of the chlorine moiety in MCAA resulting in reaction to the much
927 less toxic glycolic acid.

928 7.3. Derivation of AEGL-3

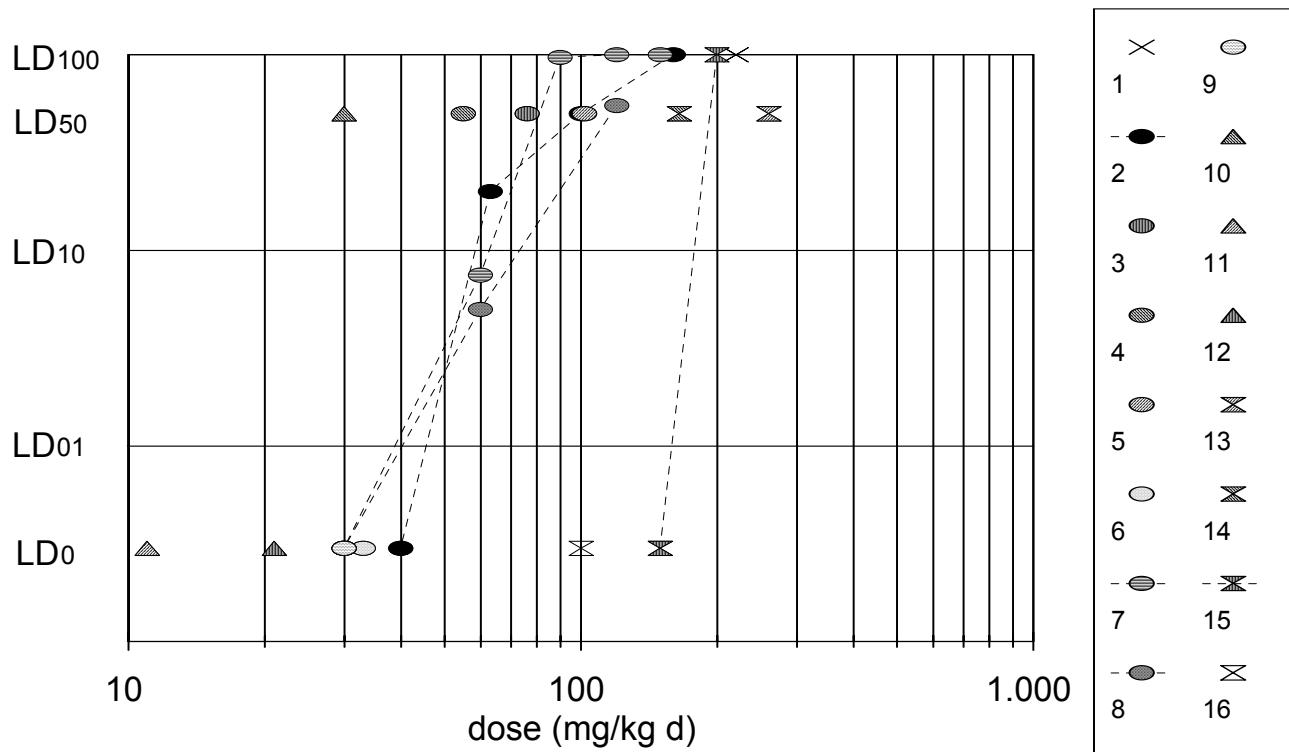
929 For the derivation of AEGL-3 values, no relevant and well-documented LC₅₀ studies were
930 available.

931 Although oral lethality data in animals are available, these were not used as a basis for derivation
932 of AEGL values because of the uncertainty regarding local effects of MCAA in the respiratory tract.
933 Several mechanistic aspects point at a possible role of local effects: a) MCAA has a pK_a of 2.85 and thus
934 is a strong acid, which may cause irritation and local tissue damage by its acidity alone; b) MCAA can
935 bind to sulphydryl groups (van Hinsbergh and Vermeer, 1994; Yllner, 1971; Hayes et al., 1973), e.g. those
936 of reduced glutathione, and may thus cause lung damage through glutathione depletion; and c) during
937 inhalation exposure, local concentrations of MCAA in the respiratory tract could cause local tissue
938 damage by enzyme inhibition already in doses lower than those required for systemic effects in oral
939 studies.

940 Experimental findings support a possible local effect on the respiratory tract: a) the available
941 inhalation studies report effects on the respiratory tract, i.e., Hercules (1969a) reported lacrimation, nasal
942 discharge, dyspnea and lung hyperemia in rats and Maksimov and Dubinina (1974) reported
943 inflammation in the respiratory organs, tracheal catarrh, bronchitis and bronchopneumonia in rats; and b)
944 MCAA causes severe local damage to skin and eyes (Hoechst AG, 1979f; 1988d; see Section 4.2).

945 Unfortunately, in the only LC₅₀ study located in the literature (Maksimov and Dubinina, 1974),
946 data presentation is inadequate. Since pathological findings were not reported it remains unknown if rats
947 died from local lung tissue destruction or from systemic toxicity (i.e. acidosis affecting CNS or heart).
948 With respect to systemic effects, it could be argued that the rat LC₅₀ value of 46.8 ppm for 4 hours
949 (Maksimov and Dubinina, 1974), corresponding to a dose of 29.8 mg/kg (see Section 7.2), is not
950 supported by studies reporting oral LD₅₀ values around 90 mg/kg for rats (see Table 3 and Fig. 1).
951 However, as discussed above a higher toxicity of MCAA for the inhalation route compared to the oral
952 route cannot be ruled out. The data presented in Figure 1 suggest that upon inhalation exposure lethal
953 effects might occur at lower doses compared to oral exposure.

954 Inhalation studies using monochloroacetic acid esters revealed no mortality after 4-hour exposure
955 to up to 210 or 250 ppm (Hoechst AG, 1988a; Torkelson et al., 1971). These data were not considered
956 relevant for the derivation of AEGL-3 values, because compared with MCAA local effects of its esters are
957 less likely, because a) the esters are not acidic and thus do not cause local effects by lowering the tissue
958 pH value; and b) local effects due to glutathione binding or enzyme inhibition can be expected to be
959 smaller because the esters have to get hydrolyzed enzymatically to free MCAA first; although quantitative
960 data for the hydrolysis are lacking, it is likely that due to its rapid distribution in the body, much of the


961 deposited ester will enter systemic circulation before it is hydrolyzed and thus the concentration of
962 MCAA in respiratory tract tissue is likely to be much smaller during inhalation exposure to
963 monochloroacetic esters compared to MCAA.

964 Due to the inadequate presentation of the only LC₅₀ available (Maksimov and Dubinina, 1974)
965 and the uncertainties of a route-to-route extrapolation, no AEGL-3 values were derived.

966 TABLE 6: AEGL-3 VALUES FOR MONOCHLOROACETIC ACID

AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-3	N.R. ^a	N.R.	N.R.	N.R.	N.R.

969 ^a not recommended due to insufficient data

FIGURE 1: RELATIONSHIP BETWEEN MCAA DOSE AND LETHAL EFFECTS

All exposures (including single and repeated inhalation exposures and single oral exposures) were converted to daily doses. LD₀ designates a NOEL for lethality.

- 1 human case, single oral exposure; Feldhaus et al. (1993); Rogers (1995)
- 2 rat, single oral exposure; Hoechst AG (1979a)
- 3 rat, oral LD₅₀; Woodard et al. (1941)
- 4 rat, oral LD₅₀; Maksimov and Dubinina (1974)
- 5 rat, oral LD₅₀; Berardi (1986)
- 6 rat, subacute oral exposure; Johnson et al. (1998)
- 7 rat, subchronic oral exposure; Bryant et al. (1992); NTP (1992)
- 8 rat, subchronic oral exposure; Daniel et al. (1991)
- 9 rat, chronic oral exposure; NTP (1992)
- 10 rat, inhalation LC₅₀; Maksimov and Dubinina (1974)
- 11 rat, acute inhalation exposure; Dow Chemical Co. (1987)
- 12 rat, subchronic inhalation exposure; Maksimov and Dubinina (1974)
- 13 mouse, oral LD₅₀; Berardi (1986)
- 14 mouse, oral LD₅₀; Morrison and Leake (1941)
- 15 mouse, subchronic oral exposure; Bryant et al. (1992); NTP (1992)
- 16 mouse, chronic oral exposure; NTP (1992)

989 **8. SUMMARY OF AEGLs**990 **8.1. AEGL Values and Toxicity Endpoints**

991 The AEGL values for various levels of effects and various time periods are summarized in Table
 992 7. They were derived using the following key studies and methods.

993 No relevant studies of adequate quality were available for the derivation of the AEGL-1 value.
 994 Therefore, due to insufficient data, AEGL-1 values were not derived.

995 The AEGL-2 was based on a single inhalation study in rats (Dow Chemical Co., 1987) in which
 996 eye squint and lethargy were observed in rats exposed at 66 ppm for 1 hour. A total uncertainty factor of
 997 10 was used. The other exposure duration-specific values were derived by time scaling according to the
 998 dose-response regression equation $C^n \times t = k$, using the default of $n=3$ for shorter exposure periods and
 999 $n=1$ for longer exposure periods, due to the lack of suitable experimental data for deriving the
 1000 concentration exponent.

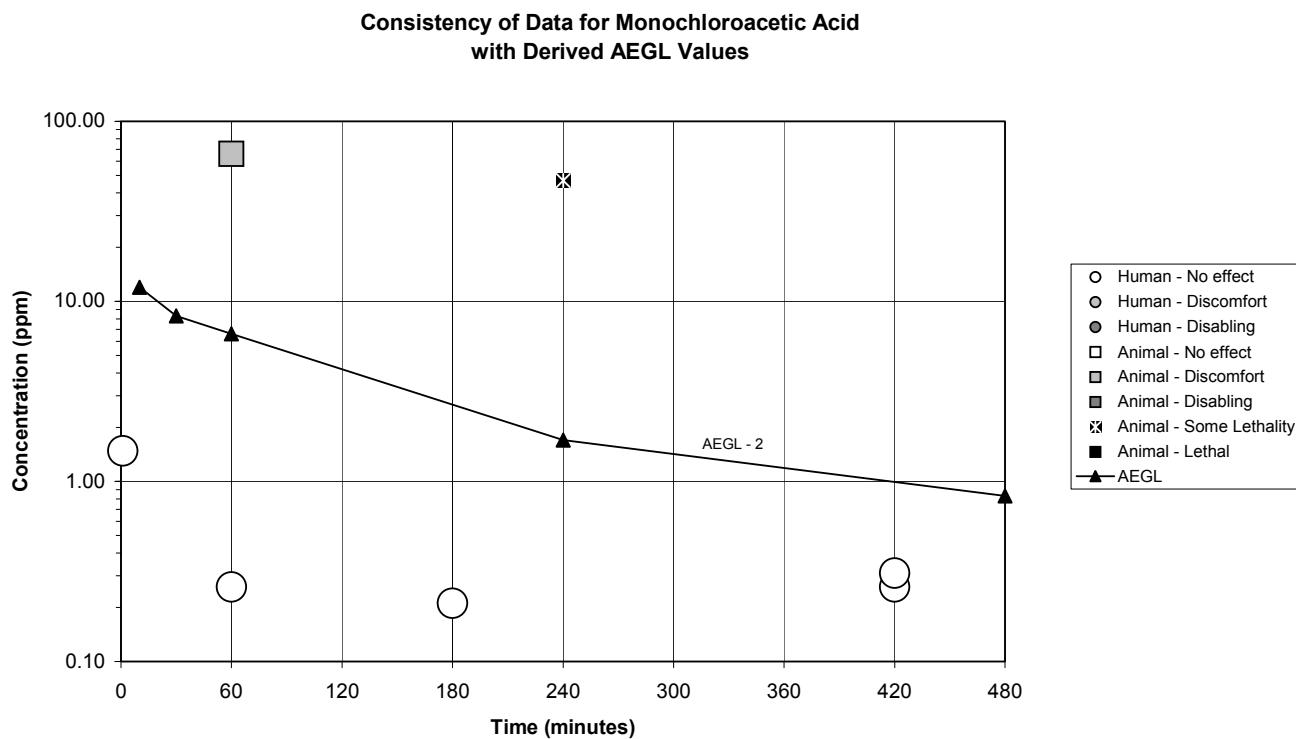

1001 No relevant studies of adequate quality were available for the derivation of the AEGL-3 value.
 1002 Therefore, due to insufficient data, AEGL-3 values were not derived.

TABLE 7: SUMMARY/RELATIONSHIP OF AEGL VALUES ^a					
Classification	10-Minute	30-Minute	1-Hour	4-Hour	8-Hour
AEGL-1 (Nondisabling)	N.R. ^b	N.R.	N.R.	N.R.	N.R.
AEGL-2 (Disabling)	12 ppm (47 mg/m ³)	8.3 ppm (33 mg/m ³)	6.6 ppm (26 mg/m ³)	1.7 ppm (6.7 mg/m ³)	0.83 ppm (3.3 mg/m ³)
AEGL-3 (Lethal)	N.R.	N.R.	N.R.	N.R.	N.R.

1011 ^a Skin contact with molten MCAA or MCAA solutions should be avoided; dermal penetration is rapid and
 1012 fatal intoxications have been observed when 10 % or more of the body surface was involved.

1013 ^b not recommended due to insufficient data

1014 All inhalation data are summarized in Figure 1 below. The data were classified into severity
 1015 categories chosen to fit into definitions of the AEGL level health effects. The category severity
 1016 definitions are "No effect"; "Discomfort"; "Disabling"; "Lethal"; "Partial lethality" (at an experimental
 1017 concentration in which some of the animals died and some did not, this label refers to the animals which
 1018 did not die) and "AEGL". Note that the AEGL-2 values are designated as triangles.

1019 **FIGURE 2: CATEGORICAL REPRESENTATION OF ALL MCAA INHALATION DATA**1020 **8.2. Comparison with Other Standards and Criteria**

1021 Existing limit and guideline concentrations are shown in Table 8. The proposed occupational
1022 exposure limits for Sweden is 1 ppm (with skin notation) and a STEL of 2 ppm (with skin notation)
1023 (KEMI, 1994). Maksimov and Dubinina (1974) recommended 1 mg/m³ (0.26 ppm) as the Russian
1024 occupational exposure limit.

TABLE 8. EXTANT STANDARDS AND GUIDELINES FOR MONOCHLOROACETIC ACID					
Guideline	Exposure Duration				
	10 minute	30 minute	1 hour	4 hour	8 hour
AEGL-1	N.R.	N.R.	N.R.	N.R.	N.R.
AEGL-2	12 ppm	8.3 ppm	6.6 ppm	1.7 ppm	0.83 ppm
AEGL-3	N.R.	N.R.	N.R.	N.R.	N.R.
REL-TWA (AIHA) ^a					0.26 ppm 1 mg/m ³
STEL (AIHA) ^b	1.0 ppm (4 mg/m ³) for 15 min				
MAK (Germany) ^c					1.0 ppm
MAC-Peak Category (The Netherlands) ^d					1.0 ppm (4 mg/m ³)

^a **AIHA-TWA (American Industrial Hygiene Association, 1984)** (AIHA, 1993) is defined as the time-weighted average concentration for a normal 8-hour workday and a 40-hour workweek, to which nearly all workers may be repeatedly exposed, day after day, without adverse effect.

^b **AIHA-STEL (American Industrial Hygiene Association, 1984)** (AIHA, 1993) is defined as a 15-minute TWA exposure which should not be exceeded at any time during the workday.

^c **MAK (Maximale Arbeitsplatzkonzentration [Maximum Workplace Concentration])** (Deutsche Forschungsgemeinschaft [German Research Association]) is defined analogous to the ACGIH-TLV-TWA. The peak category is 1, MCAA has a skin notation (BMA, 2000).

^d **MAC (Maximaal Aanvaarde Concentratie [Maximal Accepted Concentration - Peak Category])** (SDU Uitgevers [under the auspices of the Ministry of Social Affairs and Employment], The Hague, The Netherlands 2000) is defined analogous to the AIHA-TWA.

8.3. Data Adequacy and Research Needs

Definitive, high-quality studies assessing health effects of MCAA after single or repeated inhalation exposure in humans or experimental animals are not available. Due to insufficient data, AEGL-1 and AEGL-3 values were not derived.

The derivation of AEGL-2 was based on a single 1-hour inhalation exposure study on rats using a single concentration level.

1057 Single inhalation exposure studies focusing on lethal effects in animals and irritative effects in
1058 animals and humans would allow for more precisely defining the thresholds for the three AEGL levels.

1059 **9. REFERENCES**

1060 ACGIH, American Conference of Governmental Industrial Hygienists, 1991. Acetic Acid. Documentation of the
1061 Threshold Limit Values and Biological Exposure Indices, Vol. 1, pp. 6-7. American Conference of Governmental
1062 Industrial Hygienists, Cincinnati, Ohio, USA, 1991.

1063 AIHA, American Industrial Hygiene Association, 1993. Monochloroacetic Acid. Workplace Environmental
1064 Exposure Levels. American Industrial Hygiene Association, Fairfax, VA, USA, 1993.

1065 AIHA, American Industrial Hygiene Association, 1999. The AIHA 1999 Emergency Response Planning Guidelines
1066 and Workplace Environmental Exposure Level Guides Handbook. American Industrial Hygiene Association,
1067 Fairfax, VA, USA, 1999.

1068 Berardi, M.R., 1986. Monochloroacetic acid toxicity in the mouse associated with blood-brain barrier damage.
1069 Dissertation submitted to the Graduate School New Brunswick Rutgers, State University of New Jersey, New
1070 Brunswick, New Jersey.

1071 Berardi, M. and R. Snyder, 1983. Toxicity and pharmacokinetics of monochloroacetic acid. Pharmacologist, 25, 228,
1072 cited in BG Chemie, 1993.

1073 Berardi, M.R., R. Snyder, R.S. Waritz and K.R. Cooper, 1987. Monochloroacetic acid toxicity in the mouse
1074 associated with blood-brain barrier damage. Fundam. Appl. Toxicol. 9, 469-479.

1075 BG Chemie, Berufsgenossenschaft der Chemischen Industrie, 1993. Monochloressigsäure. Toxikologische
1076 Bewertungen Nr. 23. Berufsgenossenschaft der Chemischen Industrie, Heidelberg, 1993.

1077 Bhat H.K., M.F. Kanz, G.A. Campbell and G.A.S. Ansari, 1991. Ninety day toxicity study of chloroacetic acids in
1078 rats. Fund. Appl. Toxicol. 17, 240-253.

1079 Bhunya, S.P. and P. Das, 1987. Bone marrow chromosome aberration and sperm abnormality in mice *in vivo*
1080 induced by monochloroacetic acid (MCA). Chromsome Inf. Serv. 42, 28-30, cited in BG Chemie, 1993.

1081 BIBRA, The British Industrial Biological Research Association, 1997. Toxicity Profile: Chloroacetic Acid. TNO
1082 BIBRA International Ltd., Carshalton, Surrey, United Kingdom.

1083 BMA, Bundesministerium für Arbeit und Sozialordnung, 2000. TRGS 900 - Grenzwerte in der Luft am
1084 Arbeitsplatz. In Nöthlichs, M.: "Gefahrstoffe. Kommentar zu Chemikaliengesetz und Gefahrstoffverordnung", Band
1085 2, Lieferung 4/00. Erich Schmidt Verlag, Berlin, Germany.

1086 Bryant B.J., M.P. Jokinen, S.L. Eustis, M.B. Thompson and K.M. Abdo, 1992. Toxicity of monochloroacetic acid
1087 administered by gavage to F344 rats and B6C3F1 mice for up to 13 weeks. Toxicol. 72, 77-87.

1088 BUA, Beratergremium für umweltrelevante Altstoffe, 1994. Monochloressigsäure, Natriummonochloracetat, BUA-
1089 Stoffbericht 127, S. Hirzel Verlag, Stuttgart.

1090 Christiansen, M. and S. Dalgaard-Mikkelsen, 1961. Toxic effects of monochloroacetic acid on geese. Acta
1091 Pharmacol. Toxicol. 18, 179-182, cited in BG Chemie, 1993.

MONOCHLOROACETIC ACID**FINAL 1:
2/2006**

1092 Christofano, E.E., J.P. Frawley, H. Reed and K.L. Keplinger, 1970. Skin exposure to monochloroacetic acid. Am.
1093 Ind. Hyg. Assoc. J. 19, 35 (abstract), cited in BG Chemie, 1993.

1094 Clariant GmbH, 2000. Unpublished. Letter of Dr. Kreiling, dated 23.08.2000.

1095 Dalgaard-Mikkelsen S. and F. Rasmussen, 1961. Toksiciteten af monokloracetat for kvaeg. Nordisk Veterinaer
1096 Medicine 13, 271-279.

1097 Daniel F.B., M. Robinson, J.A. Stober, N.P. Page and G.R. Olson, 1991. Ninety-day toxicity study of sodium
1098 monochloroacetate in Sprague-Dawley rats. Toxicol. 67, 171-185.

1099 DeAngelo A.B., F.B. Daniel, B.M. Most and G.R. Olson, 1997. Failure of monochloroacetic acid and
1100 trichloroacetic acid administered in the drinking water to produce liver cancer in male F344/N rats. J. Toxicol.
1101 Environ. Health 52, 425-445.

1102 DHHS, Department of Health and Human Services, 2004 . Toxmap. Specialized Information Services. National
1103 Institutes of Health, DHHS. Available on the internet at <http://toxmap.nlm.nih.gov/toxmap/main/index.jsp>.
1104 Accessed 26 November 2004.

1105 Dow Chemical Co., 1976. Study of monochloroacetic acid: pharmacokinetics, metabolism and potential antidotes.
1106 Unpublished report, Dow Chemical Company, Midland, USA.

1107 Dow Chemical Co., 1987. Monochloroacetic acid: an acute vapor inhalation limit study with Fischer 344 rats.
1108 Unpublished report, Dow Chemical Company, Midland, USA.

1109 ECB, European Chemicals Bureau, 2003. Draft - Risk assessment. Monochloroacetic acid (MCAA). Available on
1110 the internet at <http://ecb.eu.int>

1111 ECETOC, European Centre for Ecotoxicology and Toxicology of Chemicals, 1999. Monochloroacetic Acid (CAS
1112 No. 79-11-8) and its Sodium Salt (CAS No. 3926-62-3). Joint Assessment of Commodity Chemicals No. 38.
1113 European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, Belgium.

1114 Elf Atochem, 1995. Acute intravenous toxicity in male rats with monochloroacetic acid. CIT study No. 12052 TAR,
1115 cited in ECETOC, 1999.

1116 EPA, Environmental Protection Agency, 1988. Recommendations and Documentation of Biological Values for Use
1117 in Risk Assessment. U.S. Environmental Protection Agency, Washington, DC, 1988.

1118 Feldhaus K., D. Hudson, D. Rogers, R.S. Horowitz, J. Brent, R.C. Dart and H. Gomez, 1993. Pediatric fatality
1119 associated with accidental oral administration of monochloroacetic acid (MCA). Vet. Hum. Toxicol. 35, 344.

1120 Fuhrman, F.A., J. Field, R.H. Wilson and F. DeEds, 1955. Monochloroacetate: effects of chronic administration to
1121 rats on growth, activity and tissue metabolism and inhibitory effects in vitro compared with moniodoacetate and
1122 monobromoacetate. Arch. Int. Pharmacodyn. 102, 113-125.

1123 Greim H., 1998. Monochloressigsäure, in: Gesundheitsschädliche Arbeitsstoffe, Toxikologisch-arbeitsmedizinische
1124 Begründungen von MAK-Werten, Loseblattsammlung, 26. Lfg., DFG, Deutsche Forschungsgemeinschaft, WILEY-
1125 VCH Verlag, Weinheim.

1126 Guest, D., G.V. Katz and B.D. Astill, 1982. Aliphatic Carboxylic Acids. In: Patty's Industrial Hygiene and
1127 Toxicology, 3rd Rev. ed., Vol. 2C, pp. 4909-4911. G.D. Clayton and F.E. Clayton (Eds.). John Wiley & Sons, New
1128 York, 1982, cited in ACGIH, 1991.

1129 Hercules, 1969a. Acute vapor inhalation toxicity study on monochloroacetic acid. IBT report No. N7789, cited in
1130 ECETOC, 1999.

1131 Hercules, 1969b. Acute vapor inhalation toxicity study on monochloroacetic acid. IBT report No. N7646, cited in
1132 ECETOC, 1999.

1133 Hayes, F.D., P.J. Gehring and J.E. Gibson, 1972. Studies on the acute toxicity of monochloroacetic acid in rats.
1134 Toxicol. Appl. Pharmacol. 22, 303 (abstract), cited in BG Chemie, 1993.

1135 Hayes F.D., R.D. Short and J.E. Gibson, 1973. Differential toxicity of monochloroacetate, monofluoroacetate, and
1136 monooiodoacetate in rats. Toxicol. Appl. Pharmacol. 26, 93-102.

1137 Henschler, D., 1983. Chlorwasserstoff. Gesundheitsschädliche Arbeitsstoffe, Toxikologisch-arbeitsmedizinische
1138 Begründungen von MAK-Werten, Loseblattsammlung, 9. Lfg. DFG, Deutsche Forschungsgemeinschaft, VCH
1139 Verlag Weinheim, Germany.

1140 Hoechst AG, 1979a. Akute orale Toxizität von Monochloressigsäure VA 2308 an weiblichen Ratten. Unpublished
1141 report No. 232/79, Hoechst AG, Pharma Forschung Toxikologie, 29.5.1979.

1142 Hoechst AG, 1979b. Akute orale Toxizität von Monochloressigsäureäthylester an weiblichen Ratten. Unpublished
1143 report No. 237/79, Hoechst AG, Pharma Forschung Toxikologie, 29.5.1979.

1144 Hoechst AG, 1979c. Akute orale Toxizität von Monochloressigsäuremethylester an weiblichen Ratten. Unpublished
1145 report No. 139/79, Hoechst AG, Pharma Forschung Toxikologie, 30.3.1979.

1146 Hoechst AG, 1979d. Akute subcutane Toxizität von Monochloressigsäure VA 2308 an weiblichen Ratten.
1147 Unpublished report No. 233/79, Hoechst AG, Pharma Forschung Toxikologie, cited in ECETOC, 1999.

1148 Hoechst AG, 1979e. Akute subcutane Toxizität von Monochloressigsäure VA 2308 an weiblichen Ratten.
1149 Unpublished report No. 233/79, Hoechst AG, Pharma Forschung Toxikologie, cited in ECETOC, 1999.

1150 Hoechst AG, 1979f. Haut- und Schleimhautverträglichkeit von Monochloressigsäure VA 2308 an Kaninchen.
1151 Unpublished report No. 235/79, Hoechst AG, Pharma Forschung Toxikologie, cited in ECETOC, 1999.

1152 Hoechst AG, 1988a. Monochloressigsäuremethylester Inhalation im strömenden Gemisch an männlichen und
1153 weiblichen SPF-Wistar-Ratten - 4 h - LC 50. Unpublished report No. 88.0041, Hoechst AG, Pharma Forschung
1154 Toxikologie und Pathologie, 7.3.1988.

1155 Hoechst AG, 1988b. Chloressigsäuremethylester - Subakute Inhalation (20 Applikationen in 28 Tagen) an SPF-
1156 Wistar Ratten. Unpublished report No. 88.0233, study conducted for Berufsgenossenschaft der chemischen
1157 Industrie. Hoechst AG, Pharma Forschung Toxikologie und Pathologie, 13.4.1988.

1158 Hoechst AG, 1988c. Natriummonochloracetat. Prüfung der akuten dermalen Toxizität and der Wistar-Ratte.
1159 Unpublished report No. 151/88. Hoechst AG, Pharma Forschung Toxikologie und Pathologie, cited in ECETOC,
1160 1999.

MONOCHLOROACETIC ACID**FINAL 1:
2/2006**

1161 Hoechst AG, 1988d. Natriummonochloracetat. Prüfung auf Augenreizung am Kaninchen. Unpublished report No.
1162 88.0109. Hoechst AG, Pharma Forschung Toxikologie und Pathologie, cited in ECETOC, 1999.

1163 IPCS & CEC, International Programme on Chemical Safety & the Commission of the European Communities,
1164 1993. Chloroacetic Acid. International Chemical Safety Cards. [Http://www.cdc.gov/niosh/ipsneng/neng0235.html](http://www.cdc.gov/niosh/ipsneng/neng0235.html).

1165 IUCLID (International Uniform Chemical Information Database), 1996. Release on CD-ROM, European
1166 Commission, European Chemicals Bureau, Joint Research Centre, Ispra, Italy.

1167 Izmerov, N.F., I.V. Sanotsky and K.K. Sidorov, 1982. Toxicometric parameters of industrial toxic chemicals under
1168 single exposure. Centre of International Projects, GKNT, Moscow.

1169 Johnson P.D., B.V. Dawson and S.J. Goldberg, 1998. Cardiac teratogenicity of trichloroethylene metabolites. J.
1170 Am. College Cardiol. 32, 540-545.

1171 Kaphalia, B.S., H.K. Bhat, M.F. Khan, and G.A.S. Ansari, 1992. Tissue distribution of MCAA and its binding to
1172 albumin in rats. Toxicol. Ind. Health 8, 53-61, cited in ECETOC, 1999.

1173 KEMI, Kemikalieninspektionen, 1994. SIDS Dossier on the OECD HPV Chemical Monochloroacetic Acid (MCA).
1174 Kemikalieninspektionen, National Chemicals Inspectorate, Solna, Sweden.

1175 Knapp P., 1923. Zur Frage der Keratitis traumatica infolge Einwirkung von Gasen. Schweizerische medizinische
1176 Wochenschrift 4, 702.

1177 Kulling P., H. Andersson, K. Boström, L.A. Johansson, B. Lindström and B. Nyström, 1992. Fatal systemic
1178 poisoning after skin exposure to monochloroacetic acid. Clin. Toxicol. 30, 643-652.

1179 Maksimov G.G. and O.N. Dubinina, 1974. Materials of experimental substantiation of maximally permissible
1180 concentration of monochloroacetic acid in the air of production area. Gigiena Truda i Professional nye Zabolevarija
1181 9, 32-35.

1182 Mitroka, J.G., 1989. Monochloroacetic acid lethality in the rat in relation to lactic acid accumulation in the
1183 cerebrospinal fluid. Dissertation, Graduate School New Brunswick Rutgers, State University of New Jersey, New
1184 Brunswick, New Jersey.

1185 Morrison, J.L. and C.D. Leake, 1941. Monochloroacetic acid as a food and beverage stabilizer. Univ. Calif. Pub.
1186 Pharmacol. 1, 397-421, cited in NTP, 1992 (for repeated exposure) and Fuhrman et al., 1955 (for LD₅₀ values for
1187 different monohaloacetic acids).

1188 NTP, National Toxicology Program, 1992. Toxicology and Carcinogenesis Studies of Monochloroacetic Acid in
1189 F344/N Rats and B6C3F₁ Mice. NTP TR 396; NIH Publ. No. 92-2851. Ed., U.S. Department of Health and Human
1190 Services; Public Health Service.

1191 Oelert, H.H. and T. Florian, 1972. Erfassung und Bewertung der Geruchsbelästigung durch Abgase von
1192 Dieselmotoren. Staub 32, 400-407, cited in Verschueren, 1983.

1193 Rodionova, R.P. and N.G. Ivanov, 1979. Comparison of the level of irritant properties of industrial toxins [in
1194 russian]. Toksikologiya Novykh Promyshlennykh Khimicheskikh Veshchestv. 15, 58-63 and 145-150.

1195 Rogers D.R., 1995. Accidental fatal monochloroacetic acid poisoning. Am. J. Forensic Med. Pathol. 16, 115-116.

1196 Rozman, K.K., 2000a. The role of time in toxicology or Haber's salt product. Toxicol. 149, 35-42.

1197 Rozman, K.K., 2000b. Approaches for using toxicokinetic information in assessing risk to deployed U.S. forces. In:
1198 Strategies to Protect the Health of Deployed U.S. Forces: Assessing Health Risks to Deployed U.S. forces -
1199 Workshop Proceedings. National Research Council. National Academy Press, Washington, D.C., 2000, pp. 113-
1200 149.

1201 Ruty, J., R.J. Millischer, J.C. Contassot, M. Vincenti and J. Jouglard, 1987. Monochloroacetic acid: a report of
1202 systemic poisoning from percutaneous absorption. Occup. Health in the Chem. Ind., 22th ICOH-Congress, Sydney,
1203 cited in BG Chemie, 1993.

1204 Smith, K.M., J.L. Randall, E.J. Read and J.A. Stober, 1990. Developmental effects of chloroacetic acid in the Long-
1205 Evans rat. Teratology 41, 593, cited in BG Chemie, 1993.

1206 Torkelson, T.R., C.D. Kary, M.B. Chenoweth and E.R. Larson, 1971. Single exposure of rats to the vapors of trace
1207 substances in methoxyflurane. Toxicol. Appl. Pharmacol. 19, 1-9.

1208 UN, United Nations, 1996. Chloroacetic Acid (97-11-8). In: Screening Information Data Set (SIDS) for High
1209 Production Volume Chemicals, Vol. III, Part 3. United Nations, New York and Geneva, 1996, pp. 118-124.

1210 U.S. EPA (1998). National Primary Drinking Water Regulations: Disinfectants and Disinfection By-Products;
1211 Notice of Data Availability; Final Rule. Fed Reg 63:69390-476. Stage 1 Disinfectants and Disinfection
1212 By-Products Rule, EPA 815-F-98-010. Available at: <http://www.epa.gov/safewater/mdbp/dbp1.html>.

1213 USITC, United States International Trade Commission, 2004. Available on the internet at
1214 <http://ita.doc.gov/td/industry/otea/trade-detail/Latest-December/Imports/29/291540.html>

1215 van Hinsbergh, V.W.M. and M. Vermeer, 1994. Toxicity of monochloroacetic acid on human endothelial cells and
1216 rat heart mitochondria. Third interim report, unpublished. Gaubius Laboratory TNO-GP, Leiden, The Netherlands,
1217 cited in Greim, 1998.

1218 Verschueren, K. (Ed.), 1983. Handbook of Environmental Data on Organic Chemicals. 2nd Ed. Van Nostrand
1219 Reinhold, New York, NY, 1983.

1220 Weast, R.C. (Ed.), 1984. CRC Handbook of Chemistry and Physics. 64th Ed., CRC Press Inc., Boca Raton, FL,
1221 1983-1984.

1222 WHO, World Health Organization, 1999. Principles for the Assessment of Risks to Human Health from Exposure
1223 to Chemicals. Environmental Health Criteria 210. World Health Organization, Geneva, Switzerland, 1999.

1224 Woodard, G., S.W. Lange, K.W. Nelson and H.O. Calvery, 1941. The acute oral toxicity of acetic, chloroacetic,
1225 dichloroacetic and trichloroacetic acids. J. Ind. Hyg. Toxicol. 23, 78-82, cited in ECETOC, 1999.

1226 Yllner, S., 1971. Metabolism of chloroacetate-1-¹⁴C in the mouse. Acta Pharmacol. Toxicol. 30, 69-80.

1227 Xu X and C.P. Weisel (2003). Inhalation exposure to haloacetic acids and haloketones during showering. Environ.
1228 Sci. Technol. 37, 569-576.

1229

APPENDIX A

1230

Time Scaling Calculations for AEGLs

1231	AEGL-2	
1232	Key study:	Dow Chemical Co. (1987)
1233	Toxicity endpoint:	Rats were exposed for 1 hour at an analytical MCA concentration. Other concentrations were tested. During exposure all rats were slightly lethargic.
1234		
1235		
1236	Scaling:	$C^3 \times t = k$ for extrapolation to 30 minutes and 10 minutes
1237		$k = 66^3 \text{ ppm}^3 \times 1 \text{ h} = 287496 \text{ ppm}^3 \text{ h}$
1238		$C \times t = k$ for extrapolation to 8 hours and 4 hours
1239		$k = 66 \text{ ppm} \times 1 \text{ h} = 66 \text{ ppm h}$
1240	Uncertainty factors:	Combined uncertainty factor of 10.
1241		3 for interspecies variability
1242		3 for intraspecies variability
1243	Calculations:	
1244	<u>10-minute AEGL-2</u>	$C^3 \times 0.167 \text{ h} = 287496 \text{ ppm}^3 \text{ h}$ $C = 119.85 \text{ ppm}$ 10-min AEGL-2 = $119.85 \text{ ppm} / 10 = 12 \text{ ppm (47 mg/m}^3\text{)}$
1245		
1246		
1247	<u>30-minute AEGL-2</u>	$C^3 \times 0.5 \text{ h} = 287496 \text{ ppm}^3 \text{ h}$ $C = 83.15 \text{ ppm}$ 30-min AEGL-2 = $83.15 \text{ ppm} / 10 = 8.3 \text{ ppm (33 mg/m}^3\text{)}$
1248		
1249		
1250	<u>1-hour AEGL-2</u>	$C = 66 \text{ ppm}$ 1-hour AEGL-2 = $66 \text{ ppm} / 10 = 6.6 \text{ ppm (26 mg/m}^3\text{)}$
1251		
1252	<u>4-hour AEGL-2</u>	$C \times 4 \text{ h} = 66 \text{ ppm h}$ $C = 16.50 \text{ ppm}$ 4-hour AEGL-2 = $16.50 \text{ ppm} / 10 = 1.7 \text{ ppm (6.7 mg/m}^3\text{)}$
1253		
1254		
1255	<u>8-hour AEGL-2</u>	$C \times 8 \text{ h} = 66 \text{ ppm h}$ $C = 8.25 \text{ ppm}$ 8-hour AEGL-2 = $8.25 \text{ ppm} / 10 = 0.83 \text{ ppm (3.3 mg/m}^3\text{)}$
1256		
1257		

1258

APPENDIX B

1259

Derivation Summary for Monochloroacetic Acid AEGLs

**ACUTE EXPOSURE GUIDELINES FOR MONOCHLOROACETIC ACID
(CAS NO. 79-11-8)**

AEGL-1 VALUES						
	10 minutes	30 minutes	1 hour	4 hours	8 hours	
1263	N.R.	N.R.	N.R.	N.R.	N.R.	
1265	Reference: Not applicable					
1266	Test Species/Strain/Number: Not applicable					
1267	Exposure Route/Concentrations/Durations: Not applicable					
1268	Effects: Not applicable					
1269	Endpoint/Concentration/Rationale: No definitive study was available for the derivation of AEGL-1 values. The human irritation threshold reported by Maksimov and Dubinina (1974) was inadequately described and, therefore, was not considered an adequate basis for the derivation of AEGL-1 values. The report by Clariant GmbH (2000) was not considered an adequate basis because the depth of the routine medical examination was not reported and the time point of the examination was not linked to an actual exposure assessment. Moreover, the exposure assessment using about 1 to 2 measurements per year was considered insufficient. Therefore, due to insufficient data, AEGL-1 values were not recommended.					
1277	Uncertainty Factors/Rationale: Not applicable					
1278	Modifying Factor: Not applicable					
1279	Animal to Human Dosimetric Adjustment: Not applicable					
1280	Time Scaling: Not applicable					
1281	Data Adequacy: Adequate human or animal data relevant for the derivation of AEGL-1 values are not available.					

**ACUTE EXPOSURE GUIDELINES FOR MONOCHLOROACETIC ACID
(CAS NO. 79-11-8)**

AEGL-2 VALUES				
10 minutes	30 minutes	1 hour	4 hours	8 hours
12 ppm	8.3 ppm	6.6 ppm	1.7 ppm	0.83 ppm
Reference: Dow Chemical Co., 1987. Monochloroacetic acid: an acute vapor inhalation limit study with Fischer 344 rats. Unpublished report, Dow Chemical Company, Midland, USA.				
Test Species/Strain/Sex/Number: Rat / Fisher 344 / 6 female and 6 male				
Exposure Route/Concentrations/Durations: Inhalation / 66 ppm (analytical concentration) / 1 hour				
Effects: During all exposures, all rats (12/12) showed eye squint and slight lethargy. While in the text the expression "slight lethargy" is used, "lethargy" is used in the corresponding table. "The observations [prior to and after exposure] included an evaluation of fur, eyes, mucous membranes, and respiration. Behavior pattern and nervous system activity was also assessed by specific observation for tremors, convulsions, salivation, lacrimation, and diarrhea, as well as slight lethargy and other signs of altered central nervous system function." During the two-week observation period, MCAA-exposed rats lost weight initially (day 2) and regained weight during the remainder period (day 4-15). Gross pathologic examination of rats revealed no exposure-related effects.				
Endpoint/Concentration/Rationale: For the derivation of AEGL-2 values, the study in rats by Dow Chemical Co. (1987) was used because it was the only relevant inhalation study available. Exposure of rats to 66 ppm for 1 hour resulted in eye squint and in some lethargy, which might be interpreted as an effect on the central nervous system, but no severe effects. There is some uncertainty as to the exposure because of the large discrepancy between the nominal exposure concentration of 964 ppm and the analytically measured exposure concentration of 66 ppm. The authors did not discuss whether recrystallization of MCAA took place completely outside the exposure chamber (i.e. before the air stream entered the chamber) or whether uptake of recrystallized MCAA by routes other than inhalation (e.g. dermal and oral uptake after deposition on the hair) might have occurred. In case of an additional exposure, the measured air concentration of 66 ppm and be regarded as an conservative exposure assumption. The AEGL-2 values were based on a 1-hour exposure to 66 ppm.				

1313	Uncertainty Factors/Rationale:
1314	Total uncertainty factor: 10
1315	Interspecies: 3 - because 1) the effect level was considered below that of an AEGL-2, 2) because the available data on acute oral lethality do not point at a large interspecies variability for more severe (lethal) effects, and 3) because of the limited toxicodynamic variability as the enzymes inhibited by MCAA do not vary considerably within and between species.
1316	
1317	
1318	
1319	
1320	Intraspecies: 3 - because of the limited toxicokinetic variability with respect to local effects and limited toxicodynamic variability with respect to systemic effects since the enzymes inhibited by MCAA do not vary considerably within and between species.
1321	
1322	
1323	Modifying Factor: Not applicable
1324	Animal to Human Dosimetric Adjustment: Insufficient data
1325	Time Scaling: The exposure duration-specific values were derived by time scaling according to the dose-response regression equation $C^n \times t = k$, using the default of $n=3$ for shorter exposure periods and $n=1$ for longer exposure periods, due to the lack of suitable experimental data for deriving the concentration exponent.
1326	
1327	
1328	
1329	Data Adequacy:
1330	The only available single inhalation study in animals was used for the derivation of AEGL-2 values.
1331	In this study, neither different exposure concentrations nor different exposure durations were employed. The derived values are supported by an older subchronic study in humans daily oral
1332	exposures to MCAA.
1333	

1334 **ACUTE EXPOSURE GUIDELINES FOR MONOCHLOROACETIC ACID**

1335 **(CAS NO. 79-11-8)**

AEGL-3 VALUES				
10 minutes	30 minutes	1 hour	4 hours	8 hours
1336 N.R.	1337 N.R.	1338 N.R.	1339 N.R.	1340 N.R.
Reference: Not applicable				
Test Species/Strain/Sex/Number: Not applicable				
Exposure Route/Concentrations/Durations: Not applicable				
Effects: Not applicable				
<p>1341 Endpoint/Concentration/Rationale:</p> <p>1342 For the derivation of AEGL-3 values, no relevant and well-documented LC₅₀ studies were available. Although oral lethality data in animals are available, these were not used as a basis for derivation of AEGL values because of the uncertainty regarding local effects of MCAA in the respiratory tract. Several mechanistic aspects point at a possible role of local effects: a) MCAA has a pK_a of 2.85 and thus is a strong acid, which may cause irritation and local tissue damage by its acidity alone; b) MCAA can bind to sulfhydryl groups, e.g. those of reduced glutathione, and may thus cause lung damage through glutathione depletion; and c) during inhalation exposure, local concentrations of MCAA in the respiratory tract could cause local tissue damage by enzyme inhibition already in doses lower than those required for systemic effects in oral studies. Experimental findings support a possible local effect on the respiratory tract: a) the available inhalation studies report effects on the respiratory tract, and b) MCAA causes severe local damage to skin and eyes.</p> <p>1343 Unfortunately, in the only LC₅₀ study located in the literature (Maksimov and Dubinina, 1974), data presentation is inadequate. Since pathological findings were not reported it remains unknown if rats died from local lung tissue destruction or from systemic toxicity (i.e. acidosis affecting CNS or heart). Inhalation studies using monochloroacetic acid esters were not considered relevant for the derivation of AEGL-3 values, because compared with MCAA local effects of its esters are less likely, because a) the esters are not acidic and thus do not cause local effects by lowering the tissue pH value; and b) local effects due to glutathione binding or enzyme inhibition can be expected to be smaller because the esters have to get hydrolyzed enzymatically to free MCAA first; although quantitative data for the hydrolysis are lacking, it is likely that due to its rapid distribution in the body, much of the deposited ester will enter systemic circulation before it is hydrolyzed and thus the concentration of MCAA in respiratory tract tissue is likely to be much smaller during inhalation exposure to monochloroacetic esters compared to MCAA.</p> <p>1344 Due to the inadequate presentation of the only LC₅₀ available (Maksimov and Dubinina, 1974) and the uncertainties of a route-to-route extrapolation, AEGL-3 values were not recommended due insufficient data.</p>				
Uncertainty Factors/Rationale: Not applicable				

MONOCHLOROACETIC ACID**FINAL 1:
2/2006**

1371	Modifying Factor: Not applicable
1372	Animal to Human Dosimetric Adjustment: Not applicable
1373	Time Scaling: Not applicable
1374	Data Adequacy:
1375	Adequate animal data relevant for the derivation of AEGL-3 values are not available.