

2

INTERIM ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs)

3

4

1,4-DIOXANE

5

(CAS Reg. No. 123-91-1)

6

for

7

NAS/COT Subcommittee for AEGLs

8

February 2005

9

10

PREFACE

11 Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 1972, the
12 National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances (NAC/AEGL
13 Committee) has been established to identify, review and interpret relevant toxicologic and other scientific data
14 and develop AEGLs for high priority, acutely toxic chemicals.

15 AEGLs represent threshold exposure limits for the general public and are applicable to emergency
16 exposure periods ranging from 10 minutes to 8 hours. AEGL-2 and AEGL-3 levels, and AEGL-1 levels as
17 appropriate, will be developed for each of five exposure periods (10 and 30 minutes, 1 hour, 4 hours, and 8
18 hours) and will be distinguished by varying degrees of severity of toxic effects. It is believed that the
19 recommended exposure levels are applicable to the general population including infants and children, and
20 other individuals who may be sensitive or susceptible. The three AEGLs have been defined as follows:

21 AEGL-1 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
22 is predicted that the general population, including susceptible individuals, could experience notable
23 discomfort, irritation, or certain asymptomatic, non-sensory effects. However, the effects are not disabling
24 and are transient and reversible upon cessation of exposure.

25 AEGL-2 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
26 is predicted that the general population, including susceptible individuals, could experience irreversible or
27 other serious, long-lasting adverse health effects, or an impaired ability to escape.

28 AEGL-3 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
29 is predicted that the general population, including susceptible individuals, could experience life-threatening
30 health effects or death.

31 Airborne concentrations below the AEGL-1 represent exposure levels that could produce mild and
32 progressively increasing odor, taste, and sensory irritation, or certain asymptomatic, non-sensory effects. With
33 increasing airborne concentrations above each AEGL level, there is a progressive increase in the likelihood
34 of occurrence and the severity of effects described for each corresponding AEGL level. Although the AEGL
35 values represent threshold levels for the general public, including sensitive subpopulations, it is recognized
36 that certain individuals, subject to unique or idiosyncratic responses, could experience the effects described
37 at concentrations below the corresponding AEGL level.

38
39**TABLE OF CONTENTS**

40	PREFACE	ii
41	TABLE OF CONTENTS	iii
42	EXECUTIVE SUMMARY	vii
43	1. INTRODUCTION	1
44	2. HUMAN TOXICITY DATA	3
45	2.1. Acute Lethality	3
46	2.2. Nonlethal Toxicity	3
47	2.2.1. Experimental Studies	4
48	2.2.2. Occupational Exposure	5
49	2.3. Developmental/Reproductive Toxicity	8
50	2.4. Genotoxicity	8
51	2.5. Carcinogenicity	8
52	2.6. Summary	8
53	3. ANIMAL TOXICITY DATA	10
54	3.1. Acute Lethality	10
55	3.1.1. Rats	10
56	3.1.2. Mice	11
57	3.1.3. Guinea Pigs	13
58	3.1.4. Rabbits	15
59	3.1.5. Other Species	15
60	3.2. Nonlethal Toxicity	18
61	3.2.1. Rats	18
62	3.2.2. Mice	20
63	3.2.3. Guinea pigs	20
64	3.3. Developmental/Reproductive Toxicity	22
65	3.4. Genotoxicity	22
66	3.5. Carcinogenicity	23
67	3.6. Summary	25
68	4. SPECIAL CONSIDERATIONS	27
69	4.1. Metabolism and Disposition	27
70	4.2. Mechanism of Toxicity	28
71	4.3. Other Relevant Information	30
72	4.3.1. Pharmacokinetic Modelling	30
73	4.3.2. Interspecies Variability	31
74	4.3.3. Intraspecies Variability	32
75		

76	5. RATIONALE AND PROPOSED AEGL-1	34
77	5.1. Human Data Relevant to AEGL-1	34
78	5.2. Animal Data Relevant to AEGL-1	34
79	5.3. Derivation of AEGL-1	34
80	6. RATIONALE AND PROPOSED AEGL-2	36
81	6.1. Human Data Relevant to AEGL-2	36
82	6.2. Animal Data Relevant to AEGL-2	36
83	6.3. Derivation of AEGL-2	36
84	7. RATIONALE AND PROPOSED AEGL-3	39
85	7.1. Human Data Relevant to AEGL-3	39
86	7.2. Animal Data Relevant to AEGL-3	39
87	7.3. Derivation of AEGL-3	39
88	8. SUMMARY OF PROPOSED AEGLs	42
89	8.1. AEGL Values and Toxicity Endpoints	42
90	8.2. Comparison with Other Standards and Criteria	44
91	8.3. Data Adequacy and Research Needs	45
92	9. REFERENCES	46
93	APPENDIX A	
94	Time Scaling Calculations for AEGLs	54
95	AEGL-1	55
96	AEGL-2	56
97	AEGL-2	57
98	AEGL-3	58
99	APPENDIX B	
100	Level of Distinct Odor Awareness	59
101	APPENDIX C	
102	Preliminary Cancer Assessment of 1,4-Dioxane	61
103	APPENDIX D	
104	Derivation Summary for 1,4-Dioxane AEGLs	64
105	AEGL-1	65
106	AEGL-2	67
107	AEGL-3	70

108

List of Tables

109	TABLE 1: CHEMICAL AND PHYSICAL DATA	1
110	TABLE 2: SUMMARY OF EFFECTS IN HUMANS AFTER INHALATION OF DIOXANE	7
111	TABLE 3: EFFECTS IN MICE AFTER ACUTE INHALATION EXPOSURE, 112 adopted from Wirth and Klimmer (1936)	12
113	TABLE 4: EFFECTS AFTER REPEATED INHALATION EXPOSURE OF RATS, MICE, GUINEA 114 PIGS AND RABBITS, adopted from Fairley et al. (1934)	14
115	TABLE 5: EFFECTS IN CATS AFTER SINGLE INHALATION EXPOSURE, 116 adopted from Wirth and Klimmer (1936)	16
117	TABLE 6: SUMMARY OF ACUTE LETHAL INHALATION DATA IN LABORATORY 118 ANIMALS	16
119	TABLE 7: NONLETHAL EFFECTS IN GUINEA PIGS FROM THE STUDY OF 120 YANT et al. (1930)	20
121	TABLE 8: SUMMARY OF NON-LETHAL EFFECTS IN LABORATORY ANIMALS	21
122	TABLE 9: AEGL-1 VALUES FOR 1,4-DIOXANE	35
123	TABLE 10: AEGL-2 VALUES FOR 1,4-DIOXANE	38
124	TABLE 11: AEGL-3 VALUES FOR 1,4-DIOXANE	40
125	TABLE 12: SUMMARY/RELATIONSHIP OF PROPOSED AEGL VALUES	42
126	TABLE 13. EXTANT STANDARDS AND GUIDELINES FOR 1,4-DIOXANE	44

127

List of Figures

128	FIGURE 1: SPECIES COMPARISON OF LETHAL INHALATION EXPOSURE	32
129	FIGURE 2: CATEGORICAL REPRESENTATION OF ALL DIOXANE INHALATION DATA	43

130

EXECUTIVE SUMMARY

131 1,4-Dioxane is a colorless combustible liquid with a characteristic unpleasant odor. Hellman and
132 Small (1974) reported an odor detection threshold of 1.8 ppm and an odor recognition threshold of 5.7
133 ppm. Several studies reported that the initial strong odor diminished rapidly during exposure. In a
134 toxicokinetic study on humans, exposure to 50 ppm for 6 h led to eye irritation (Young et al., 1977). In a
135 other experimental studies, exposure to 300 ppm for 15 min led to irritation of eyes, nose and throat; after
136 exposure for an unspecified exposure time, irritation was quite distinct at 1400 ppm and at 2800 ppm
137 subjects complained of very strong initial irritation and slight pressure in the chest (Wirth and Klimmer,
138 1936). Yant et al. (1930) reported eye irritation, resulting in blinking, squinting and lacrimation, a burning
139 sensation in nose and throat and slight vertigo in subjects exposed to 5500 ppm dioxane for 1 minute;
140 1600 ppm for 10 minutes resulted in an immediate slight burning of the eyes accompanied by lacrimation
141 and nasal irritation. A few lethal cases have been reported after repeated occupational exposure to
142 unknown dioxane concentrations. Initial signs and symptoms comprised nausea and vomiting, described
143 as "stomach trouble" by the workers, followed after 2-3 days by oliguria and anuria. About 3-7 days after
144 the first symptoms, coma developed, followed by death. Microscopic examinations revealed centrilobular
145 liver necrosis, almost symmetrical necrosis of the outer renal cortex and hemorrhages around the
146 glomeruli. Studies on exposed workers did not reveal evidence of genotoxic or carcinogenic effects of
147 dioxane.

148 Acute toxic effects in animals are mainly central nervous system depression, kidney and liver
149 damage as well as irritation effects. At lethal concentrations, narcosis has been observed in rats and
150 guinea pigs. Pozzani et al. (1959) reported a 4-hour LC₅₀ for dioxane of 14,300 ppm in rats. A similar
151 LC₅₀ value of 12,800 ppm for 4 hours was reported by Pilipyuk et al. (1977). Rats exposed for 2x1.5
152 hours per day at 5000 ppm died after 3-5 consecutive exposure days (Fairley et al., 1934). Necropsy
153 findings included evidence of serious kidney and liver damage, such as patchy cell degeneration of the
154 cortical tubules, inter- and intratubular hemorrhages and liver cell degeneration varying from cloudy
155 swelling to large areas of complete necrosis. A 2-hour LC₅₀ value of 18,000 ppm in mice has been
156 reported (Pilipyuk et al., 1977). Goldberg et al. (1964) studied the effect of dioxane on avoidance
157 behavior (conditioned response) and on escape behavior (unconditioned response) of rats using a pole
158 climbing test. After the training period, rats were exposed 4 hours/day, 5 days/week for 2 weeks.
159 Behavior measurements were performed after every exposure. At 6000 ppm, 6/8 rats showed a delay of
160 the conditioned response behavior after the 1st exposure, while in the subsequent exposures between 3 and
161 8 of a total of 8 rats were affected. Effects on the escape response were not observed. Drew et al. (1978)
162 reported significantly increased serum activities of liver enzymes (ornithine carbamyl transferase,
163 aspartate aminotransferase and alanine aminotransferase) in rats after a single 4-hour exposure at 1000 or
164 2000 ppm dioxane. Frantik et al. (1994) studied the inhibition of propagation and maintenance of the
165 electrically evoked seizure discharge in rats and mice. Of six different time characteristics recorded, the
166 duration of tonic extension of hindlimbs in rats and the velocity of tonic extension in mice were the most
167 sensitive and reproducible response measures. The authors suggested the EC₁₀ as the effect threshold,
168 which was 1200 ppm for 4 hours in rats and 580 ppm for 2 hours in mice. No indication of teratogenic or
169 fetotoxic effects was found in rats after dosing at up to 517 mg/kg/d by gavage on gestational days 6-15.
170 Dioxane did not induce gene mutations in *Salmonella typhimurium*. It did not induce TK gene mutations
171 in mouse lymphoma L5178 tk^{+/} cells or HGPRT gene mutations or chromosomal aberrations in Chinese
172 hamster ovary cells. However, it did induce a slight increase in sister chromatid exchange in the absence
173 of metabolic activation and caused morphological transformation of BALB/c 3T3 mouse cells. Oral

174 administration of high doses to rats caused DNA strand breaks and micronuclei formation in liver cells.
175 No induction of unscheduled DNA synthesis was observed in rat hepatocytes at up to 2 % dioxane in
176 drinking water. Of six bone-marrow micronucleus tests, five were negative, while one was positive. When
177 administered orally at 0.5 % or higher in drinking water (corresponding to about 500 mg/kg/day), dioxane
178 produced malignant tumors of the nasal cavity and liver in rats and tumors of the liver and gallbladder in
179 guinea pigs. It was also active as a promotor in a two-stage skin carcinogenesis study in mice. A lifetime
180 bioassay exposing rats at 111 ppm for 7 hours/day, 5 days/week found no evidence for carcinogenic
181 effects.

182 For the derivation of AEGL-1 values, irritation was considered the most relevant endpoint. As
183 key study, the pharmacokinetic study of Young et al. (1977) was chosen, because this was the only
184 adequately reported and analytically controlled study available for this endpoint. Four healthy men
185 reported eye irritation at 50 ppm throughout the 6-hour exposure period. Since this was a pharmacokinetic
186 study, no emphasis was put on reporting of symptoms and the authors did not define the severity level of
187 the eye irritation. The irritation was nevertheless considered to be below the notable discomfort level as
188 described in the AEGL-1 definition because the authors (Young et al., 1977) considered 50 ppm as an
189 adequate workplace standard and a level of 50 ppm has been used as a workplace standard in the past. A
190 total uncertainty factor of 3 was used because for local effects, the toxicokinetic differences do not vary
191 considerably within and between species. Since the study by Young et al. (1977) reported eye irritation
192 throughout the whole exposure period of 6 hours and did not report an increase of the effect with time, the
193 same exposure concentration was applied to all time points. Using a constant value for the AEGL-1 is
194 also supported by the observation of Yant et al. (1930) who reported no eye irritation, squinting and
195 lacrimation in Guinea pigs exposed to 1000 ppm for up to 6 hours, while at 2000 ppm or higher these
196 symptoms were observed within 8 minutes or less.

197 A level of distinct odor awareness (LOA) for 1,4-dioxane of 1.7 ppm was derived on the basis of
198 the odor detection threshold from the study of Hellman and Small (1974). The LOA represents the
199 concentration above which it is predicted that more than half of the exposed population will experience at
200 least a distinct odor intensity, about 10 % of the population will experience a strong odor intensity. The
201 LOA should help chemical emergency responders in assessing the public awareness of the exposure due
202 to odor perception.

203 For the AEGL-2, two independent derivations based on central nervous system effects and liver
204 effects were elaborated. The two approaches led to identical AEGL-2 values and were mutually
205 supportive. With regard to central nervous system effects, Goldberg et al. (1964) reported that exposure at
206 6000 ppm for 4 hours affected the performance of rats in an conditioned response test (pole climbing in
207 response to buzzer to avoid electrical shock), but did not affect the escape response to an electrical shock.
208 This observation was made after one as well as after repeated exposures. The exposure level of 6000 ppm
209 for 4 hours was considered a NOEL for central nervous system depression. Higher concentrations caused
210 narcosis in mice (8300 pm for 3.5 hours; Wirth and Klimmer, 1936) and guinea pigs (30,000 ppm for 1-2
211 hours; Yant et al., 1930). A total uncertainty factor of 30 was used. The interspecies factor was reduced to
212 3 because the toxicodynamic differences between species were considered limited for CNS depression
213 and because application of the default factor would have lowered the AEGL-2 values to a level that
214 humans are known to tolerate without adverse effects (Young et al., 1977). An intraspecies factor of 10
215 was applied. The other exposure duration-specific values were derived by time scaling according to the
216 dose-response regression equation $C^n * t = k$, using the default of n=3 for shorter exposure periods and

217 n=1 for longer exposure periods, due to the lack of suitable experimental data for deriving the
218 concentration exponent. Time extrapolation was continued to the 10-minute period because even at
219 considerably higher concentrations of 1600 ppm for 10 minutes (Yant et al., 1930) volunteers did not
220 experience more severe effects than moderate eye, nose and throat irritation.

221 With regard to liver effects, the study by Drew et al. (1978) reported increased the serum
222 activities of liver enzymes after a single exposure of rats at 2000 ppm for 4 hours. While the reported 2-3-
223 fold increase in liver enzymes was considered a weak, reversible liver damage because chemicals, viruses
224 or tumors can easily increase aminotransferase levels by 10- to 100-fold in rats and humans, lethal liver
225 and kidney damage occurred in rats after exposure at 5000 ppm for 2x1.5 hours/day after at few days
226 from (Fairley et al., 1934). Therefore, the level of 2000 ppm for 4 hours was considered an adequate basis
227 for AEGL-2 derivation. A total uncertainty factor of 10 was used. An interspecies uncertainty factor of 1
228 was applied because metabolism in humans and rats is very similar, involving the same metabolic steps
229 and intermediate metabolites and because application of a total uncertainty factor of 30 would reduce the
230 AEGL-2 level to an exposure concentration of 17 ppm for 8 hours and 33 ppm for 4 hours, which humans
231 are known to tolerate without adverse effect (pharmacokinetic study exposing subjects to 50 ppm for 6
232 hours; Young et al., 1977). An intraspecies factor of 10 was applied. The other exposure duration-specific
233 values were derived by time scaling according to the dose-response regression equation $C^n * t = k$, using
234 the default of n=3 for shorter exposure periods and n=1 for longer exposure periods, due to the lack of
235 suitable experimental data for deriving the concentration exponent. Time extrapolation was continued to
236 the 10-minute period because even at considerably higher concentrations of 1600 ppm for 10 minutes
237 (Yant et al., 1930) exposed subjects did not experience more severe effects than moderate eye, nose and
238 throat irritation.

239 The AEGL-3 was based on a 4-hour LC₅₀ for dioxane of 14,300 ppm in rats (Pozzani et al., 1959)
240 because this was the only acute inhalation study described in sufficient detail. This study was supported
241 by the study of Pilipyuk et al. (1977), which was reported in insufficient detail to serve as key study. For
242 extrapolation from the LC₅₀ value to the threshold for lethality, a divisor of 3 was used. This divisor was
243 considered adequate because available data indicated a very steep dose-response curve for lethality after
244 inhalation exposure (Pilipyuk et al., 1977; Yant, 1930). A total uncertainty factor of 10 was used. An
245 interspecies uncertainty factor of 1 was applied because metabolism in humans and rats is very similar,
246 involving the same metabolic steps and intermediate metabolites and because a higher uncertainty factor
247 would have resulted in AEGL-3 values of 480 ppm for 10 and 30 minutes, which contrasts with the
248 observation that exposure of human subjects to 1600 ppm for 10 minutes (Yant et al., 1930) resulted in
249 moderate irritation, but not in more severe effects. An intraspecies factor of 10 was applied. The other
250 exposure duration-specific values were derived by time scaling according to the dose-response regression
251 equation $C^n * t = k$, using the default of n=3 for shorter exposure periods and n=1 for longer exposure
252 periods, due to the lack of suitable experimental data for deriving the concentration exponent. For the
253 10-minute AEGL-3 the 30-minute value was applied because the derivation of AEGL values was based
254 on a long experimental exposure period and no supporting studies using short exposure periods were
255 available for characterizing the concentration-time-response relationship.

256 The calculated values are listed in the table below.

SUMMARY TABLE OF PROPOSED AEGL VALUES FOR 1,4-DIOXANE ^a						
Classification	10-Minute	30-Minute	1-Hour	4-Hour	8-Hour	Endpoint (Reference)
AEGL-1 (Nondisabling)	17 ppm (60 mg/m ³)	17 ppm (60 mg/m ³)	irritative effects in humans (Young et al., 1977)			
AEGL-2 (Disabling)	580 ppm (2100 mg/m ³)	400 ppm (1400 mg/m ³)	320 ppm (1200 mg/m ³)	200 ppm (720 mg/m ³)	100 ppm (360 mg/m ³)	central nervous system effects in rats (no narcosis) (Goldberg et al., 1964); liver enzyme increase in rats (no severe necrosis) (Drew et al., 1978)
AEGL-3 (Lethal)	950 ppm (3400 mg/m ³)	950 ppm (3400 mg/m ³)	760 ppm (2700 mg/m ³)	480 ppm (1700 mg/m ³)	240 ppm (860 mg/m ³)	extrapolated NOEL for acute lethality in rats (Pozzani et al., 1959; Pilipyuk et al., 1977)

^a Cutaneous absorption may occur; direct skin contact with the liquid should be avoided.

References

Drew, R.T., J.M. Patel and F.-N. Lin, 1978. Changes in serum enzymes in rats after inhalation of organic solvents singly and in combination. *Toxicology and Applied Pharmacology*, 45, 809-819.

Fairley, A., E.C. Linton and A.H. Ford-Moore, 1934. The toxicity to animals of 1,4-dioxane. *Journal of Hygiene*, 34, 486-501.

Frantik, E., M. Hornyhova and M. Horvath, 1994. Relative acute neurotoxicity of solvents: isoeffective air concentrations of 48 compounds evaluated in rats and mice. *Environmental Research*, 66, 173-185.

Goldberg, M.E., H.E. Johnson, U.C. Pozzani and H.F. Smyth, 1964. Effect of repeated inhalation of vapors of industrial solvents on animal behavior. I. Evaluation of nine solvent vapors on pole-climb performance in rats. *American Industrial Hygiene Association Journal*, 25, 369-375.

Hellman, T.M. and F.H. Small, 1974. Characterization of the odor properties of 101 petrochemicals using sensory methods. *Journal of the Air Pollution Control Association* 24, 979-982.

Pilipyuk, Z.I., G.M. Gorban, G.I. Solomin and A.I. Gorshunova, 1977. Toxicology of 1,4-dioxane [in Russian]. *Kosmicheskaja Biologija i Aviakosmicheskaya Medicina*, 11, 53-57.

280 Pozzani, U.C., C.S. Weil and C.P. Carpenter, 1959. The toxicological basis of threshold limit values. 5.
281 The experimental inhalation of vapor mixtures by rats with notes upon the relationship between single
282 dose inhalation and single dose oral data. *American Industrial Hygiene Association Journal*, 20, 364-369.

283 Wirth, W. and O. Klimmer, 1936. On the toxicology of organic solvents. 1,4-Dioxane (Diethylene
284 Dioxide). *Archiv für Gewerbeopathologie und Gewerbehygiene*, 17, 192-206.

285 Yant, W.P., H.H. Schrenk, F.A. Patty and C. P. Waite, 1930. Acute response of Guinea pigs to vapors of
286 some new commercial organic compounds - VI. Dioxane. Division of Industrial Hygiene, National
287 Institute of Health, U.S. Public Health Service, Washington, DC, U.S. Treasury Department. Reprint No.
288 1407 from Public Health Reports, No. 35, 45, 2023-2032.

289 Young, J.D., W.H. Braun, L.W. Rampus, M.B. Chenoweth and G.E. Blau, 1977. Pharmacokinetics of
290 1,4-dioxane in humans. *Journal of Toxicology and Environmental Health*, 3, 507-520.

291 Young, D.J., W.H. Braun and P.J. Gehring, 1978a. The dose-dependent fate of 1,4-dioxane in rats.
292 *Journal of Environmental Pathology and Toxicology*, 2, 263-282.

293 Young, J.D., W.H. Braun and P. J. Gehring, 1978b. Dose-dependent fate of 1,4-dioxane in rats. *Journal*
294 *of Toxicology and Environmental Health*, 4, 709-726.

295 **1. INTRODUCTION**296 1,4-Dioxane is a colorless combustible liquid with a characteristic unpleasant odor (NIOSH,
297 1977).298 There are three types of production processes for dioxane: 1) the most important synthesis is by
299 acid-catalyzed conversion of diethylene glycol (or other ethylene glycols) by ring closure in a closed
300 system; 2) catalyzed cyclo-dimerization of ethylene oxide on acid ion exchange resins via oligo-ethylene
301 sulphonates; 3) ring closure of 2-chloro-2'-hydroxyethyl ether through heating with 20 % sodium
302 hydroxide (ECB, 1999). The technical grade product is >99.9 % pure, but may contain bis(2-chloroethyl)-
303 ether as an impurity (DeRosa et al., 1996). ECB (1999) states as impurities water (<=0.1 %), 2-methyl-
304 1,3-dioxane (<=0.1 %), 2-ethyl-1,3-dioxane (<=0.03 %) and hydrogen peroxide (<=0.001 %); 2,6-tert.-
305 butyl-p-cresol is found as a stabilizing additive).306 The world-wide production capacity in 1995 was estimated at 8000-10000 metric tons with a
307 production volume in Europe of 2000-2500 metric tons per year (for 1997) (ECB, 1999) and in the US of
308 about 7500 metric tons per year (for 1977) (NIOSH, 1977).309 Dioxane has a great variety of applications. Because of its physical-chemical properties it is used
310 mainly as a processing solvent (waxes, fat, lacquers, varnishes, cleaning and detergent preparation,
311 pharmaceuticals, pesticides, adhesives, cosmetics, cellulose derivatives, magnetic tape). It is also used as
312 extraction medium for animals and vegetable oils and as a laboratory chemical (ECB, 1999).

313 Chemical and physical properties of 1,4-dioxane are listed in Table 1.

314 **TABLE 1: CHEMICAL AND PHYSICAL DATA**

315 Parameter	316 Value	317 Reference
316 Molecular formula	317 C ₄ H ₈ O ₂	IARC, 1999
317 Molecular weight	318 88.11	IARC, 1999
318 CAS Registry Number	319 123-91-1	IARC, 1999
319 Synonyms	320 diethylene-1,4-dioxide; 1,4-dioxacyclohexane; diethylene 321 ether; tetrahydro-p-dioxane	ECB, 1999
320 Physical state	321 liquid	IARC, 1999
321 Color	322 colorless	IARC, 1999
322 Density	323 1.034 g/cm ³	ECB, 1999
323 Vapor pressure	324 40 hPa at 20 °C	ECB, 1999
324 Vapor density	325 3.0 (relative to air = 1)	NICNAS, 1998
325 Melting point		IARC, 1999

326	Boiling point	101.1 °C	IARC, 1999
327	Solubility	miscible in water and most organic solvents	IARC, 1999
328	Explosive limits in air	upper, 22 %(v/v); lower, 2 %(v/v)	IARC, 1999
329	Conversion factors	1 ppm = 3.6 mg/m ³ 1 mg/m ³ = 0.278 ppm	ECB, 1999

330 **2. HUMAN TOXICITY DATA**331 **2.1. Acute Lethality**

332 A few case reports on delayed lethal effects in humans after inhalation exposure at the workplace
333 are available. No fatalities have been reported after oral or dermal contact with 1,4-dioxane. The health
334 effects of dioxane on humans are summarized in Table 2.

335 **Case Studies**

336 Barber (1934), reported on the death of 5 men, aged 29-38, exposed to dioxane in an artificial silk
337 plant in England (further described by Henry, 1933). The exposures occurred in an experimental plant
338 where two similar machines were used to treat cellulose acetate yarn with dioxane. After process
339 installation in 1932, the process in one of the two machines was altered in October 1933. The vessel
340 containing dioxane was enclosed without exhaust ventilation. Therefore, workers were exposed to
341 concentrated dioxane vapor when the enclosure was opened for manipulation of the yarn. Dioxane
342 concentrations were not reported. The exposures probably involved inhalation and dermal contact.
343 According to Barber (1934), 16 men were definitely exposed to dioxane, and 8 or 9 of these had worked
344 on the machine where the process was altered. Seven of these became ill between the 5th and 19th of
345 November, and 5 men died between the 11th and 25th of November. Signs and symptoms of poisoning
346 comprised nausea and vomiting, described as "stomach trouble" by the workers, followed after 2-3 days
347 by oliguria and anuria; no signs of jaundice were observed. Leukocytosis was present in all cases. About
348 3-7 days after the first symptoms, coma developed, followed by death. Pathological findings included
349 enlarged pale livers, swollen hemorrhagic kidneys, and edematous lungs and brains. Microscopic
350 examinations revealed centrilobular liver necrosis, almost symmetrical necrosis of the outer renal cortex
351 and hemorrhages around the glomeruli. Nothing was reported about the two workers who survived.

352 Johnstone (1959) reported the case of a worker who had placed an open container of dioxane
353 between his feet with no ventilation while using the solvent during working hours to manually remove
354 glue form a table top and also for cleaning his hands (i.e. additional dermal exposure occurred). Later
355 measurements of the atmosphere showed a dioxane concentrations between 208 and 650 ppm. After 6
356 days of work, the man (aged 21) became hospitalized with severe epigastric pain. The patient developed
357 oliguria, became comatose on the 6th day and died one day later. Upon postmortem examination, the liver
358 showed uniformly severe centrilobular necrosis and the kidneys showed cortex necrosis with extensive
359 interstitial hemorrhage. The exposure from the additional dermal contact with dioxane was not estimated
360 quantitatively.

361 **2.2. Nonlethal Toxicity**

362 Several experimental studies were performed regarding odor perception and irritative effects as
363 well as toxicokinetic properties of dioxane. Two reports investigated possible effects of occupational
364 exposure to dioxane. The health effects of dioxane on humans are summarized in Table 2.

365

2.2.1. Experimental Studies

366

Young et al. (1977) performed a pharmacokinetic study on humans. Four healthy male subjects, 40-49 years old (smoking status not reported), were exposed for 6 hours at 50 ppm. In the dynamic chamber (26.7 m³) an airflow of 3.7-4.2 m³/min was maintained throughout the exposure. Dioxane vapor was generated by pumping dioxane with a syringe pump into a glass vaporization flask heated to 90-100 °C. A nitrogen flow of 5 l/min was conducted through the flask to sweep the dioxane vapor into the chamber airstream. A circulating fan was used inside the chamber to achieve uniform distribution. Analytical monitoring of the dioxane concentration in the chamber was done using a Wilks Miran 1 infrared analyzer. The subjects received an extensive physical examination including chest X-ray, electrocardiogram, respiratory function tests, conventional blood chemistry determinations and urinalysis prior to the study. Following exposure, all tests, except for the radiograph, were repeated at 24 hours and at 2 weeks. Samples of blood and urine collected during and after the exposure were analyzed for dioxane and its metabolite, 2-hydroxy-ethoxyacetic acid, by gas chromatography and mass spectrometry. Eye irritation was a frequent complaint throughout the exposure. The perception of odor diminished with time; two of the subjects could not perceive the odor after 4 and 5 hours in the chamber, while the other two subjects could still detect the odor at the end of the exposure period. Results relating to pharmacokinetics are summarized in Section 4.1. Liver enzyme measurements were not performed after the exposure.

382

Silverman et al. (1946) studied the sensory response to industrial solvent vapors including dioxane. An average number of 12 subjects of both sexes were exposed for 15 minutes, the exact number of subjects exposed to dioxane was not given. The subjects were aware of the exposure, no control exposure to air was performed. A motion picture was shown to the subjects to divert their attention from the exposure. Air-vapor concentrations were produced in a dynamic exposure chamber by continuously adding a known quantity of air saturated with dioxane to the measured flow of air being continuously forced into the chamber. The subjects were exposed to 200 or 300 ppm technical grade dioxane. The majority of subjects exposed to dioxane at 300 ppm reported irritation to eyes, nose and throat, although they did not find the odor objectionable. The authors concluded that "... sensory tests show 200 ppm to be the highest concentration acceptable" for an 8-hour exposure; however, they did not state whether or not the exposed subjects experienced irritative effects at 200 ppm. No further details or experimental results were reported.

394

Yant et al. (1930) exposed 5 volunteers for 1 minute at 5500 ppm dioxane vapor. The subjects reported irritation to the eyes, resulting in blinking, squinting and lacrimation, and a burning sensation in nose and throat. Three of the subjects noticed a slight vertigo which disappeared quickly after ending the exposure. When the same subjects were exposed at 1600 ppm for 10 minutes, they noted an immediate slight burning of the eyes accompanied by lacrimation, slight irritation of the nose and throat and an alcohol-like odor, which decreased in intensity with continued exposure. Lacrimation and nasal irritation persisted throughout the test. No vertigo was noted. One person complained of an "upset stomach" after exposure. The specifications of the exposure chamber, the purity of dioxane and the methods of generating and measuring the dioxane atmospheres were not reported.

403

Wirth and Klimmer (1936) exposed 5 subjects (probably the authors themselves and institute coworkers) to dioxane concentrations of 0.7, 1.4, 2.8, 5.6, 8.4, 280, 1400 or 2800 ppm in a glass and stoneware exposure chamber for unspecified durations. The lower concentrations (up to 8.4 ppm) were generated by evaporating the calculated amount of dioxane from a filter paper with the aid of a fan. The

407 higher concentrations were obtained by dispersing dioxane using a compressed-air sprayer. Slight mucous
408 membrane irritation was reported at 280 ppm. At 1400 ppm, the irritation was quite distinct with slight
409 stinging in the nose and scratchiness and dryness in the throat. At 2800 ppm, irritation was initially very
410 strong and complaints of slight pressure in the chest were expressed. The subjects became accustomed to
411 the irritation and odor after a few minutes, but continued to experience an unpleasant, metallic, bitter
412 taste.

413 Fairley et al. (1934) exposed groups of 4 and 6 subjects in an exposure chamber at 1000 ppm for
414 5 minutes or 2000 ppm for 3 minutes, respectively. The concentrations were obtained by vaporizing a 1:4
415 dioxane-water mixture in a 10-m³ chamber. At 1000 ppm, a rather sickly odor was detected immediately.
416 The subjects observed a sensation of warmth in the throat and chest, which rapidly faded. One subject
417 experienced a sense of constriction in the throat. At 2000 ppm, the initial strong ethereal or spirituous
418 odor appeared to diminish rapidly during exposure. No lacrimation or desire to cough were noted.

419 The American Industrial Hygiene Association evaluated odor threshold studies and reported a
420 range of 0.8-172 ppm with a geometric mean of 12 ppm for the odor detection threshold and a range of
421 1.8-278 ppm with a geometric mean of 22 ppm for the odor recognition threshold (AIHA, 1989). In a
422 review article, Amoore and Hautala (1983) reported a geometric mean odor detection threshold of 24 ppm
423 using odor thresholds reported in the literature, but "omitting extreme points and duplicate quotations".

424 Hellman and Small (1974) reported the absolute (detection) and recognition thresholds of 101
425 petrochemicals, determined using a trained odor panel in the Union Carbide Technical Center, South
426 Charleston, WV. An odor fountain was placed about 14 inches below the vent pipe which carried the
427 odorous stream out of the exposure chamber. Details of the procedure used are not reported. The odor
428 detection threshold was 1.8 ppm. At this concentration "50 % of the odor panel observed an odor in the
429 working fountain". The odor recognition threshold was the concentration at which 50 % "of the odor
430 panel defined the odor as being representative of the odorant being studied". The odor recognition
431 threshold was 5.7 ppm.

432 May (1966) reported an odor detection threshold of 170 ppm and a recognition threshold of 270
433 ppm. In this experiment, a panel of 8 men and 8 women sniffed graded dilutions of dioxane from wide-
434 mouth flasks.

435 Wirth and Klimmer (1936), using exposure of 5 subjects (probably the authors themselves and
436 institute coworkers) to different dioxane concentrations in an exposure chamber, reported thresholds of
437 2.8 ppm for recognition and 5.6 ppm for detection.

438 2.2.2. Occupational Exposure

439 Thiess et al. (1976) published a study of 74 workers (aged 32-62) with a cumulative potential
440 exposure of 1840 man-years and an average duration of 25 years with estimated dioxane exposure
441 concentrations of 0.006-13.3 ppm. Hematological and clinical chemistry parameters were analyzed in 24
442 current workers. Six of these workers had evidence of liver toxicity, as determined by increased serum
443 aminotransferase levels (aspartate aminotransferase and alanine aminotransferase). All six workers who
444 had elevated aminotransferase levels were known to have consumed about 80 g of alcohol daily for
445 several years. When five of these men reduced their alcohol consumption, their aminotransferase levels

446 returned to normal. Company medical records were evaluated for another 23 previously dioxane-exposed
447 workers; this group was medically examined and chest radiography and blood analyses were performed.
448 Six persons showed elevated aminotransferase levels. All of these had an usual daily ethanol consumption
449 of more than 80 g. Medical records of 27 retired workers were evaluated and showed no higher incidences
450 of liver or kidney diseases. Statistical epidemiological analyses did not reveal differences between
451 observed and expected death rates and cancer incidences.

452 Another occupational study (Buffler et al., 1978) of 165 workers exposed for at least one month
453 during a 21-year interval to dioxane at average concentrations ranging between 0.1 and 17 ppm and
454 typical maximum concentrations ranging between 1.5 and 32 ppm also found no differences between
455 observed and expected incidences of cancer. Part of the workers were also exposed to vinyl chloride or
456 other, chlorinated solvents.

457 NIOSH (1977) cited written communications of two representatives (cited by NIOSH as C.U.
458 Dernehl in 1976 and R.E. Peele in 1977) from another manufacturer: air samples were taken during 1974
459 and 1975 in both production and drum filling facilities. Air samples of 50 ml were directly injected into a
460 gas chromatograph. Sampling in the breathing zone showed an average concentration of 11.36 ppm
461 (range 0.05-51 ppm, n=30). During the 42 years of dioxane production in the plant, about 80 workers
462 were thought to have been potentially exposed to dioxane. In 1976, 42 persons, who were identified as
463 having worked in the dioxane unit at some time or other, were given complete physical examinations,
464 chest X-rays, electrocardiograms and a series of liver profile tests. It was reported that abnormalities were
465 not found in any of the 42 employees. Cancer surveillance which had begun about 20 years ago, revealed
466 four deaths from malignancy (one each of colon cancer, lymphosarcoma, lung carcinoma and
467 glioblastoma) in the dioxane-exposed workers.

TABLE 2: SUMMARY OF EFFECTS IN HUMANS AFTER INHALATION OF DIOXANE

	Concentration (ppm)	Exposure Time	Study type and effects	Reference
468	unknown	workshift, several days	case report on 5 men a man who became ill with nausea and epigastric pain, developed oliguria and after a few days became comatose and died	Barber (1934)
469	5500	1 min	5 subjects; reported irritation to eyes, resulting in blinking, squinting and lacrimation, and a burning sensation in nose and throat; 3/5 subjects reported slight vertigo.	Yant et al. (1930)
470	2800	not specified	5 subjects; very strong initial irritation, slight pressure in the chest	Wirth and Klimmer (1936)
471	2000	3 min	4-6 subjects; initial strong ethereal odor, no lacrimation or cough were noted	Fairley et al. (1934)
472	1600	10 min	5 subjects; immediate burning of the eyes with lacrimation, slight nose and throat irritation, alcohol-like odor	Yant et al. (1930)
473	1400	not specified	5 subjects; distinct irritation with slight stinging in the nose and scratchiness and dryness in the throat	Wirth and Klimmer (1936)
474	1000	5 min	4-6 subjects; sickly odor detected immediately, warm sensation in the throat and chest, which faded rapidly; one subject experienced constriction in the throat	Fairley et al. (1934)
475	208-650	workshift/d, 6 d	case report of a man who was hospitalized with epigastric pain, developed oliguria, became comatose after 6 d and died one day later	Johnstone (1959)
476	300	15 min	12 subjects; irritation to eyes, nose and throat	Silverman et al. (1946)
477	280	not specified	5 subjects; slight mucous membrane irritation	Wirth and Klimmer (1936)
478	200	15 min	12 subjects; report does not state presence or absence of symptoms; authors concluded that 200 ppm was highest acceptable concentration	Silverman et al. (1946)
479	50	6 h	pharmacokinetic study on 4 men, eye irritation, odor perception, which diminished with time	Young et al. (1977)
480	22	not stated	odor recognition threshold	AIHA (1989)
481	12	not stated	odor detection threshold	AIHA (1989)

485 **2.3. Developmental/Reproductive Toxicity**486 No studies documenting developmental or reproductive effects of 1,4-dioxane in humans were
487 identified (ECB, 1999; Medline and Toxline databases searched in 2/2002; ATSDR, 2004).488 **2.4. Genotoxicity**489 In lymphocytes obtained from 6 workers employed in dioxane production and exposed to
490 unspecified concentrations for 6-15 years, no increase in chromosomal aberrations was found relative to
491 that observed in an equal number of controls (Thiess et al., 1996) (see Section 2.2.2). No other studies
492 documenting genotoxic effects of dioxane in humans were identified (IARC, 1999).493 **2.5. Carcinogenicity**494 In the cross sectional study by Thiess et al. (1976) (see Section 2.2.2) no evidence of liver or
495 kidney damage or higher incidence of cancer deaths than in the general population were observed in
496 group of 74 workers. In the study by Buffler et al. (1978) (see Section 2.2.2) no significant difference in
497 observed deaths from overall cancer in 165 employees compared to the expected numbers were found.498 **2.6. Summary**499 Volunteer studies reported odor detection thresholds between 1.8 and 170 ppm and odor
500 recognition thresholds between 5.6 and 270 ppm (Wirth and Klimmer, 1936; May, 1966; Hellman and
501 Small, 1974). AIHA (1983) reported a geometric mean odor detection threshold of 12 ppm and a
502 geometric mean odor recognition threshold of 22 ppm. Several studies reported that the initial strong
503 ethereal odor diminished rapidly during exposure (Fairley et al., 1934; Yant et al., 1930; Young et al.,
504 1977).505 Volunteers reported eye irritation during exposure at 50 ppm for 6 hours in toxicokinetic study
506 (Young et al., 1977). Subjects exposed at 300 ppm for 15 minutes experienced irritation to eyes, nose and
507 throat; they did not find the odor objectionable (Silverman et al., 1946). Wirth and Klimmer (1936)
508 reported that exposure to 280 ppm (time period not specified) led to a slight mucous membrane irritation
509 in exposed subjects, at 1400 ppm the irritation was quite distinct and at 2800 ppm subjects complained of
510 very strong initial irritation and slight pressure in the chest. Eye irritation, resulting in blinking, squinting
511 and lacrimation, and burning sensation in nose and throat developed in subjects exposed at 5500 ppm for
512 1 minute (Yant et al., 1930). Three of the subjects noticed a slight vertigo which disappeared quickly after
513 leaving the exposure. Immediate slight burning of the eyes accompanied by lacrimation and nasal
514 irritation resulted from exposure at 1600 ppm for 10 minutes. Fairley et al. (1934) reported that subjects
515 exposed at 2000 ppm for 3 minutes experienced an initial strong odor, which diminished rapidly, but no
516 strong irritation effects, such as lacrimation or cough.517 Barber (1934) described 5 fatalities after repeated exposure to unknown concentrations of
518 dioxane at the workplace. Exposure probably also comprised dermal contact. The men experienced
519 nausea and vomiting, described as "stomach trouble", followed after 2-3 days by oliguria and anuria.
520 About 3-7 days after the first symptoms, coma developed, followed by death. Microscopic examinations
521 revealed centrilobular liver necrosis, almost symmetrical necrosis of the outer renal cortex and

522 hemorrhages around the glomeruli. Johnstone (1959) reported a similar case of a man who worked near to
523 an open container of dioxane (additional dermal exposure occurred). After 6 days on work, the man
524 became hospitalized with severe epigastric pain; he developed oliguria, became comatose on the 6th day
525 and died one day later. Later measurements of the atmosphere showed a dioxane concentrations between
526 208 and 650 ppm; no quantitative estimation of the dermal exposure was performed.

527 Case control studies did not reveal evidence of genotoxic or carcinogenic effects of dioxane
528 (Thiess et al., 1996; Buffler et al., 1978; IARC, 1999).

529 **3. ANIMAL TOXICITY DATA**530 **3.1. Acute Lethality**

531 Acute inhalation toxicity tests were performed in rats, mice, Guinea pigs, rabbits and cats.
532 However, no LC₅₀ study complying with today's standards is available. The lethality data are summarized
533 in Table 6.

534 **3.1.1. Rats**

535 Pozzani et al. (1959) determined the LC₅₀ values for 24 chemical solvents and a total of 51 binary
536 to quaternary mixtures of these solvents in female Carworth Farms-Nelson rats. Exposure time was either
537 4 or 8 hours. Dioxane or other solvents and mixtures were delivered by a motor-driven syringe into a
538 heated Pyrex evaporator through which an appropriate amount of air was metered. The resultant vapors
539 were conducted into a 9-liter desiccator which served as inhalation chamber for groups of 6 rats. The LC₅₀
540 values were calculated by the method of moving averages. The 4-hour LC₅₀ for dioxane was 14,300 ppm
541 (51.3 mg/l). The number of different dioxane concentrations used was not stated. No clinical or necropsy
542 observations were reported.

543 BASF AG (1980) exposed groups of male and female Sprague-Dawley rats for 1 hour (12 rats), 3
544 hours (12 rats) or 7 hours (18 rats) at saturated dioxane vapor at 20 °C (estimated concentration 40,000
545 ppm). The postexposure observation period was 14 d. Lethality was observed in 0/12, 6/12 and 4/18 rats,
546 respectively. During exposure, animals showed escape behavior, eye and nose irritation, dyspnea,
547 unsteady gait, apathy and narcosis. At necropsy, acute heart dilatation, hemorrhagic erosions of the
548 stomach mucosa and acute lung dilatation were observed. No alterations were found in animals surviving
549 until day 14. In a similar test (BASF AG, 1973) rats were exposed for 1 hour (12 rats), 3 hours (6 rats) or
550 4 hours (6 rats) at saturated dioxane vapor at 20 °C. Mortality was observed in 0/12, 6/6 and 6/6 animals,
551 respectively. The authors did not discuss the somewhat inconsistent findings from the two studies.

552 Pilipyuk et al. (1977) reported the following values for an 4-hour inhalation exposure of white
553 rats: LC₁₆ = 11,100 ppm, LC₅₀ = 12,800 ppm and LC₈₄ = 14,500 ppm. No experimental details were
554 described.

555 ***Studies with repeated inhalation exposure***

556 Fairley et al. (1934) exposed guinea pigs, rats, mice and rabbits at 1000, 2000, 5000 or 10,000
557 ppm dioxane. Animals were exposed twice daily for 1.5 hours (total 3 hours/day) on 5 days per week and
558 one time for 1.5 hours at the 6th day; no exposure was performed on the 7th day. The total exposure time
559 was not clearly stated by the authors: at the highest exposure concentration, all animals died during the
560 first 3 days; for 5000 and 2000 ppm, the longest exposure period was about 3 weeks; for 1000 ppm
561 animals were exposed for up to about 6 weeks. Exposure was done in a 1-m³ static chamber. The dioxane
562 concentration was obtained by vaporizing the calculated quantity of a 1:4 dioxane-water mixture. The
563 authors did not mention whether the chamber air was mixed and did not perform analytical
564 measurements. The 1000-ppm vapor was obtained by heating the mixture; for the other concentrations,
565 the mixture was sprayed into the chamber. The mean temperature of the chamber was maintained at 27 °C
566 to prevent condensation. At 10,000 ppm, all animals noticed the presence of something unusual at once,
567 and rapidly displayed evidence of slight lacrimation. In all cases breathing was slightly distressed and this

568 was more marked in the rats compared to other species. On opening the chamber after the first 1.5-hour
569 exposure, all animals seemed drowsy, but recovered rapidly. At the two lowest concentrations, authors
570 noted signs of slight discomfort in the animals; rabbits took up their characteristic defense attitude, but
571 this and other symptoms tended to lessen in the latter part of the several exposures.

572 In experiments with rats, 1/3 rats died after 2 exposures for 1.5 hours on the same day at 10,000
573 ppm; the other two rats died after the 2nd exposure day. At 5000 ppm, rats died after several exposure
574 days. At 10,000 ppm, rats died of pulmonary lesions, which varied from an acute vascular congestion to
575 an advanced infiltration of red blood cells. Evidence of serious kidney damage included patchy cell
576 degeneration of the cortical tubules, vascular congestion and inter- and intratubular hemorrhages. The
577 liver showed cell degeneration that varied from cloudy swelling to large areas of complete necrosis. At
578 lower exposure concentrations, no lung damage from dioxane exposure was found and the main necropsy
579 findings consisted of kidney and liver lesions.

580 ***Studies with non-inhalation exposure***

581 Pozzani et al. (1959) determined the oral LD₅₀ values for 24 chemical solvents and a total of 51
582 binary to quaternary mixtures of these solvents in female Carworth Farms-Nelson rats. Chemicals were
583 applied undiluted by gavage to groups of 6 rats. The number of different dioxane concentrations used was
584 not stated. The LD₅₀ for dioxane was 6370 mg/kg (6.16 ml/kg). No clinical or necropsy observations were
585 reported.

586 Other authors reported oral LD₅₀ values in rats of about 5170 mg/kg (30 % aqueous solution;
587 BASF, 1973), 5345 mg/kg (not stated if administered pure or as solution; Laug et al., 1939), about 6200
588 mg/kg (not stated if administered pure or as solution; Nelson, 1951), 6500 mg/kg (not stated if
589 administered pure or as solution; BASF, 1958) and 7339 mg/kg (aqueous solution of unstated
590 concentration; Smyth et al., 1939). Argus et al. (1973) reported a LD₅₀ of 5.60±0.06 ml/kg (5790±62
591 mg/kg) in Sprague-Dawley rats after intraperitoneal injection of phenol in saline.

592 ***Studies with repeated non-inhalation exposure***

593 David (1964) exposed 50 white rats of an unspecified strain to drinking water containing 5 %
594 dioxane for 1-10 days (corresponding to about 4150 mg/kg/d). Thirty five rats died during exposure. No
595 details were reported on which days animals died; no necropsy was performed. Microscopic examination
596 of kidneys from rats sacrificed after 3 days showed swollen epithelial cells in the proximal section of the
597 nephron. Vesicular degeneration of tubular epithelium was first observed at day 5 and became more
598 severe at day 7 or later. An accumulation of intracellular hyaline droplets was observed by electron
599 microscopy. Subsequent changes were noted in the tubular epithelium followed by degeneration and
600 ultimately resulting in necrosis.

601 **3.1.2. Mice**

602 Wirth and Klimmer (1936) exposed mice of an unspecified, white strain to two grades of dioxane
603 by inhalation. One grade was a very pure product that contained 99.8 % dioxane with 0.2 % water and
604 was completely free of aldehydes and other impurities. The other, a technical dioxane grade of 96.4 %
605 purity, contained 1.5 % aldehyde and acetal, 2.1 % water and trace amounts of alcohol and acids.
606 Experiments were carried out in static 32-liter anesthesia flasks with both grades at concentrations
607 ranging from 1400 ppm for about 8.3 hours to 39,000 ppm for approx. 1 h. Eye irritation was observed at

608 all concentrations. Concentrations, exposure time and effects are summarized in Table 3. No difference
 609 between the two grades of dioxane was found. There was a considerable interindividual variation in the
 610 time until death.

611
 612 **TABLE 3: EFFECTS IN MICE AFTER ACUTE INHALATION EXPOSURE,**
 613 **adopted from Wirth and Klimmer (1936)**

Concentration (ppm)	Exposure duration (min) to a) pure / b) technical dioxane	Number of animals exposed to pure/ technical dioxane	Exposure time (min) until onset of symptom for pure / technical dioxane			Time until death after end of exposure (h)
			loss of equilibrium	prostration	narcosis	
39000	55	2	21, 25	32, 40	55, 55	6.5, 67
	56	2	26, 29	39, 41	56, n.o. ¹	20, 51
28000	100	2	45, 48	55, 85	n.o., n.o.	9.25, n.o.
	100	2	52, 53	60, 65	100, n.o.	100, n.o.
25000	94	2	47, 47	66, 66	n.o., n.o.	15, 17
	95	2	45, 45	55, 65	85, 95	8, 15
17000	115	2	45, 53	68, 70	115, 115	3.3, 7.3
	115	2	53, 53	80, 85	n.o., n.o.	192, 192
12500	155	2	60, 75	90, 110	150, n.o.	49, 49
	158	2	83, 84	138, 138	153, n.o.	26, 48
8300	212	1	90	110	135	0.2
	212	1	120	117	153	43
2800	575	2	405, 420	n.o., n.o.	n.o., n.o.	n.o., n.o.
	578	2	420, 420	540, 540	n.o., n.o.	n.d.
2800	480	2	295, 295	n.o., n.o.	n.o., n.o.	n.o., n.o.
	n.d. ²	n.d.	n.d.	n.d.	n.d.	n.o., n.o.
2100	480	2	360, 420	445, n.o.	n.o., n.o.	0.3, n.o.
	480	2	420, 455	n.o., n.o.	n.o., n.o.	21.5, n.o.
1400	500	2	n.o., n.o.	n.o., n.o.	n.o., n.o.	n.o., n.o.
	500	2	n.o., n.o.	n.o., n.o.	n.o., n.o.	n.o., n.o.

625 ¹ n.o., not observed

626 ² n.d., not done

627 Pilipyuk et al. (1977) reported the following values for a 2-hour inhalation exposure of white
 628 mice: LC₁₆ = 17,000 ppm, LC₅₀ = 18,000 ppm and LC₈₄ = 19,300 ppm. No experimental details were
 629 described.

630 Izmerov et al. (1982) reported an LC₅₀ of 10,109 ppm for 2 hours in mice. No experimental
631 details were reported.

632 ***Studies with repeated inhalation exposure***

633 In the study by Fairley et al. (1934) (described in Section 3.1.1) 3/3 mice died after 2 exposures
634 for 1.5 hours on the same day at 10,000 ppm. At 5000 ppm, 1/3 mice died after the first exposure day and
635 the other animals died after several exposures. At 10,000 ppm there appeared to be some degree of lung
636 edema. Evidence of serious kidney damage included patchy cell degeneration of the cortical tubules,
637 vascular congestion and inter- and intratubular hemorrhages. The liver showed cell degeneration that
638 varied from cloudy swelling to large areas of complete necrosis. At lower exposure concentrations, no
639 lung damage from dioxane exposure was found and the main necropsy findings consisted of kidney and
640 liver lesions.

641 ***Studies with non-inhalation exposure***

642 Laug et al. (1939) reported an oral LD₅₀ of 5850 mg/kg in mice.

643 **3.1.3. Guinea Pigs**

644 Yant et al. (1930) exposed an unspecified number of guinea pigs to dioxane concentrations of
645 1000, 2000, 3000, 10,000 or 30,000 ppm and observed the duration of exposure in minutes to up to a
646 maximum of 8 hours required to produce nasal irritation, eye irritation, retching movements, changes in
647 respiration and narcosis. The composition of the dioxane-air mixture was calculated from the quantity of
648 liquid dioxane vaporized and the air volume in or flowing through the exposure chamber. The chamber
649 concentration was checked by sorption of the vapor from a measured volume by activated charcoal and
650 determination of the weight gain (authors made no statement how measured concentrations compared to
651 target values). Animals exposed at 30,000 ppm for 3 hours developed a state of marked narcosis during
652 exposure and died within 2 days. No narcosis was seen after exposure at 10,000 ppm or lower for up to 8
653 hours. Congestion of the lungs, hyperemia of the surface of the brain and paleness of the liver were seen
654 in guinea pigs that were killed immediately after the exposure at 30,000 ppm for 30 minutes. Nonlethal
655 effects are summarized in Section 3.2.3.

656 ***Studies with repeated inhalation exposure***

657 Lethal effects reported in the study by Fairley et al. (1934) (described in Section 3.1.1) are
658 summarized in Table 4. Necropsy of the kidneys showed cortical lesions ranging from patchy swelling to
659 complete necrosis as the dioxane concentration increased. Hemorrhages and vascular congestion were
660 also observed. At 10,000 ppm, the lungs showed pulmonary lesions that varied from an acute vascular
661 congestion to an advanced infiltration of red blood cells and these pulmonary lesions were the cause of
662 death in these animals. The livers showed changes ranging from vascular congestion to cellular
663 degeneration as the concentration increased. At lower exposure concentrations, no lung damage from
664 dioxane exposure was found and the main necropsy findings consisted of kidney and liver lesions.

665
666

**TABLE 4: EFFECTS AFTER REPEATED INHALATION EXPOSURE OF RATS, MICE, GUINEA
667 PIGS AND RABBITS, adopted from Fairley et al. (1934)**

667 668 Concentration (ppm)	669 670 671 Species; total number of animals	672 673 674 675 676 677 678 679 680 681 682 683 Individual total exposure hours	684 685 686 Effect or procedure
10,000	guinea pig; 6	3, 3, 3, 4.5, 4.5, 7.5	died
10,000	rat; 3	3, 4.5, 7.5	died
10,000	mouse; 3	3, 3, 3	died
5000	guinea pig; 6	7.5, 21, 43.5, 94.5, 94.5, 94.5	first two animals removed due to pregnancy (outcome was stillbirth); only one animal died on exposure day 15
5000	rat; 3	9, 13.5, 15	died
5000	mouse; 3	3, 22.5, 51	died
5000	rabbit; 4	16.5, 49.5, 49.5, 49.5	were killed at termination (no explanation for earlier killing time)
2000	guinea pig; 4	48, 102, 102, 102	were killed at termination (no explanation for earlier killing time)
2000	rat; 6	48, 102, 102, 102, 102, 102	were killed at termination (no explanation for earlier killing times)
2000	mouse; 5	102, 102, 102, 102, 102	were killed at termination
2000	rabbit; 4	45, 69, 99, 99	the 2 nd animal died; others were killed (no explanation for earlier killing times)
1000	guinea pig; 3	106.5, 147, 202.5	were killed at termination (no explanation for earlier killing times)
1000	rat; 3	78, 147, 202.5	were killed at termination (no explanation for earlier killing times)
1000	mouse; 4	12, 106.5, 147, 202.5	were killed at termination (no explanation for earlier killing times)
1000	rabbit; 2	144, 196.5	were killed at termination (no explanation for earlier killing time)

684
685
686

Studies with non-inhalation exposure

687 Oral LD₅₀ values of 4000 mg/kg (not stated if administered pure or as solution; Laug et al., 1939)
688 and 3256 mg/kg (aqueous solution of unstated concentration; Smyth et al., 1941) have been reported.

687

3.1.4. Rabbits

688

Studies with repeated inhalation exposure

689

In the study by Fairley et al. (1934) (described in Section 3.1.1), no deaths occurred after several exposures at 5000 ppm for 2x1.5 hours/day. No rabbits were exposed at 10,000 ppm. After killing, animals exposed at 5000 ppm showed serious kidney damage with patchy cell degeneration of the cortical tubules, vascular congestion and inter- and intratubular hemorrhages. The liver showed cell degeneration that varied from cloudy swelling to large areas of complete necrosis. At 2000 or 1000 ppm, the main necropsy findings consisted of kidney and liver lesions.

695

Studies with non-inhalation exposure

696

Oral LD₅₀ values of about 2100 mg/kg (not stated if administered pure or as solution; Nelson, 1951) and 6500 mg/kg (not stated if administered pure or as solution; Knoefel, 1935) have been reported. De Navasquez (1935) reported minimal lethal doses of 2100 mg/kg for the oral route (groups of 5 rabbits, 1:10 dilution in water, gavage application) and 1600 mg/kg for the intravenous route (groups of 5 rabbits, 1:4 dilution in water).

701

3.1.5. Other Species

702

Wirth and Klimmer (1936) exposed groups of 2 cats at 1200 ppm for 430 minutes, 1800 ppm for 258 minutes, 2400 ppm for 240 minutes or 3100 ppm for 182 minutes using to two grades of dioxane (see Section 3.1.2). Marked irritation with salivation and lacrimation was observed at all concentrations. Concentrations, exposure time and effects are summarized in Table 5. Necropsy findings were fatty livers and inflamed respiratory organs and lung edema; no kidney lesions were reported.

707

The authors also exposed three male cats at an average of 1400 ppm for about 6.5 hours/day for 14 d. From the 4th day to the end of the experiment, the cats seemed sleepy during exposure. Retching and vomiting were observed occasionally. None of the animals died.

TABLE 5: EFFECTS IN CATS AFTER SINGLE INHALATION EXPOSURE, adopted from Wirth and Klimmer (1936)					
Concentration (ppm)	Exposure duration (min) to a) pure / b) technical dioxane	Number of animals (sex) exposed	Exposure time (min) until onset of symptom for pure / technical dioxane		Lethality after end of exposure (h)
			loss of equilibrium	prostration	
3100	a) 182 b) 180	a) 2 (m) b) 2 (m, f)	a) 74, 94 b) 55, 70	a) 105, 125 b) 180, 180	a) n.o. ¹ , 0.03 b) 35, 8
2400	a) 240 b) 245	a) 2 (m f) b) 2 (f)	a) 173, 165 b) 125, 150	a) 215, 215 b) 245, 240	a) 50, 39 b) 96, 96
1800	a) 258 b) 258	a) 2 (f) b) 2 (m)	a) 150, 150 b) 180, 200	a) 250, n.o. b) n.o., 240	a) 96, 120 b) 120, 120
1200	a) 430 b) 430	a) 2 (f) b) 2 (m)	a) 270, 270 b) n.o., n.o.	a) n.o., n.o. b) n.o., n.o.	a) 96, 240 b) n.o., n.o.

¹ n.o., not observed

Gross (1943) reported that 21/28 animals (mice, rats, guinea pigs and rabbits) died from an 8-hour exposure at 4000-11,000 ppm and 4/10 animals died after exposure at 37,500 ppm for 3 hours.

TABLE 6: SUMMARY OF ACUTE LETHAL INHALATION DATA IN LABORATORY ANIMALS				
Species	Concentration (ppm)	Exposure Time	Effect	Reference
rat	saturated vapor (estimated 40,000)	7 h	death in 4/18 animals	BASF AG (1980)
rat	saturated vapor (estimated 40,000)	4 h	death in 6/6 animals	BASF AG (1973)
rat	saturated vapor (estimated 40,000)	3 h	death in 6/6 animals	BASF AG (1973)
rat	saturated vapor (estimated 40,000)	3 h	death in 6/12 animals	BASF AG (1980)
rat	saturated vapor (estimated 40,000)	1 h	no deaths in 12 animals	BASF AG (1980)
rat	saturated vapor (estimated 40,000)	1 h	no deaths in 12 animals	BASF AG (1973)

	Species	Concentration (ppm)	Exposure Time	Effect	Reference
729	rat	14,300	4 h	LC ₅₀	Pozzani et al. (1959)
730	rat	12,800	4 h	LC ₅₀	Pilipyuk et al. (1977)
731	rat	10,000	2 * 1.5 h /d (same day)	death of 1/3 rats on first day, other animals died on subsequent exposures	Fairley et al. (1934)
732	rat	5000	2 * 1.5 h /d (same day)	no deaths on first day, but all animals died on subsequent exposures	Fairley et al. (1934)
733	mouse	39,000	1 h	4/4 animals died	Wirth and Klimmer (1936)
734	mouse	28,000	1 h	2/4 animals died	Wirth and Klimmer (1936)
735	mouse	25,000	1 h	4/4 animals died	Wirth and Klimmer (1936)
736	mouse	18,000	2 h	LC ₅₀	Pilipyuk et al. (1977)
737	mouse	17,000	1 h	4/4 animals died	Wirth and Klimmer (1936)
738	mouse	12,500	1 h	4/4 animals died	Wirth and Klimmer (1936)
739	mouse	10,109	2 h	LC ₅₀	Izmerov et al. (1982)
740	mouse	10,000	2 * 1.5 h /d (same day)	death of 3/3 animals on first exposure day	Fairley et al. (1934)
741	mouse	8300	1 h	2/2 animals died	Wirth and Klimmer (1936)
742	mouse	5000	2 * 1.5 h/d (same day)	death of 1/3 animals on first day, other animals died on subsequent exposures	Fairley et al. (1934)
743	mouse	2800	1 h	no deaths in 6 animals	Wirth and Klimmer (1936)
744	guinea pig	30,000	3 h	death of exposed animals (number not stated)	Yant et al. (1930)
745	guinea pig	10,000	2 * 1.5 h /d (same day)	no deaths on first day, but death of 6/6 animals on subsequent exposures	Fairley et al. (1934)

Species	Concentration (ppm)	Exposure Time	Effect	Reference
746 cat	3100	182 min	4/4 animals died	Wirth and Klimmer (1936)
747 cat	2400	245 min	4/4 animals died	Wirth and Klimmer (1936)
748 cat	1800	258 min	4/4 animals died	Wirth and Klimmer (1936)
749 cat	1200	430 min	2/4 animals died	Wirth and Klimmer (1936)

751 3.2. Nonlethal Toxicity

752 Experimental data are available for effects of inhalation exposure to dioxane on the central and
 753 peripheral nervous system, on liver cytotoxicity and on irritative effects. These data are summarized in
 754 Table 8.

755 3.2.1. Rats

756 Goldberg et al. (1964) (experimental system described in Goldberg et al., 1962) studied the effect
 757 of dioxane exposure on conditioned pole-climbing avoidance response to a buzzer and an unconditioned
 758 escape response to a buzzer and an electrical shock. Behavioral experiments were performed in a 1x1x2
 759 foot plastic chamber with a stainless steel grid floor. A wooden pole with a rough surface is attached to
 760 the top of the chamber and serves as a safety or escape area. During the training phase which started at
 761 30-40 days of age, female Carworth Farms Elias rats were placed in the chamber for 15 seconds with no
 762 stimulus. A series of shocks (100 V pulses of 20 ms, 10 pulses/s) was delivered to the floor for 30
 763 seconds concurrent with the activation of a buzzer. After several exposures to these associated stimuli, the
 764 rats learned that the pole is the safety area. If a rat successfully climbed the pole, the stimuli were
 765 immediately terminated. When the animal consistently manifests the proper escape, the stimuli are
 766 dissociated and the rat climbs the pole in response to the buzzer alone (conditioned stimulus). An
 767 avoidance-escape conditioned response is considered to have developed. The response to the shock and
 768 the buzzer is considered an unconditioned response. After many more exposures to the situation, the rats
 769 learned to climb the pole when it was first accessible, in the absence of the above stimuli. Positive
 770 response during the environmental adjustment period is considered to be a secondary conditioned
 771 response. Rats were trained to respond consistently to the above procedures and develop a secondary
 772 conditioned response of less than 12 seconds, with conditioned response and unconditioned response of
 773 less than 2 seconds. With suitable training, about 90 % of all animals manifest these requirements.
 774 Trained rats were randomized and divided into groups.

775 The testing procedure comprised the following: the rat was placed in the testing chamber for 15
 776 seconds. When the animal climbed the pole (secondary conditioned response), it was placed back on the
 777 grid and the buzzer was activated. An additional successful climb (conditioned response) was followed by
 778 again placing the animal on the floor, this time the unconditioned stimuli (buzzer and shock) were used

779 and response time measured. Effect measurement was done on a quantal basis, i.e., the percentage of rats
780 which showed an inhibition of the conditioned response. The authors considered an effect of dioxane to
781 be evident by abolishment of the secondary conditioned response and an abolishment or prolongation of
782 the conditioned response and/or unconditioned response time of greater than 6 seconds, with 15 seconds
783 as the maximum period during which each stimulus was applied. Testing for the unconditioned response
784 (electrical shock) was only done if an animal manifested a blockage or significant prolongation of the
785 conditioned response.

786 Eight to 10 rats were used in both control and experimental groups with different chemicals,
787 including dioxane at 1500, 3000 or 6000 ppm. Rats were exposed 4 hours/day, 5 days/week for 2 weeks.
788 Rats were exposed in a dynamic 200-l exposure chamber at an airflow of approximately 95 l/min. Vapors
789 were generated by flowing the dioxane, pumped by a motor-driven syringe assembly, down a vertical,
790 electrically-heated, spiral Pyrex tube connected to the air inlet of the chamber. Air flows were adjusted so
791 that the actual vapor concentrations as determined with a Zeiss interferometer were within $\pm 10\%$ of the
792 nominal concentrations.

793 Responses were determined on days 1, 2, 3, 4, 5 and 10 before, during and 2 hours after removal
794 from exposure. At 1500 ppm, only one rat was affected and its responses were not consistent from day to
795 day. At 3000 ppm, the avoidance reaction (conditioned response) was delayed in 2/8 rats after the first
796 and in 2-3/8 rats after the subsequent exposures. At 6000 ppm, about 6/8 rats showed a delay of the
797 avoidance response (conditioned response) after the 1st exposure, and 3-8/8 rats were affected in the
798 subsequent exposures. No effects were found on escape response (unconditioned stimulus) after the first
799 exposure; an effect was found in 3/8 animals after the 2nd exposure to 6000 ppm, but not in the subsequent
800 exposures (for any of the exposure conditions). Results on the secondary conditioned response were not
801 reported. At the end of the two weeks, growth rate was significantly reduced in the 6000-ppm group
802 compared to controls.

803 Drew et al. (1978) exposed male CD1 rats for 4 hours to 1000 or 2000 ppm dioxane or other
804 organic solvents. The serum enzymes aspartate aminotransferase (glutamate oxalacetate transaminase),
805 alanine aminotransferase (glutamate pyruvate transaminase), glucose-6-phosphatase and ornithine
806 carbamyl transferase were measured prior to exposure, immediately after exposure and 24 and 48 hours
807 after exposure. No effect on glucose-6-phosphatase was found. The activities of ornithine carbamyl
808 transferase and aspartate aminotransferase were dose-dependently increased (about 2-3-fold) at 24 and 48
809 hours; the activity of alanine aminotransferase was about 2-fold increased at 2000 ppm for 24 or 48 hours
810 while it was only marginally increased at 1000 ppm.

811 Frantik et al. (1994) studied the inhibition of propagation and maintenance of the electrically
812 evoked seizure discharge in rats and mice. Effect-air concentration regressions were determined for 48
813 common solvents using 4-hour exposures in Wistar rats. The exact exposure concentrations were not
814 stated. Dynamic 80-liter glass chambers were used for exposure. The authors stated that 16 rats, 4
815 controls exposed to ambient air and 4 in each concentration group were exposed and measured in one trial
816 and that at least two such trials were performed with each compound. A short electrical impulse was
817 applied through ear electrodes. Of six different time characteristics recorded, the duration of tonic
818 extension of hindlimbs in rats and the velocity of tonic extension in mice were the most sensitive and
819 reproducible response measures. The median of individual control values was subtracted from the values
820 observed after exposure. Group means of differences were corrected for the difference in the

821 simultaneously tested control group and converted to relative values, i.e., to percentage of the arbitrary
 822 maximum values, which for rats were 8 seconds and for mice 0.5 per second. All data were processed
 823 using linear regression analysis. The estimate of concentration in air evoking 37 % of the maximum
 824 possible effect (shortening of the duration of tonic extension of hindlimbs) was 1860 ppm (one-sided 90
 825 % confidence interval 200 ppm). The slope of the regression was 0.041 %/ppm. The authors suggested
 826 the EC₁₀ as a threshold because the lowest effect level which could be proven statistically in most solvents
 827 was about 10 %. For dioxane, the EC₁₀ can be calculated as:

$$828 \quad EC_{10, \text{rat, 4h}} = 1860 \text{ ppm} - 27 \% / 0.041 \% / \text{ppm} = 1200 \text{ ppm}$$

829 3.2.2. Mice

830 Frantik et al. (1994) studied the inhibition of propagation and maintenance of the electrically
 831 evoked seizure discharge in rats and H-strain mice (see Section 3.2.1 for description). Effect-air
 832 concentration regressions were determined for 48 common solvents using 2-hour exposures in mice. The
 833 exact exposure concentrations were not stated. The authors stated that 32 mice, 8 controls exposed to
 834 ambient air and 8 in each concentration group were exposed and measured in one trial and that at least
 835 two such trials were performed with each compound. A short electrical impulse was applied through ear
 836 electrodes. The estimate of concentration in air evoking 30 % of the maximum possible effect (reduction
 837 of the velocity of tonic extension in the hindlimbs was the most sensitive effect) in mice was 2400 ppm
 838 (one-sided 90 % confidence interval 420 ppm). The slope of the regression was 0.011 %/ppm. The
 839 authors suggested the EC₁₀ as a threshold because the lowest effect level which could be proven
 840 statistically in most solvents was about 10 %. For dioxane, the EC₁₀ can be calculated as:

$$841 \quad EC_{10, \text{mouse, 2h}} = 2400 \text{ ppm} - 20 \% / 0.011 \% / \text{ppm} = 580 \text{ ppm}$$

842 3.2.3. Guinea pigs

843 Yant et al. (1930) (see study description in Section 3.1.3) exposed an unspecified number of
 844 guinea pigs at 1000, 2000, 3000, 10,000 or 30,000 ppm and observed the duration of exposure in minutes
 845 to up to a maximum of 8 hours required to produce nasal irritation, eye irritation, retching movements,
 846 changes in respiration and narcosis. The results are summarized in Table 7.

847 **TABLE 7: NONLETHAL EFFECTS IN GUINEA PIGS FROM THE STUDY OF YANT et al. (1930)**

	Exposure time (min) until onset of symptoms at different concentrations				
Type of symptom	30,000 ppm	10,000 ppm	3000 ppm	2000 ppm	1000 ppm
Nasal irritation, scratching at nose	immediate onset, intensity increased with increasing concentration				
Eye irritation, squinting, lacrimation	immediate onset, intensity increased with increasing concentration		8 min	5 min	no symptoms (480 min)

		Exposure time (min) until onset of symptoms at different concentrations				
Type of symptom		30,000 ppm	10,000 ppm	3000 ppm	2000 ppm	1000 ppm
851	Retching movements or marked expiratory effort, spasmodic contraction of abdominal wall, head lifted, mouth open	2-10	19-27	not observed until 480		
852	Dyspnea	45-116 min	no symptoms (480 min)			
853	Shallow, rapid respiration	75-123 min	no symptoms (480 min)			
854	Gasping respiration	116 min	no symptoms (480 min)			
855	Shallow, slow respiration	508-540 min	no symptoms (480 min)			
856	Narcosis - fall to sides, remain quiet	87-141 min	no symptoms (480 min)			
857						
858						

TABLE 8: SUMMARY OF NON-LETHAL EFFECTS IN LABORATORY ANIMALS

Species	Concentration (ppm)	Exposure Time	Effect	Reference	
860	rat	6000	4 h/d, 5 d/w, 2 w	6/8 rats showed an inhibition of a conditioned response after the first exposure; an effect on the unconditioned escape response was only found after the second exposure; growth rate was significantly reduced after 2 w	Goldberg et al., 1964
861	rat	3000	4 h/d, 5 d/w, 2 w	2/8 rats showed an inhibition of a conditioned response after the first exposure; no effect on unconditioned escape response and growth rate	Goldberg et al., 1964
862	rat	2000	4 h	increased serum activity of ornithine carbamyl transferase, aspartate aminotransferase and alanine aminotransferase at 24 and 48 h	Drew et al., 1978
863	rat	1500	4 h/d, 5 d/w, 2 w	no inhibition of a conditioned response after the first exposure	Goldberg et al., 1964
864	rat	1200	4 h	threshold for shortening of the duration of tonic extension of hindlimbs	Frantik et al., 1994
865	rat	1000	4 h	increased serum activity of ornithine carbamyl transferase and aspartate aminotransferase at 24 and 48 h	Drew et al., 1978
866	mouse	580	2 h	threshold for reduction of the velocity of tonic extension in the hindlimbs	Frantik et al., 1994
867					

Species	Concentration (ppm)	Exposure Time	Effect	Reference
Guinea pig	30,000	variable	immediate nasal irritation, nose scratching, eye irritation, squinting, lacrimation; respiratory distress after 2-10 min; dyspnea after 45-116 min; narcosis after 87-141 min; gasping respiration after 116 min; shallow, slow respiration after 508-540 min	Yant et al., 1930
Guinea pig	10,000	variable	immediate nasal irritation, nose scratching, eye irritation, squinting, lacrimation; respiratory distress after 19-27 min; no additional effects	Yant et al., 1930
Guinea pig	3000	variable	immediate nasal irritation, nose scratching; eye irritation, squinting, lacrimation after 8 min; no other effects	Yant et al., 1930
Guinea pig	2000	variable	immediate nasal irritation, nose scratching; eye irritation, squinting, lacrimation after 5 min; no other effects	Yant et al., 1930
Guinea pig	1000	variable	immediate nasal irritation, nose scratching; no eye irritation; no other effects	Yant et al., 1930

3.3. Developmental/Reproductive Toxicity

No studies documenting developmental or reproductive effects of 1,4-dioxane after inhalation exposure were identified (ECB, 1999; Medline and Toxline databases searched in 2/2002; ATSDR, 2004).

Studies with non-inhalation exposure

Giavini et al. (1985) exposed groups of 17-20 pregnant Sprague-Dawley rats by gavage to 0, 0.25, 0.5 or 1.0 ml dioxane/kg b.w. in water during gestational days 6-15 (corresponding to 0.26, 0.52 and 1.03 mg/kg/day). The animals were killed on gestational day 21. At the highest dose, females showed a slightly smaller weight gain during treatment, which continued during the rest of gestation. Food consumption in these females was decreased during treatment. The average weight of live fetuses at the highest dose was significantly less than controls. Number of implantations and number of fetuses alive was slightly decreased and preimplantation loss was slightly increased at 1.03 mg/kg/d. At this dose also a delay of sternum ossification was found. There was no indication for teratogenicity. The NOEL for maternal and embryotoxicity was established at 0.52 mg/kg/day.

3.4. Genotoxicity

A large number of genotoxicity tests have been done and these are reviewed in ATSDR, 2004; ECB (1999), IARC (1999), DeRosa et al. (1996), ECETOC (1983) and NIOSH (1977). All mutation tests carried out in *Salmonella typhimurium* were negative both with and without metabolic activation (Morita and Hayashi, 1998; Nestmann et al., 1984; Haworth et al., 1983; Stott et al., 1981; BASF, 1979a; 1979b; 1979c). A HGPRT gene mutation assay in Chinese hamster ovary (CHO) cells (BASF, 1991) as well as a

898 TK gene mutation assay in mouse lymphoma L5178 tk+/- cells (Morita and Hayashi, 1998) gave negative
899 results with and without metabolic activation. Also negative results were observed in a test for
900 chromosomal aberrations in CHO cells both with and without metabolic activation (Morita and Hayashi,
901 1998; Galloway et al., 1987) and an in vitro micronucleus assay in CHO cells (Morita and Hayashi,
902 1998). Tests for sister chromatid exchanges in CHO cells were positive without metabolic activation but
903 negative with metabolic activation in one study (Galloway et al., 1987) and negative with and without
904 activation in another study (Morita and Hayashi, 1998). Dioxane was negative in an UDS test using
905 primary isolated rat hepatocytes (Goldsworthy et al., 1991). A cell transformation test with Balb 3T3 cells
906 without metabolic activation was positive (Sheu et al., 1988).

907 Several in vivo micronucleus tests were performed. In C57BL/6 mice, oral administration of
908 dioxane resulted in both positive (Mirkova, 1994) and negative (Tinwell and Ashby, 1994) results in bone
909 marrow cells. Negative results in bone marrow cells were obtained after oral administration in BALB/c
910 (Mirkova, 1994) and CBA (Tinwell and Ashby, 1994) mice as well as after intraperitoneal injection in
911 B6C3F₁ mice (McFee et al., 1994). Negative results were also reported for peripheral blood reticulocytes
912 after oral administration or intraperitoneal injection in CD-1 mice (Morita and Hayashi, 1998; Morita,
913 1994). However, statistically significant dose-dependent increases in micronucleated hepatocyte
914 frequency was observed in male CD-1 mouse liver after single oral treatment at 2000 mg/kg or more
915 (Morita and Hayashi, 1998).

916 In a study by Goldsworthy et al. (1991) neither a single 1000 mg/kg administration nor treatment
917 with 1 % dioxane in drinking water for 2 weeks or with 2 % for 1 week resulted in unscheduled DNA
918 synthesis in primary rat hepatocytes. Negative results for unscheduled DNA synthesis were also found in
919 rat nasal respiratory epithelial cells after treatment with 1 % in drinking water for 8 days or after the same
920 treatment plus an additional gavage dose of up to 1000 mg/kg. Kitchin and Brown (1990; 1994) reported
921 that dioxane induced significant single strand breaks in rat liver DNA in the alkaline elution test after a
922 gavage dose of 2550 mg/kg, but not at 840 mg/kg. Sina et al. (1983) reported DNA single strand breaks in
923 an alkaline elution test in vitro when rat hepatocytes were exposed at cytotoxic dioxane concentrations
924 (Sina et al., 1983).

925 3.5. Carcinogenicity

926 *Studies with repeated inhalation exposure*

927 Torkelson et al. (1974) exposed 288 male and 288 female Wistar rats at 111 ppm dioxane for 7
928 hours/day, 5 days/week for a total of 2 years. Control groups of 192 rats/sex were used. Dioxane
929 concentration in the exposure chamber was measured by infrared spectrometric analysis. The authors
930 stated that no adverse effects were noted with respect to appearance, eye and nasal irritation, respiratory
931 distress, demeanor, growth, mortality, hematological and clinical chemistry studies, organ weights or
932 gross and microscopic pathological examination. Upon gross and microscopic examination, no dioxane
933 characteristic nasal and liver tumors, as observed after oral administration, were seen. It is however not
934 clear from the text whether or not the nasal cavity was adequately examined. The incidence of tumors
935 observed in other organs and tissues appeared to be unrelated to exposure. The only difference from the
936 controls was an increase in lymphoreticular cell sarcomas in males (18 % (37/206) vs. 12 % (18/150)) and
937 in mammary gland adenomas in females (13 % (29/271) vs. 8 % (11/139)), which were not statistically
938 significant.

939 Studies with non-inhalation exposure

940 Kociba et al. (1974) exposed groups of 60 male and 60 female Sherman rats to drinking water
941 containing 0, 0.01, 0.1 or 1 % dioxane for 716 days. The corresponding body doses for males/females
942 were 0, 9.6/19, 94/148 and 1015/1599 mg/kg/day. The high dose group showed reduced body weights
943 throughout the study and increased mortality during the first 4 months. Tumor incidences, combined for
944 both sexes, were 1/106, 0/110, 1/106 and 10/66, respectively, for hepatocellular carcinomas and 0/106,
945 0/110, 0/106 and 3/66 for nasal carcinomas. The increased incidences in the high dose group were
946 statistically significant compared to the control group.

947 NCI (1978) administered 0, 0.5 or 1.0 % dioxane in drinking water to groups of 35 male and 35
948 female Osborne-Mendel rats (corresponding body doses for males/females were 0, 240/350 and 530/640
949 mg/kg/day) and to groups of 50 male and 50 female B6C3F₁ mice (corresponding body doses for
950 males/females were 0, 720/380 and 830/860 mg/kg/day) for 110 weeks (rats) or 90 weeks (mice). In rats,
951 squamous cell carcinomas in the nasal turbinates occurred in a dose-related fashion at incidences of 0/33
952 controls, 12/33 low-dose and 16/34 high-dose males and 0/34, 10/35 and 8/35 females, respectively. The
953 incidences of hepatocellular adenomas were significantly increased in female rats, with incidences of
954 0/31, 10/33 and 11/32, respectively. In mice, hepatocellular carcinomas were observed at incidences of
955 2/49 control males, 18/50 low-dose males and 24/47 high-dose males and in 0/50, 12/48 and 29/37
956 females, respectively. The incidences of hepatocellular carcinomas or adenomas for rats were 8/49, 19/50
957 and 28/47, respectively, in males and 0/50, 21/48 and 35/37, respectively, in females. The incidences
958 were statistically significant for dose-related trend and for direct comparison with controls.

959 In the JBRC (1998) study, groups of Fischer 344/DuCrj rats (50/sex/dose level) received
960 1,4-dioxane in the drinking water at levels of 200, 1,000, or 5,000 ppm for 2 years (0, 16, 81, and 398
961 mg/kg/day for males; 0, 21, 103, and 514 mg/kg/day for females). Survival was significantly decreased in
962 the high-dose groups due to liver and nasal tumors. Twenty-two of 50 high-dose male rats survived
963 compared to 40/50 in controls; 24/50 of high-dose females survived compared to 38/50 in controls. In
964 high-dose males (398 mg/kg/day), the incidence of nasal cavity tumors was 7/50 (p<0.01) compared to
965 none in the other groups; in high-dose females (514 mg/kg/day), the incidence was 8/50 (p<0.01)
966 compared to none in the other groups. The nasal tumors included squamous cell carcinomas, sarcomas,
967 rhabdomyosarcoma, and esthesioneuroepithelioma. The incidence of combined hepatocellular adenoma or
968 carcinoma in males was 0/50, 2/50, 4/49, and 33/50 (p<0.01) in the control, low-, mid-, and high-dose
969 male rats; the corresponding incidences in females were 1/50, 0/50, 5/50, and 40/50 (p<0.01). High-dose
970 males also had an increased incidence of mesothelioma of the peritoneum (28/50 compared to 2/50 in
971 controls). High-dose females had an increased incidence of mammary gland adenomas (16/50 compared
972 to 6/50 in controls). In the same study groups of Crj:BDF1 mice (50/sex/dose level) received 1,4-dioxane
973 in the drinking water at levels of 500, 2,000, or 8,000 ppm for 2 years (0, 66, 251, and 768 mg/kg/day for
974 males; 0, 77, 323, and 1,066 mg/kg/day for females). Early mortality occurred in female mice, and this
975 was attributed to liver tumors. Survival rates at 104 weeks in females were 29/50, 29/50/ 17/50, and 5/50
976 in control, low-, mid-, and high-dose groups, respectively. A significant and dose-related increase in the
977 incidence of liver adenomas and carcinomas of the liver was found in female mice. The incidences of
978 combined adenomas and carcinomas in control, low-, mid-, and high-dose females were 4/50, 34/50,
979 41/40, and 46/50 (p<0.01 for all treated groups). High-dose males (768 mg/kg/day) also showed a
980 significant increased incidence of hepatocellular carcinomas; the combined incidences of adenomas and
981 carcinomas, as the dose increased, were 21/50 (controls), 31/50, 37/50, and 39/50 (p<0.01). There were
982 no nasal cavity tumors in male or female mice.

983 Several other studies reporting liver tumors in rats and guinea pigs, nasal cavity tumors in rats
984 and gall bladder tumors in guinea pigs after oral administration have been reviewed in Stickney et al.
985 (2003), ECB (1999), IARC (1999), DeRosa et al. (1996), ECETOC (1983) and NIOSH (1977).

986 Perone et al. (1976) treated C3H/HeJ Agouti mice by topical applications of 0.05 ml of various
987 grades of dioxane 3 times/week for 78 weeks. Compared with ethanol-treated controls, no evidence of
988 increased hepatic or skin tumors was found.

989 In two studies, dioxane showed tumor promoting activity. Increased number of skin, lung and
990 kidney tumors were found in Swiss-Webster mice after topical treatment with 50 µg
991 dimethylbenzanthracene as an initiator followed by 0.2 ml dioxane in acetone for 3 times/week for 60
992 weeks (King et al., 1973). In another tumor promotion study (Lundberg et al., 1987), increased number of
993 liver foci was observed in Sprague-Dawley rats that had received 30 mg/kg diethylnitrosoamine by
994 intraperitoneal injection one day after partial hepatectomy, followed by administration of 100 or 1000 mg
995 dioxane/kg/day, 5 days/week for 7 weeks.

996 3.6. Summary

997 Acute toxic effects in animals are mainly central nervous system depression, kidney and liver
998 damage, peripheral nervous system effects as well as irritative effects. At lethal concentrations, narcosis
999 has been observed in rats (BASF AG, 1980) and guinea pigs (Yant et al., 1930). Pozzani et al. (1959)
1000 reported a 4-hour LC₅₀ for dioxane of 14,300 ppm in rats. A similar LC₅₀ value of 12,800 ppm for 4 hours
1001 was reported by Pilipyuk et al. (1977). For exposure to saturated dioxane atmosphere (estimated
1002 concentration 40,000 ppm), BASF AG (1973; 1980) reported no deaths of rats for a 1-hour exposure,
1003 while in the two experiments 100 % and 50 %, respectively, of the animals died after 3 hours of exposure.
1004 At necropsy, acute heart dilatation, hemorrhagic erosions of the stomach mucosa and acute lung dilatation
1005 were observed. Fairley et al. (1934) reported death of 1/3 rats after a single exposure day comprising two
1006 1.5-hour exposures to 10,000 ppm. At 5000 ppm rats died after 3-5 consecutive exposure days. For mice,
1007 2-hour LC₅₀ values of 18,000 ppm (Pilipyuk et al., 1977) and 10,109 ppm (Izmerov et al., 1982) have
1008 been reported.

1009 Goldberg et al. (1964) studied the effect of dioxane on avoidance-escape behavior of rats. Rats
1010 were exposed 4 hours/day, 5 days/week for 2 weeks. At 6000 ppm, about 6/8 rats showed a delay of the
1011 avoidance response already after the 1st exposure, and 3-8 of 8 rats were affected in the subsequent
1012 exposures. No effects were found on escape response; an effect on escape response was only found in 3/8
1013 animals after the 3rd exposure to 6000 ppm. Drew et al. (1978) reported 2-3-fold increased serum
1014 activities of liver enzymes (ornithine carbamyl transferase, aspartate aminotransferase and alanine
1015 aminotransferase) in rats after a single 4-hour exposure to 1000 or 2000 ppm dioxane. Frantik et al.
1016 (1994) studied the inhibition of propagation and maintenance of the electrically evoked seizure discharge
1017 in rats and mice. Of six different time characteristics recorded, the duration of tonic extension of
1018 hindlimbs in rats and the velocity of tonic extension in mice were the most sensitive and reproducible
1019 response measures. The authors suggested the EC₁₀ as the effect threshold, which was 1200 ppm for 4
1020 hours in rats and 580 ppm for 2 hours in mice.

1021 Giavini et al. (1985) found no indication of teratogenic or fetotoxic effects in rats dosed with up
1022 to 517 mg/kg/day by gavage on gestational days 6-15.

1023 Dioxane did not induce gene mutations in *Salmonella typhimurium* (Nestmann et al., 1984;
1024 Haworth et al., 1983; Stott et al., 1981; BASF, 1979a; 1979b; 1979c). In Chinese hamster ovary cells, it
1025 did not induce HGPRT gene mutations or chromosomal aberrations, although it did induce a slight
1026 increase in sister chromatid exchange in the absence of metabolic activation (BASF, 1991; Galloway et
1027 al., 1987). It has been reported to cause morphological transformation of BALB/c 3T3 mouse cells (Sheu
1028 et al., 1988). Oral administration of high doses to rats caused DNA strand breaks in liver cells (Kitchin
1029 and Brown, 1990; 1994). No induction of unscheduled DNA synthesis was observed in rat hepatocytes at
1030 up to 2 % dioxane in drinking water (Goldsworthy et al., 1991). Of six studies on the induction of bone-
1031 marrow micronuclei, five were negative (Tinwell and Ashby, 1994; Morita, 1994; Mirkova, 1994; McFee
1032 et al., 1994), while one was positive (Mirkova, 1994).

1033 When administered orally, dioxane produced malignant tumors of the nasal cavity and liver in
1034 rats, liver tumors in mice, and tumors of the liver and gallbladder in guinea pigs (Kociba et al., 1974;
1035 NCI, 1978; DeRosa et al., 1996; JBRC, 1998; ECB, 1999; IARC, 1999). It was also active as a promotor
1036 in a two-stage skin carcinogenesis study in mice (King et al., 1973). A lifetime bioassay exposing rats at
1037 111 ppm for 7 hours/day, 5 days/week found no evidence for carcinogenic effects (Torkelson et al.,
1038 1974).

1039 **4. SPECIAL CONSIDERATIONS**1040 **4.1. Metabolism and Disposition**

1041 In a pharmacokinetic study (Young et al., 1977), four male volunteers were exposed to 50 ppm
1042 dioxane vapor for 6 hours (see study description in Section 2.2.1). The concentration of dioxane in the
1043 plasma reached 1 mg/l at 1 hour, 4.5 mg/l at 1.5 hours, 9 mg/l at 2 hours and 10 mg/l at 3 hours, after
1044 which a plateau was reached during the rest of the exposure period. The plasma concentration of the
1045 metabolite 2-hydroxyethoxyacetic acid was about 2.5 mg/l at 5 hours, 4 mg/l at 6 hours and peaked at 8
1046 mg/l at about 7 hours, i.e. one hour after termination of exposure. Of the total dioxane dose, >99% was
1047 excreted in the urine as 2-hydroxyethoxyacetic acid. The half-life for elimination of dioxane from the
1048 plasma was 59 ± 7 minutes. The calculated total absorbed dose was 5.4 mg/kg. The data indicated a first-
1049 order, one-compartment model that did not become saturated at 50 ppm.

1050 Assuming a body weight of 70 kg for man and an inhalation rate of 20 m³/d (WHO, 1999), the
1051 total inhaled amount of dioxane during the 6-hour exposure can be calculated as:

$$50 \text{ ppm} * 3.6 \text{ mg/m}^3 / \text{ppm} * 20 \text{ m}^3 * 6 \text{ h} / 24 \text{ h} * 1/70 \text{ kg} = 12.9 \text{ mg/kg}$$

1052 Thus, the lung retention was about: 5.4 mg/kg / 12.9 mg/kg = 43 %

1053 Although exhalation of dioxane was not determined in this experiment, an estimation for the lung
1054 retention can be obtained from this data because experiments in rats indicated that a significant
1055 elimination of dioxane by exhalation occurred only at much higher doses (Young et al., 1978a; 1978b).

1057 After head-only exposure of 4 male Sprague-Dawley rats at 50 ppm for 6 hours, an absorbed dose
1058 of 71.9 mg/kg was estimated, based on the amounts of dioxane and 2-hydroxyethoxyacetic acid excreted
1059 in the urine over 48 hours (Young et al., 1978a; 1978b). Over 99.9 % of the total excreted amount was 2-
1060 hydroxyethoxyacetic. The concentration of dioxane in the plasma decreased in a first-order kinetic
1061 fashion from 7.3 mg/l at the end of exposure to nondetectable levels at 11 hours (5 hours after exposure);
1062 the half-life was one hour.

1063 Rhesus monkeys receiving radiolabelled dioxane in either methanol or a skin lotion onto the
1064 unoccluded, clipped ventral skin of the forearm for 24 hours, showed a dermal penetration of 2.3 % of the
1065 applied dose in methanol and 3.4 % of the applied dose in lotion, as determined from the urinary
1066 excretion of radioactivity over five days (Marzulli et al., 1981).

1067 Dermal penetration was determined in diffusion cell studies on human skin (Bronaugh, 1982): up
1068 to 3.2 % of applied dioxane (dissolved in a cosmetic lotion) was absorbed under occlusion for 3.5 hours,
1069 whereas only 0.3 % absorption occurred under non-occluded conditions; the authors concluded the
1070 difference to be most likely accounted for by the high volatility of dioxane.

1071 Young et al. (1978a; 1978b) administered radioactive labelled dioxane in water by gavage to rats
1072 at single doses of 10, 100 or 1000 mg/kg or administered multiple doses of 10 or 1000 mg/kg/day for 17
1073 days. Data on the excretion of radioactivity in the urine and of ¹⁴C-dioxane and ¹⁴CO₂ in the expired air
1074 indicated that after a single oral dose, gastrointestinal absorption was virtually complete within 24 hours
1075 of dosing with 10 mg/kg and within 72 hours of dosing with 100 or 1000 mg/kg. After a single oral dose,
1076 99 % of the 10-mg/kg dose was excreted over 24 hours, and 86 % of the 100-mg/kg dose and 76 % of the
1077 1000-mg/kg dose were excreted over 72 hours. The percentage of expired dioxane was 0.43 % of the 10-
1078 mg/kg dose, 5 % of the 100 mg/kg dose and 25 % of the 1000-mg/kg dose. Excretion of carbon dioxide in

1079 the air (2-3 %) or of radioactivity in the feces (0.95-2 %) collected over 24 hours was not dose-dependent.
1080 Virtually complete gastrointestinal absorption of dioxane also occurred after repeated dosing. In urine
1081 collected over 480 hours, 99 % and 82 % of the 10- and 1000-mg/kg doses, respectively, were excreted.
1082 In the expired air, the percentage of the dose excreted as dioxane was 1 % at 10 mg/kg/d and 8.9 % at
1083 1000 mg/kg/d; the percentage of the dose expired as carbon dioxide was 4 % and 7 %, respectively. After
1084 intravenous injection with 3, 10, 30, 100 or 1000 mg/kg, elimination from plasma was linear with a half-
1085 life of 1.1 hours at the low doses of 3 and 10 mg/kg. At higher doses, elimination from plasma became
1086 progressively slower and biphasic with increasing dose. Metabolic clearances decreased from 2.82 ml/min
1087 at 10 mg/kg to 0.17 mg/min at 1000 mg/kg, indicating saturation of metabolic oxidation of dioxane.

1088 The major metabolite of 1,4-dioxane is 2-hydroxyethoxyacetic acid both in humans (Young et al.,
1089 1977) and rats (Young et al., 1978a; 1978b). However, a controversy exists whether dioxane is
1090 metabolized directly to 2-hydroxyethoxyacetic acid, which can cyclize to the 1,4-dioxane-2-one (Braun
1091 and Young, 1977), or whether dioxane is metabolized to 1,4-dioxane-2-one, which is readily converted to
1092 2-hydroxyethoxyacetic acid (Woo et al., 1977, 1978). The uncertainty is the result of the fact that the two
1093 candidate chemical structures can readily interconvert under the chemical conditions used in the analysis:
1094 at low pH, 2-hydroxyethoxyacetic acid is detected as the major metabolite, while at high pH, 2-
1095 hydroxyethoxyacetic acid will be converted to 1,4-dioxane-2-one, which is then identified as the major
1096 metabolite (ECB, 1999).

1097 In male Sprague-Dawley rats that received 3000 mg/kg ¹⁴C-dioxane by intraperitoneal injection,
1098 the urinary secretion of 1,4-dioxane-2-one was about 300 mg metabolite/kg over 24 hours. Pretreatment
1099 of rats with phenobarbital or the polychlorinated biphenyl Aroclor 1254, but not methylcholanthrene,
1100 prior to dioxane injection significantly increased amounts of the urinary metabolite excreted. In contrast,
1101 cytochrome P-450 inhibitor 2,4-dichloro-6-phenylphenoxyethylamine decreased the metabolite excretion,
1102 suggesting that the metabolism of dioxane is mediated by cytochrome P-450 enzymes (Woo et al., 1977;
1103 1978). In unpublished studies, Young and Nolan (Young et al., 1978b) have shown that dioxane can
1104 induce its own metabolism after repeated oral doses of 1000 mg/kg, but not of 10 mg/kg. In these
1105 experiments the high dose led to an increased liver/body weight ratio and to an increased activity in vitro
1106 of liver aniline hydroxylase and aminopyrine N-demethylase, suggesting that cytochrome P450 2E1
1107 catalyzes an oxidation step in the dioxane metabolic pathway. In line with an induction of metabolism is
1108 the observation that repeated daily administration of 1000 mg/kg resulted in a marked decrease of
1109 excretion of dioxane in the expired air (from 25.25 to 8.86 %) and an increase of excretion as ¹⁴CO₂ (from
1110 2.39 to 6.95 %) (Young et al., 1978a; 1978b).

1111 4.2. Mechanism of Toxicity

1112 Death of laboratory animals after acute inhalation was probably due to the narcotic effect of
1113 dioxane (BASF AG, 1980) as well as to acute vascular congestion and lung hemorrhage (Fairley et al.,
1114 1934). When death occurred after repeated inhalation exposure, the cause of death was kidney and liver
1115 damage in rats, mice, Guinea pigs and rabbits (Fairley et al., 1934; David, 1964). In reported human
1116 fatalities, which occurred after repeated inhalation exposure at the workplace, death was also caused
1117 primarily by liver and kidney necrosis (Barber, 1934; Johnstone 1959).

1118 With regard to its carcinogenic effects, the mode of action of dioxane is not yet clear. Several
1119 experiments investigated hepatocyte cell proliferation:

1120 Goldsworthy et al. (1991) investigated the hepatic and nasal epithelial labelling index 24 or 48
1121 hours after a single gavage dose of 1000 mg/kg or a 2-week administration of 1 % dioxane in the drinking
1122 water (corresponding to about 1000 mg/kg/day) in male Fisher-344 rats. The percentage of cells in S-
1123 phase was determined by administration of ^3H -thymidine (single injection or osmotic pump) and
1124 subsequent quantitative histoaudiography. In the liver, there was a twofold increase in the labelling index
1125 after 2 weeks of exposure. No such effect was seen after the single dose.

1126 Stott et al. (1981) administered dioxane in drinking water at approximately 1000 mg/kg/day for
1127 11 weeks to male Sprague-Dawley rats, a dose at which some increase in liver weight was found.
1128 Hepatocytes were isolated by collagenase perfusion and labeled in vitro with ^3H -thymidine. Labelling was
1129 increased at 1000 mg/kg/day, but not at 10 mg/kg/day. With the same in vitro labelling technique, it was
1130 shown that a 1-3 day exposure to 2 % dioxane in drinking water (corresponding to about 2000
1131 mg/kg/day) caused no increases in S-phases, whereas after 8 days and longer exposure a pronounced
1132 increase in S-phase was visible.

1133 Miyagawa et al. (1999) found an increased replicative DNA synthesis in male Fisher-344 rats
1134 after oral gavage doses of 1000, 1500 or 2000 mg/kg 24 hours, but not 48 hours, after administration
1135 using in vitro labelling with ^3H -thymidine after collagenase liver perfusion. In liver specimens prepared
1136 after the 1000, 1500 or 2000 mg/kg treatments no histopathological changes were found.

1137 On the one hand side, several authors discuss liver cytotoxicity of dioxane at high concentrations
1138 as the most likely mechanism of dioxane carcinogenicity (Stickney et al. 2003; ECB, 1999; BUA, 1992;
1139 1993). The cytotoxic effects and organ damage via increased cell turnover may pave the way for liver
1140 carcinogenesis. Since dioxane (and 1,4-dioxane-2-ol) has a protein-denaturating effect, one would expect
1141 cytostatic as well as proliferating effects, the latter being due to replacement of necrotic cells (AGS,
1142 2001). The non-linear toxicokinetics of dioxane in rats could be in line with this explanation. Saturation
1143 of oxidation of dioxane to 2-hydroxyethoxyacetic acid and 1,4-dioxane-2-one at doses between 10 and
1144 1000 mg/kg (Young et al. 1978a; 1978b) could result in the accumulation of dioxane and possibly of its
1145 metabolites, such as 1,4-dioxane-2-one and 2-hydroxyethoxy-acetaldehyde, and the induction of
1146 cytotoxic effects. Increased hepatocyte cell proliferation has been reported in rats after a single oral dose
1147 of 1000 mg/kg or higher (Miyagawa et al., 1999), while in other studies (Stott et al., 1981; Goldsworthy
1148 et al., 1991) repeated oral doses of 2000 mg/kg were necessary to induce increases in hepatocyte
1149 proliferation. Consistent with this effect level, inhalation exposure of rats at 1000 ppm for 4 hours,
1150 corresponding to a body dose of about 630 mg/kg, resulted in increased serum activities of liver enzymes
1151 (Drew et al., 1978).

1152 On the other hand side, a genotoxic mechanism cannot be excluded at high doses, at which
1153 accumulation of dioxane and its metabolites can occur: increased micronuclei formation in rat hepatocytes
1154 was found after a single oral dose of 2000 mg/kg (Morita and Hayashi, 1998); an increased rate of DNA
1155 strand breaks was found in rats after a single oral dose of 2550 mg/kg, but not at 840 mg/kg (Kitchin and
1156 Brown, 1990; 1994); moreover, dioxane induced sister chromatid exchanges in CHO cells (Galloway et
1157 al., 1987) and transformation of Balb 3T3 cells (Sheu et al., 1988) in vitro.

1158 The occurrence of nasal tumors in the drinking water studies cannot be explained easily, because
1159 no nasal tumors were found in rats exposed to dioxane vapor for 2 years (Torkelson et al., 1974).
1160 Goldsworthy et al. (1991) considered it possible that the manner in which the water was given in the

cancer study resulted in the animals having inhaled or sniffed the dioxane-containing water into their nasal passages and that sniffing would result in deposition of the inspired material along the dorsal meatus where the tumors were observed. Reitz et al. (1990) mentioned experiments in which rats were given a dye in the drinking water. Upon examination, significant amounts of dye were present in the turbinates, demonstrating that large amounts of inspired water may be deposited in the nose. It was hypothesized that the nasal lesions are probably irrelevant to man because the nasal tumors in rats were probably a result of repeated direct contact of the nasal mucosa with dioxane-containing drinking water (Reitz et al. 1990; Stickney et al., 2003).

4.3. Other Relevant Information

4.3.1. Pharmacokinetic Modelling

Reitz et al. (1990) developed a physiologically-based pharmacokinetic model to describe tissue levels of dioxane and its metabolites in rats, mice and humans, in order to relate human exposure levels to the positive oral carcinogenicity studies and the negative inhalation carcinogenicity study. The model was formulated to contain six distinct tissue compartments: lung, fat, liver, venous blood, slowly perfused tissues and rapidly perfused tissues. Metabolism was described as a saturable process using Michaelis-Menten kinetics. The model was formulated for four different routes of administration: inhalation, intravenous injection, bolus gavage and consumption via drinking water. The model predictions were compared to the data of Young et al. (1977; 1978a; 1978b).

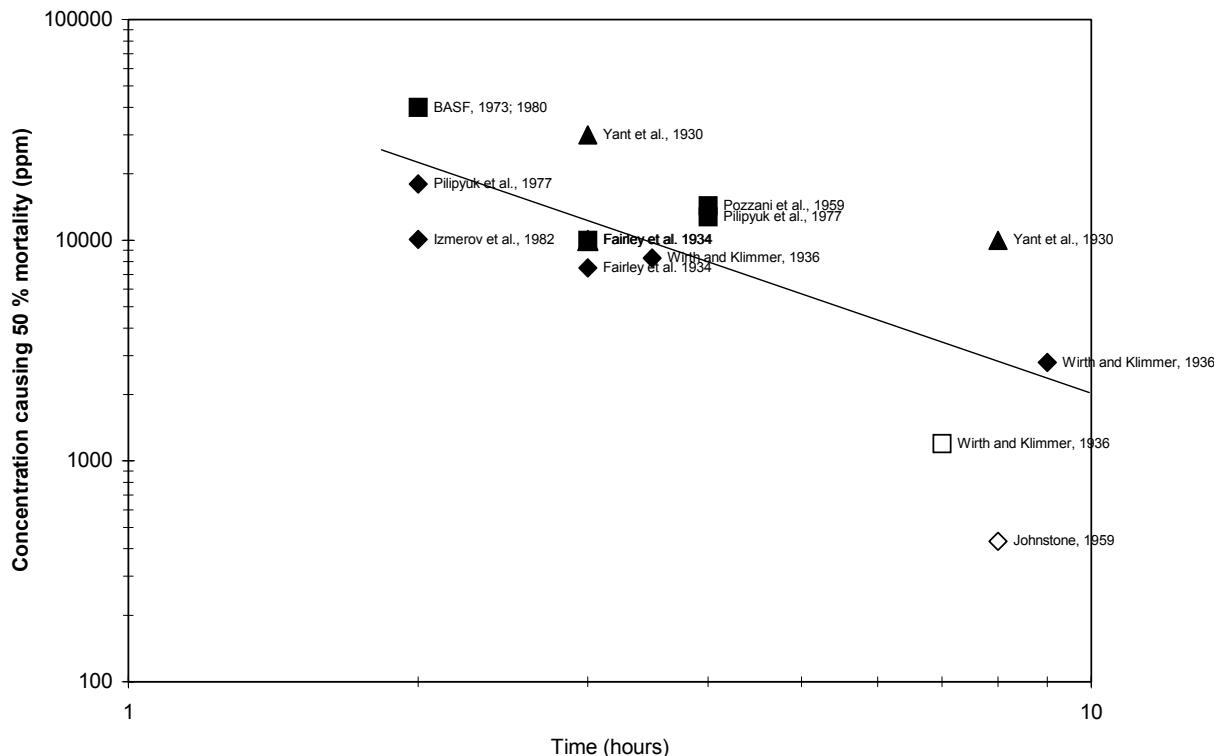
Once the model had been developed, two dose surrogates were calculated:

1) average area under the liver dioxane concentration time curve per day (AUC-liver): drinking water exposures associated with development of liver tumors in rats (0.5-1.0 % dioxane; NCI, 1978; Kociba et al., 1974) were predicted to give high AUC-liver values of 17,900-64,200 mg*h/l. Similarly, predictions of AUC-liver values for mice at dose levels associated with liver tumor formation (0.5-1.0 % dioxane; NCI, 1978) gave results of 15,200-43,400 mg*h/l. No observed effect levels for liver tumors of 0.1 % dioxane in drinking water (Kociba et al., 1974) and 111 ppm dioxane in air (Torkelson et al., 1974) corresponded to AUC-liver values of 257 and 109 mg*h/l, respectively. The predicted AUC-liver value for humans at a continuous exposure concentration of 10 ppm dioxane in air was 7.36 mg*h/l.

2) average area under the metabolite (2-hydroxyethoxyacetic acid) concentration time curve for the whole body per day (AUC-metabolite): drinking water exposures associated with development of liver tumors in rats and mice (0.5-1.0 % dioxane; NCI, 1978; Kociba et al., 1974) were predicted to AUC-metabolite values of approximately 1500 mg*h/l. No observed effect levels for liver tumors of 0.1 % dioxane in drinking water (Kociba et al., 1974) and 111 ppm dioxane in air (Torkelson et al., 1974) corresponded to AUC-metabolite values of 470 and 197 mg*h/l, respectively. The predicted AUC-metabolite value for humans at a continuous exposure concentration of 10 ppm dioxane in air was 13.5 mg*h/l. The authors pointed at the much smaller ratio of AUC-metabolite values for effect and no-effect levels compared with the ratio for AUC-liver. The AUC-metabolite values were almost identical for the 0.5 and 1.0 % dioxane exposure groups in rats and mice. While the liver tumor frequency in female rats was similar at the two dose levels, the liver tumor frequencies were higher after 1 % dioxane exposures in both, male and female mice (NCI, 1974).

1200 **4.3.2. Interspecies Variability**

1201 Lethal concentrations were comparable in rats, mice and Guinea pigs. Only one study in cats was
1202 available, which suggested a somewhat higher susceptibility. The concentrations at which half of the
1203 animals died after a single exposure were:


- 1204 - for rats about 10,000 ppm for 2x1.5 hours (Fairley et al. 1934), 14,300 ppm for 4 hours
1205 (Pozzani et al., 1959), 12,800 ppm for 4 hours (Pilipyuk et al., 1977) and 40,000 ppm for
1206 1-3 hours (BASF AG, 1973; 1980);
- 1207 - for mice 5000-10,000 ppm for 2x1.5 hours (Fairley et al. 1934), between 2800 ppm for 8-
1208 10 hours and 8300 for 3.5 hours (Wirth and Klimmer, 1936), 18000 ppm for 2 hours
1209 (Pilipyuk et al., 1977) and 10,109 ppm for 2 hours (Izmerov et al., 1982);
- 1210 - for Guinea pigs between 10,000 ppm for 8 hours and 30,000 ppm for 3 hours (Yant et al.,
1211 1930) and about 10,000 ppm for 2x1.5 hours (Fairley et al. 1934);
- 1212 - for rabbits >5000 ppm for 2x1.5 hours (Fairley et al. 1934);
- 1213 - for cats about 1200 ppm for about 7 hours (Wirth and Klimmer, 1936).

1214 The data are displayed in Figure 1. For comparison, the data point for the human case reported by
1215 Johnstone (1959) is also displayed. Taking into account that in this case dermal exposure occurred in
1216 addition to inhalation exposure and that the worker was exposed repeatedly before falling ill, this case of
1217 human exposure is in fairly good agreement with the animal data.

1218 Similar pathological findings, comprising especially liver and kidney necrosis, were reported for
1219 fatalities after repeated inhalation exposure at the workplace (Barber, 1934; Johnstone, 1959) and after
1220 repeated inhalation and oral exposure of laboratory animals (Fairley et al. 1934; David, 1964).

1221 The metabolism in humans and rats is very similar, involving the same metabolic steps and
1222 intermediate metabolites (Young et al., 1977; 1978a; 1978b).

1223 Taken together, the interspecies variability for acute lethal effects is limited and an interspecies
1224 uncertainty factor of 3 is considered adequate.

FIGURE 1: SPECIES COMPARISON OF LETHAL INHALATION EXPOSURE

For data points for which a range was given for the exposure concentration or the exposure time, the arithmetic mean of this range was used. Symbols indicate the following species: rat, filled square; mice, filled diamond; guinea pig, filled triangle; cat, open square, and human, open diamond. The line indicates the regression line calculated from all animal data.

4.3.3. Intraspecies Variability

Several studies that evaluated irritative effects of dioxane in humans, did not report marked interindividual differences (Fairley et al. 1934; Yant et al., 1930; Wirth and Klimmer, 1936, Young et al., 1977). However, since occurrence and severity of irritative symptoms were described for the groups of exposed volunteers, but not for each individual, no definitive conclusions can be drawn from these reports.

No studies were located regarding cardiovascular, gastrointestinal, musculoskeletal, hepatic, or renal effects in humans after nonlethal exposure to 1,4-dioxane. Case reports on fatalities reported severe liver and kidney damage. No data on interindividual differences with regard to systemic effects are

1239 available. Some interindividual variability in CNS effects was reported by Yant et al. (1930) when 3 or 5
1240 subjects reported vertigo at 5500 ppm for 1 minute.

1241 Due to the lack of data there was no basis for reducing the default intraspecies uncertainty factor.

1242 **5. RATIONALE AND PROPOSED AEGL-1**1243 **5.1. Human Data Relevant to AEGL-1**

1244 Young et al. (1977) exposed 4 healthy male subjects at 50 ppm for 6 hours in the dynamic
1245 chamber. Eye irritation was a frequent complaint throughout the exposure. The perception of odor
1246 diminished with time; two of the subjects could not perceive the odor after 4 and 5 hours in the chamber,
1247 while the other two subjects could still detect the odor at the end of the exposure period. In the study by
1248 Silverman et al. (1946), subjects exposed at 300 ppm for 15 minutes reported irritation to eyes, nose and
1249 throat; they did not find the odor objectionable. Wirth and Klimmer (1936) reported that exposure to 280
1250 ppm (time period not specified) led to a slight mucous membrane irritation in exposed subjects. At 1400
1251 ppm the irritation was quite distinct.

1252 Hellman and Small (1974) reported an odor detection threshold of 1.8 ppm and an odor
1253 recognition threshold of 5.7 ppm. AIHA (1983) published a geometric mean odor detection threshold of
1254 12 ppm and a geometric mean odor recognition threshold of 22 ppm.

1255 **5.2. Animal Data Relevant to AEGL-1**

1256 Yant et al. (1930) reported no eye irritation, squinting and lacrimation in Guinea pigs exposed to
1257 1000 ppm for up to 6 hours, while at 2000 ppm or higher these symptoms were observed within 8 minutes
1258 or less.

1259 Frantik et al. (1994) studied the inhibition of propagation and maintenance of the electrically
1260 evoked seizure discharge in rats and mice. Of six different time characteristics recorded, the duration of
1261 tonic extension of hindlimbs in rats and the velocity of tonic extension in mice were the most sensitive
1262 and reproducible response measures. The authors suggested the EC₁₀ as the effect threshold, which was
1263 1200 ppm for 4 hours in rats and 580 ppm for 2 hours in mice.

1264 Drew et al. (1978) reported 2-3-fold increased serum activities of liver enzymes (ornithine
1265 carbamyl transferase, aspartate aminotransferase and alanine aminotransferase) in rats after a single 4-
1266 hour exposure to 1000 or 2000 ppm dioxane.

1267 **5.3. Derivation of AEGL-1**

1268 For the derivation of AEGL-1 values, irritation was considered the most relevant endpoint. As
1269 key study, the study of Young et al. (1977) was chosen, because this was the only adequately reported
1270 and analytically controlled study available for this endpoint. Young et al. (1977) reported eye irritation at
1271 50 ppm throughout the 6-hour exposure period. Since this was a pharmacokinetic study, no emphasis was
1272 put on reporting of symptoms and the authors did not define the severity level of the eye irritation. The
1273 irritation was nevertheless considered to be below the notable discomfort level as described in the AEGL-
1274 1 definition because the authors (Young et al., 1977) considered 50 ppm as an adequate workplace
1275 standard and a level of 50 ppm has been used as a workplace standard in the past.

1276 Although no definitive study on the mechanism of eye irritation exists, it is likely that it involves
1277 water extraction from the eyes caused by dioxane, which is also compatible the lack of skin irritation by
1278 dioxane (ECB, 1999).

1279 Volunteers exposed at 300 ppm complained of irritation to eyes, nose and throat (Silverman et al.,
1280 1946). At a similar concentration of 280 ppm, Wirth and Klimmer (1936) found slight mucous membrane
1281 irritation in humans. More distinct irritation was observed at 1400-1600 ppm and severe irritation
1282 occurred at 2800-5500 ppm (Wirth and Klimmer, 1936; Yant et al., 1930). The shallow increase of
1283 irritative effects with concentration also supports the interpretation that the effects found at 50 ppm in the
1284 study of Young et al. (1977) can be considered as mild.

1285 Since the study by Young et al. (1977) reported eye irritation throughout the whole exposure
1286 period of 6 hours and did not report an increase of the effect with time, it was considered adequate to use
1287 the same exposure concentration for all relevant time points. Using a constant value for AEGL-1 is also
1288 supported by the observation of Yant et al. (1930) who reported no eye irritation, squinting and
1289 lacrimation in Guinea pigs exposed at 1000 ppm for up to 6 hours, while at 2000 ppm or higher these
1290 symptoms were observed within 8 minutes or less. The calculations of exposure concentrations scaled to
1291 AEGL-1 time points are shown in Appendix A.

1292 A total uncertainty factor of 3 was used because for local effects, the toxicokinetic differences do
1293 not vary considerably within and between species.

1294 The values are listed in the table below.

TABLE 9: AEGL-1 VALUES FOR 1,4-DIOXANE					
AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-1	17 ppm (60 mg/m ³)				

1295 A level of distinct odor awareness (LOA) for 1,4-dioxane of 1.7 ppm was derived on the basis of
1296 the odor detection threshold from the study of Hellman and Small (1974) (see Appendix B for LOA
1297 derivation). The LOA represents the concentration above which it is predicted that more than half of the
1298 exposed population will experience at least a distinct odor intensity, about 10 % of the population will
1299 experience a strong odor intensity. The LOA should help chemical emergency responders in assessing the
1300 public awareness of the exposure due to odor perception.

1304

6. RATIONALE AND PROPOSED AEGL-2

1305

6.1. Human Data Relevant to AEGL-2

1306

Yant et al. (1930) reported eye irritation, resulting in blinking, squinting and lacrimation, a burning sensation in nose and throat in 5 subjects exposed at 5500 ppm for 1 minute. Three of the subjects noticed a slight vertigo which disappeared quickly after leaving the vapor-air mixture. Exposure at 1600 ppm for 10 minutes resulted in an immediate slight burning of the eyes accompanied by lacrimation, a slight irritation of the nose and throat and an alcohol-like odor, which decreased in intensity with continued exposure. Lacrimation and nasal irritation persisted throughout the test. No vertigo was noted at 1600 ppm.

1313

Wirth and Klimmer (1936) reported that 5 subjects exposed for an unspecified period of time at 2800 ppm complained of very strong initial irritation and slight pressure in the chest; at 1400 ppm, irritation was quite distinct with slight stinging in the nose and scratchiness and dryness in the throat; at 280 ppm, slight mucous membrane irritation was reported. Fairley et al. (1934) reported that subjects exposed at 2000 ppm for 3 minutes experienced an initial strong odor, which diminished rapidly, but no strong irritation effects, such as lacrimation or cough.

1319

6.2. Animal Data Relevant to AEGL-2

1320

Drew et al. (1978) reported 2-3fold increased serum activities of liver enzymes (ornithine carbamyl transferase, aspartate aminotransferase and alanine aminotransferase) in rats after a single 4-hour exposure at 1000 or 2000 ppm dioxane.

1323

Goldberg et al. (1964) studied the effect of dioxane on avoidance-escape behavior (pole climbing in response to buzzer to avoid electrical shock) of rats. Rats were exposed 4 hours/day, 5 days/week for 2 weeks. At 6000 ppm, about 6/8 rats showed a delay of the avoidance response already after the 1st exposure, and 3-8 of 8 rats were affected in the subsequent exposures. No effects were found on escape response; an effect on escape response was only found in 3/8 animals after the 3rd exposure at 6000 ppm.

1328

6.3. Derivation of AEGL-2

1329

For the derivation of AEGL-2 values effects on the central nervous system and effects on liver were considered relevant.

1331

Like other solvents, dioxane can induce narcosis at very high concentrations. Yant et al. (1930) reported that 30,000 ppm induced narcosis in guinea pigs after 1-2 hours exposure, while at 10,000 ppm eye and nose irritation and labored breathing, but no narcosis, were observed. In mice, 8300 ppm for 3.5 hours caused narcosis (Wirth and Klimmer, 1936). Goldberg et al. (1964) reported that 6000 ppm for 4 hours affected the performance of rats in an conditioned response test (pole climbing in response to buzzer to avoid electrical shock), but did not affect the escape response to an electrical shock. The exposure level of 6000 ppm for 4 hours was considered a NOEL for central nervous system depression, while higher concentrations could impair the ability to escape.

1339 A total uncertainty factor of 30 was used. The interspecies factor was reduced to 3 because the
1340 toxicodynamic differences between species were considered limited for CNS depression and because
1341 application of the default factor would have lowered the AEGL-2 values to a level that humans are known
1342 to tolerate without adverse effects (Young et al., 1977). An intraspecies factor of 10 was applied.

1343 Time scaling using the equation $C^n \times t = k$ was carried out to derive exposure duration-specific
1344 values. Due to lack of a definitive data set, a default value for n of 3 was used in the exponential function
1345 for extrapolation from the experimental period (4 hours) to shorter exposure periods and a default value
1346 for n of 1 was used for extrapolation to longer exposure periods. Time extrapolation was continued to the
1347 10-minute period because even at higher concentrations of 1600 ppm for 10 minutes (Yant et al., 1930) or
1348 1400 ppm for 5 minutes (Wirth and Klimmer, 1936) exposed subjects did not experience more severe
1349 effects than moderate eye, nose and throat irritation. The calculations of exposure concentrations scaled to
1350 AEGL-2 time points are shown in Appendix A.

1351 The endpoint of hepatotoxicity was also considered relevant because liver necrosis occurred in
1352 cases of fatal dioxane exposure at the workplace and repeated cytotoxic effects on the liver has been
1353 suggested as the mechanism of the carcinogenic effect of dioxane. As shown in the following, derivation
1354 of AEGL-2 values on the basis of hepatotoxicity results in identical AEGL-2 values as those derived for
1355 central nervous system effects. Drew et al. (1978) reported a 2-3-fold increase in serum activities of liver
1356 enzymes in rats after exposure to 1000 or 2000 ppm for 4 hours. The release of liver enzymes into the
1357 blood is a sign of cytotoxic liver damage. This effect is, however, normally transient in nature. A 2-3-fold
1358 increase in liver enzymes was considered a weak response because liver damage by chemicals, viruses or
1359 tumors can easily increase aminotransferase levels by 10- to 100-fold in rats and humans (Hayes et al.,
1360 1994). At a higher concentration of 5000 ppm for 2x1.5 hours/day, all rats died after several days from
1361 severe liver and kidney damage (Fairley et al., 1934; see Section 3.1.1). Therefore, exposure at 2000 ppm
1362 for 4 hours is considered a NOEL for AEGL-2 effects in rats and is used as the basis for AEGL-2
1363 derivation.

1364 A total uncertainty factor of 10 was used. An interspecies uncertainty factor of 1 was applied
1365 because metabolism in humans and rats is very similar, involving the same metabolic steps and
1366 intermediate metabolites (see Section 4.3.2) and because application of a total uncertainty factor of 30
1367 would reduce the AEGL-2 level to an exposure concentration of 17 ppm for 8 hours and 33 ppm for 4
1368 hours, which humans are known to tolerate without adverse effect (pharmacokinetic study exposing
1369 subjects to 50 ppm for 6 hours; Young et al., 1977). An intraspecies factor of 10 was applied.

1370 Time scaling using the equation $C^n \times t = k$ was carried out to derive exposure duration-specific
1371 values as explained above. The calculations of exposure concentrations scaled to AEGL-2 time points are
1372 shown in Appendix A.

1373 The derived values are considered adequate with respect to the carcinogenicity assessment (see
1374 Appendix C). Assuming a body weight of 70 kg, a ventilation rate of 20 m³/d (WHO, 1999), and an
1375 absorption rate of 43 % (Young et al., 1977), the AEGL-2 values correspond to total body doses between
1376 1.8 mg/kg for the 10-minute period and 14 mg/kg for the 8-hour period:

$$\begin{aligned} \text{body dose} &= \text{exposure conc. (mg/m}^3\text{)} * \text{absorption rate} * \text{ventilation rate} * 1/\text{body weight} \\ \text{body dose (8 h)} &= 360 \text{ mg/m}^3 * 0.43 * 20 \text{ m}^3 * 8 \text{ h/24 h} * 1/70 \text{ kg} = 14 \text{ mg/kg} \\ \text{body dose (10 min)} &= 2100 \text{ mg/m}^3 * 0.43 * 20 \text{ m}^3 * 0.167 \text{ h/24 h} * 1/70 \text{ kg} = 1.8 \text{ mg/kg} \end{aligned}$$

1380 This dose level is below that associated with metabolic saturation or proliferative effects on the liver,
1381 which has been implicated in dioxane carcinogenicity (see Section 4.2).

1382 The AEGL-2 values are listed in the table below.

1383 **TABLE 10: AEGL-2 VALUES FOR 1,4-DIOXANE**

AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-2	580 ppm (2100 mg/m ³)	400 ppm (1400 mg/m ³)	320 ppm (1200 mg/m ³)	200 ppm (720 mg/m ³)	100 ppm (360 mg/m ³)

1386 **7. RATIONALE AND PROPOSED AEGL-3**1387 **7.1. Human Data Relevant to AEGL-3**

1388 Barber (1934) described 5 fatalities after repeated exposure to unknown concentrations of
1389 dioxane at the workplace. The workers developed nausea and vomiting, described as "stomach trouble",
1390 followed after 2-3 days by oliguria and anuria. About 3-7 days after the first symptoms, coma developed,
1391 followed by death. Pathological findings included enlarged pale livers, swollen hemorrhagic kidneys, and
1392 edematous lungs and brains. Microscopic examinations revealed centrilobular liver necrosis, almost
1393 symmetrical necrosis of the outer renal cortex and hemorrhages around the glomeruli.

1394 Johnstone (1959) reported a similar case of a man who worked near to an open container of
1395 dioxane. Later measurements of the atmosphere showed a dioxane concentrations between 208 and 650
1396 ppm (plus additional dermal exposure). After 6 days on work, the man became hospitalized with severe
1397 epigastric pain. The patient developed oliguria, became comatose on the 6th day and died one day later.
1398 Upon postmortem examination, the liver showed uniformly severe centrilobular necrosis and the kidneys
1399 showed cortex necrosis with extensive interstitial hemorrhage.

1400 **7.2. Animal Data Relevant to AEGL-3**

1401 Pozzani et al. (1959) reported a 4-hour LC₅₀ for dioxane of 14300 ppm in rats. A similar LC₅₀
1402 value of 12,800 ppm for 4 hours was reported by Pilipyuk et al. (1977). For exposure to saturated dioxane
1403 atmosphere (estimated concentration 40,000 ppm), BASF AG (1973; 1980) reported no deaths of rats for
1404 a 1-hour exposure, while in the two experiments 100 % and 50 %, respectively, of the animals died after 3
1405 hours of exposure. At necropsy, acute heart dilatation, hemorrhagic erosions of the stomach mucosa and
1406 acute lung dilatation were observed. Fairley et al. (1934) reported death of 1/3 rats after a single exposure
1407 day comprising two 1.5-hour exposures to 10,000 ppm. At 5000 ppm rats died after 3-5 consecutive
1408 exposure days.

1409 For mice, LC₅₀ values of 18,000 ppm (Pilipyuk et al., 1977) and 10,109 ppm (Izmerov et al.,
1410 1982) have been reported.

1411 **7.3. Derivation of AEGL-3**

1412 LC₅₀ values in rats were considered most relevant for the derivation of the AEGL-3 values. No
1413 acute inhalation toxicity study that followed today's standards and guidelines was available for dioxane.
1414 The derivation was based on the 4-hour LC₅₀ of 14,300 ppm in rats reported by Pozzani et al. (1959).
1415 Although this study did not use the most sensitive species (cats), it was used as key study because it was
1416 the only study that was adequately described and because study details were far better provided in this
1417 study than in the study by Pilipyuk et al. (1977). The LC₅₀ reported in the key study is supported by other
1418 studies in rats (Pilipyuk et al., 1977; BASF AG; 1980; 1973).

1419 For extrapolation from the LC₅₀ value to the threshold for lethality, a factor of 3 was used. This
1420 factor was considered adequate because available data indicate a very steep dose-response curve for
1421 lethality after inhalation exposure: a) Pilipyuk et al. (1977) reported a factor of 1.3 between the LC₈₄ and
1422 the LC₁₆ (LC₁₆ = 11,100 ppm and LC₈₄ = 14,500 ppm); b) at 40,000 ppm, BASF AG (1973; 1980)

1423 reported no deaths after exposure for 1 hour, while in two experiments 50 and 100 %, respectively, of the
 1424 rats died after a 3-hour exposure; and c) Yant (1930) reported death of all guinea pigs after 3-hour
 1425 exposure at 30,000 ppm, while no lethality occurred after 10,000 ppm for 8 hours.

1426 Time scaling using the equation $C^n \times t = k$ was carried out to derive exposure duration-specific
 1427 values. Due to lack of a definitive data set, a default for n of 3 was used in the exponential function for
 1428 extrapolation from the experimental period (4 hours) to shorter exposure periods and a default for n of 1
 1429 was used for extrapolation to longer exposure periods. For the 10-minute AEGL-3 the 30-minute value
 1430 was applied because the derivation of AEGL values was based on a long experimental exposure period
 1431 and no supporting studies using short exposure periods were available for characterizing the
 1432 concentration-time-response relationship. Moreover, considerable uncertainty exists as to the
 1433 concentration of dioxane in air at which cytotoxic effects occur in the nasal mucosa, which probably
 1434 contributes to the mechanism leading to carcinogenic effects of dioxane. The calculations of exposure
 1435 concentrations scaled to AEGL-3 time points are shown in Appendix A.

1436 A total uncertainty factor of 10 was used. An interspecies uncertainty factor of 1 was applied
 1437 because metabolism in humans and rats is very similar, involving the same metabolic steps and
 1438 intermediate metabolites (see Section 4.3.2) and because a higher uncertainty factor would have resulted
 1439 in AEGL-3 values of 480 ppm for 10 and 30 minutes, which contrasts with the observation that exposure
 1440 of human subjects to 1600 ppm for 10 minutes (Yant et al., 1930) resulted in moderate irritation, but not
 1441 in more severe effects. An intraspecies factor of 10 was applied.

1442 The values are listed in the table below.

1443 **TABLE 11: AEGL-3 VALUES FOR 1,4-DIOXANE**

AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-3	950 ppm (3400 mg/m ³)	950 ppm (3400 mg/m ³)	760 ppm (2700 mg/m ³)	480 ppm (1700 mg/m ³)	240 ppm (860 mg/m ³)

1446 Discussion of reported lethal human exposures: while in the study of Barber (1934) no
 1447 (estimation of) exposure concentrations was reported, Johnstone (1959) found dioxane concentrations
 1448 between 208 and 650 ppm in measurements performed after the death of a worker.

1449 The equivalent body dose for an inhalation exposure of a man (assuming a body weight of 70 kg
 1450 and a 8-hour workshift inhaled air volume of 10 m³) to 208-650 ppm dioxane for an 8-hour workshift can
 1451 be calculated as:

$$1452 \text{resorbed dose (inh.)} = (208 \text{ to } 650) \text{ ppm} * 3.6 \text{ mg/m}^3/\text{ppm} * 20 \text{ m}^3/\text{d} * 8 \text{ h} / 24 \text{ h} * 0.43 * 1/70 \text{ kg} \\ 1453 \text{resorbed dose (inh.)} = 31 \text{ to } 96 \text{ mg/kg}$$

1454 using an resorption rate of 43 % (Young et al., 1977) and assuming a body weight of 70 kg and a
 1455 ventilation rate of 20 m³/d (WHO, 1999).

1456 The dermal exposure is more difficult to estimate. It is assumed that a maximum of 6 g dioxane
 1457 remained on the hands from each use of dioxane to remove glue from hands and working table and that
 1458 this procedure was done between 4-16 times per workshift. The skin absorption is assumed to be between
 1459 the value of about 3 % measured for monkeys and humans (Marzulli et al., 1981; Bronaugh, 1982) and a

1460 10-fold higher value due to skin defattening and skin damage from repeated solvent contact. Thus, a
1461 absorbed dermal dose of

$$1462 \text{ absorbed dose (dermal)} = 6000 \text{ mg} * (0.03 \text{ to } 0.30) * (4 \text{ to } 16) / 70 \text{ kg}$$

$$1463 \text{ absorbed dose (dermal)} = 10 \text{ to } 410 \text{ mg/kg}$$

1464 In conclusion, it is likely that the dermal exposure contributed significantly to the total dioxane exposure,
1465 which was estimated between 41 and 506 mg/kg.

1466 **8. SUMMARY OF PROPOSED AEGLs**1467 **8.1. AEGL Values and Toxicity Endpoints**

1468 The derived AEGL values for various levels of effects and durations of exposure are summarized
 1469 in Table 12. AEGL-1 were based on a pharmacokinetic study in humans in which eye irritation occurred
 1470 at 50 ppm throughout the 6-hour exposure period (Young et al., 1977). AEGL-2 values were based on a
 1471 study in rats in which exposure to 6000 ppm for 4 hours did not affect the ability to escape (Goldberg et
 1472 al., 1964) and on a study in which exposure to 2000 ppm for 4 hours caused an increased serum activities
 1473 of liver enzymes (Drew et al., 1978). A 4-hour LC₅₀ value of 14,300 ppm (Pozzani et al., 1959), which is
 1474 supported by another acute lethality study (Pilipuk et al., 1977), was used for AEGL-3 derivation.

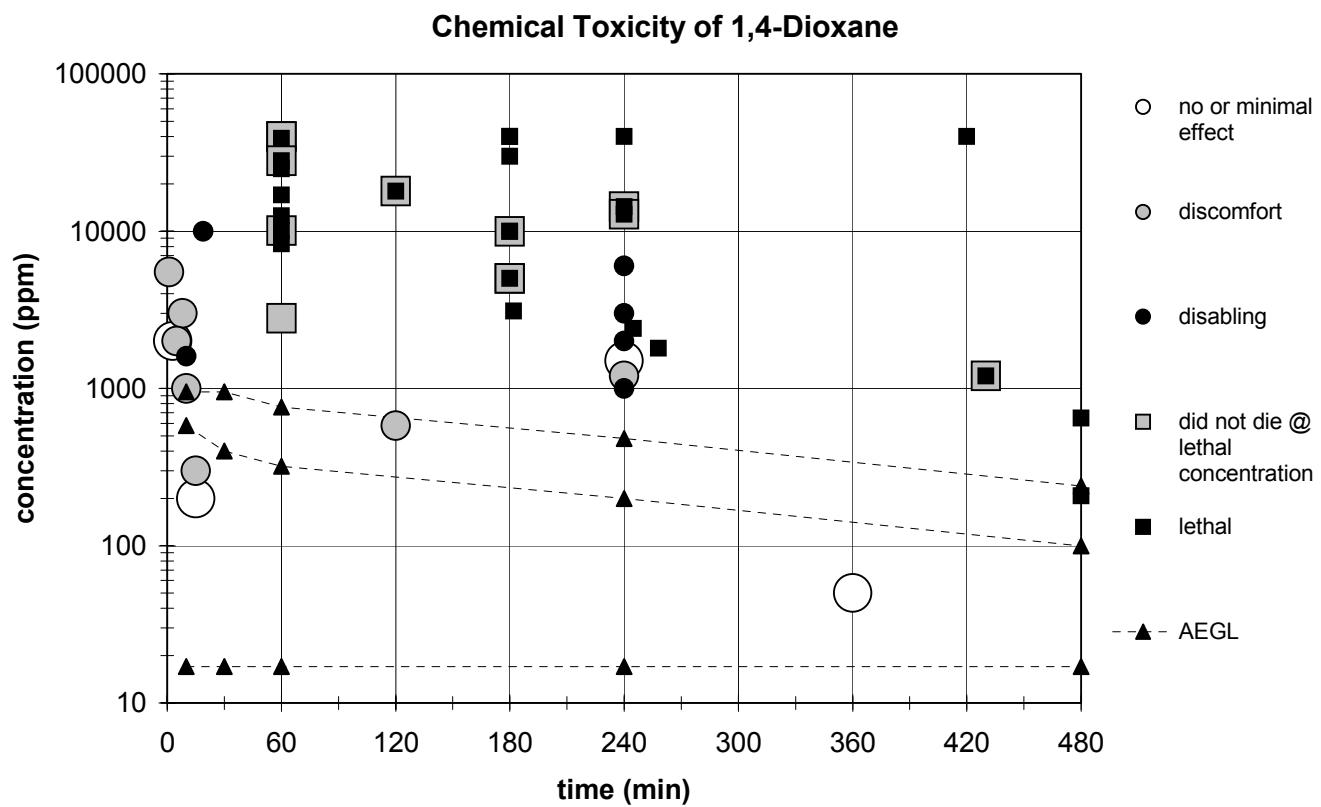

1475

TABLE 12: SUMMARY/RELATIONSHIP OF PROPOSED AEGL VALUES ^a					
Classification	10-Minute	30-Minute	1-Hour	4-Hour	8-Hour
AEGL-1 (Nondisabling)	17 ppm (60 mg/m ³)	17 ppm (60 mg/m ³)			
AEGL-2 (Disabling)	580 ppm (2100 mg/m ³)	400 ppm (1400 mg/m ³)	320 ppm (1200 mg/m ³)	200 ppm (720 mg/m ³)	100 ppm (360 mg/m ³)
AEGL-3 (Lethal)	950 ppm (3400 mg/m ³)	950 ppm (3400 mg/m ³)	760 ppm (2700 mg/m ³)	480 ppm (1700 mg/m ³)	240 ppm (860 mg/m ³)

1483 ^a Cutaneous absorption may occur; direct skin contact with the liquid should be avoided.

1484 All inhalation data are summarized in Figure 2 below. The data were classified into severity
 1485 categories chosen to fit into definitions of the AEGL level health effects. The category severity
 1486 definitions are "No effect"; "Discomfort"; "Disabling"; "Lethal"; "Did not die at a lethal concentration"
 1487 (at an experimental concentration in which some of the animals died and some did not, this label refers to
 1488 the animals which did not die) and "AEGL". Note that the AEGL values are designated as a triangle
 1489 without an indication to their level. The AEGL-3 is higher than the AEGL-2, which is higher than the
 1490 AEGL-1.

1491 Note: Please note that the two 'lethality points' at 208 and 650 ppm for 480 minutes, which seem
 1492 to be in conflict with the derived AEGL-2 and -3 values, represent the estimated exposure range for the
 1493 case of lethal outcome of a repeated exposure at the workplace with additional dermal exposure
 1494 (Johnstone, 1959; cf. discussion in Section 7.3).

1495

FIGURE 2: CATEGORICAL REPRESENTATION OF ALL DIOXANE INHALATION DATA

1496 **8.2. Comparison with Other Standards and Criteria**

1497 Other standards and guidance levels for workplace and community exposures are listed in Table
 1498 13.

TABLE 13. EXTANT STANDARDS AND GUIDELINES FOR 1,4-DIOXANE					
Guideline	Exposure Duration				
	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-1	17 ppm	17 ppm	17 ppm	17 ppm	17 ppm
AEGL-2	580 ppm	400 ppm	320 ppm	300 ppm	100 ppm
AEGL-3	950 ppm	950 ppm	760 ppm	480 ppm	240 ppm
PEL-TWA (OSHA) ^a					100 ppm
IDLH (NIOSH) ^b		2000 ppm			
REL-TWA (NIOSH) ^c		1 ppm [30-min ceiling]			
TLV-TWA (ACGIH) ^d					25 ppm
MAK (Germany) ^e					20 ppm
MAK Spitzengrenzung (Germany) ^f	40 ppm [for 15 min]				
MAC (The Netherlands) ^g	24 ppm [for 15 min]				12 ppm

1517 ^a **OSHA PEL-TWA (Occupational Health and Safety Administration, Permissible Exposure Limits - Time
 1518 Weighted Average)** (OSHA, 1993), is defined analogous to the ACGIH-TLV-TWA, but is for exposures
 1519 of no more than 10 hours/day, 40 hours/week.

1520 ^b **IDLH (Immediately Dangerous to Life and Health, National Institute of Occupational Safety and Health)**
 1521 (NIOSH, 1996), is based on acute inhalation toxicity data in animals (Wirth and Klimmer, 1936; Pilipyuk
 1522 et al., 1977; Yant et al., 1930).

1523 ^c **NIOSH REL-TWA (National Institute of Occupational Safety and Health, Recommended Exposure Limits -
 1524 Time Weighted Average)** (NIOSH, 1977), is defined analogous to the ACGIH-TLV-TWA. The value was
 1525 based on the belief that dioxane can cause tumors in exposed workers and on the belief that information
 1526 allowing the derivation of a safe exposure limit was not available. Thus, the limit was set at the lowest
 1527 concentration reliably measurable over a short sampling period, which, according to NIOSH, was 1 ppm,
 1528 based on 30-minute sampling at a sampling rate of 1 l/min. In the past, NIOSH has subscribed to a
 1529 carcinogen policy which called for "no detectable exposure levels for proven carcinogenic substances".
 1530 Because of advances in science and in approaches to risk assessment and risk management, NIOSH has
 1531 adopted a more inclusive policy (see <http://www.cdc.gov/niosh/npg/nengapdx.html>). NIOSH

1532 recommended exposure limits (RELS) will be based on risk evaluations using human or animal health
1533 effects data, and on an assessment of what levels can be feasibly achieved by engineering controls and
1534 measured by analytical techniques. To the extent feasible, NIOSH will project not only a no-effect
1535 exposure, but also exposure levels at which there may be residual risks.

1536 **^d ACGIH TLV-TWA (American Conference of Governmental Industrial Hygienists, Threshold Limit Value -**
1537 **Time Weighted Average)** (ACGIH, 1997). The time-weighted average concentration for a normal 8-hour
1538 workday and a 40-hour workweek, to which nearly all workers may be repeatedly exposed, day after day,
1539 without adverse effect.

1540 **^e MAK (Maximale Arbeitsplatzkonzentration [Maximum Workplace Concentration], Deutsche Forschungs-**
1541 **gemeinschaft [German Research Association], Germany)** (Henschler, 1976/77; Greim, 1996; 1998;
1542 2000), is defined analogous to the ACGIH-TLV-TWA. The MAK values is based on eye irritation at 50
1543 ppm (Young et al., 1977)

1544 **^f MAK Spitzenbegrenzung (Kategorie I) [Peak Limit Category I, 2]** (Henschler, 1976/77; Greim, 1996; 1998;
1545 2000), constitutes the maximum average concentration to which workers can be exposed for periods up to
1546 15 minutes, with at least 1 hour between exposures and no more than 4 exposures per work shift; total
1547 exposure may not exceed 8-hour MAK. The Category I is applied to irritating substances, the excess factor
1548 of 2 (over the 8-hour MAK) was chosen by convention and was not derived on substance-specific data.

1549 **^g MAC ([Maximum Workplace Concentration], Dutch Expert Committee for Occupational Standards, The**
1550 **Netherlands)** (ECB, 1999), is defined analogous to the ACGIH-TLV-TWA.

1551 8.3. Data Adequacy and Research Needs

1552 Older studies have assessed irritative effects of dioxane in humans after a single inhalation
1553 exposure. Additionally, experimental studies on the toxicokinetics and the odor perception are available.
1554 AEGL-1 values were based on eye irritation in humans reported in a toxicokinetic study. Only few studies
1555 are available for the derivation of AEGL-2 values. The AEGL-2 values were based on a study reporting a
1556 no effects on the escape response in rats, which was considered a NOEL for depressive effects on the
1557 central nervous system that led to narcosis, i.e. the inability to escape, in other studies at higher
1558 concentrations. In addition, a study reporting increased liver enzyme activities in serum indicating liver
1559 toxicity was used as additional key study. This study was supported by single oral exposure studies
1560 demonstrating proliferative and genotoxic effects on rat hepatocytes. For derivation of AEGL-3 values,
1561 no LC₅₀ study performed and documented according to today's standards was available, however, several
1562 older studies investigated lethal effects in experimental animals after acute inhalation exposure and
1563 reported LC₅₀ values. The AEGL-3 values were based on a reported LC₅₀ value in rats, which was
1564 supported by other acute lethality studies.

1565 Single inhalation exposure studies in animals focusing on lethal effects and irreversible liver and
1566 kidney damage would allow for more precisely defining the thresholds for the AEGL-2 and -3 levels.

1567

9. REFERENCES

1568 ACGIH, American Conference of Governmental Industrial Hygienists, 1997. Dioxane. In: American Conference of
1569 Governmental Industrial Hygienists ACGIH, Documentation of the Threshold Limit Values and Biological
1570 Exposure Indices, 1998.

1571 AGS, Ausschuß für Gefahrstoffe, 2001. Begründungen zur Bewertung von Stoffen als krebserzeugend,
1572 erbgutverändernd oder fortpflanzungsgefährdend. [Justification for classification of substances as carcinogenic,
1573 mutagenic or toxic to reproduction]; <http://www.baua.de/prax>. Regarding substances classified in TRGS 905:
1574 Verzeichnis krebserzeugender, erbgutverändernder oder fortpflanzungsgefährdender Stoffe. Bundesarbeitsblatt, Issue
1575 3, 2001, pp. 97-101; last altered in Bundesarbeitsblatt, Issue 9, 2001, pp. 96.

1576 AIHA, American Industrial Hygiene Association, 1989. Odor thresholds for chemicals with established
1577 occupational health standards. American Industrial Hygiene Association, Fairfax, VA, USA, 1989.

1578 Amoore, J.E. and E. Hautala, 1983. Odor as an aid to chemical safety: odor thresholds compared with threshold
1579 limit values and volatilities for 214 industrial chemicals in air and water dilution. *J. Appl. Toxicol.* 3, 272-290.

1580 Argus, M.F., R.S. Sohal, G.M. Bryant, C. Hoch-Ligeti and J.C. Arcos, 1973. Dose-response and ultrastructural
1581 alterations in dioxane carcinogenesis - Influence of methylcholanthrene on acute toxicity. *Eur. J. Cancer*, 9, 237-
1582 243, cited in NIOSH (1977).

1583 ATSDR, Agency for Toxic Substances and Disease Registry, 2004. Draft - Toxicological Profile for 1,4-Dioxane.
1584 US Department of Health and Human Services, Public Health Service, ATSDR, Atlanta, GA.

1585 Barber, H., 1934. Haemorrhagic nephritis and necrosis of the liver from dioxane poisoning. *Guy's Hospital Reports*,
1586 84, 267-280.

1587 BASF AG, 1958. Bericht über die eingehende toxikologische Prüfung von Tetrahydrofuran. I. Teil: Akute Toxizität
1588 im Vergleich zu Diäthylether, Äthanol, Aceton und Dioxan. Unpublished report dated 05.04.1958 of BASF AG,
1589 Ludwigshafen, Germany; cited in ECB (1999).

1590 BASF AG, 1973. Ergebnis der gewerbetoxikologischen Vorprüfung. Unpublished report No. XXII 377, dated
1591 04.05.1973, of BASF AG, Ludwigshafen, Germany.

1592 BASF AG, 1979a. Unpublished report 79/135, dated 02.04.1979. BASF AG, Ludwigshafen, Germany; cited in
1593 ECB (1999).

1594 BASF AG, 1979b. Unpublished report 79/134, dated 03.04.1979. BASF AG, Ludwigshafen, Germany; cited in
1595 ECB (1999).

1596 BASF AG, 1979c. Unpublished report 79/133, dated 02.04.1979. BASF AG, Ludwigshafen, Germany; cited in
1597 ECB (1999).

1598 BASF AG, 1980. Akutes Inhalationsrisiko - Inhalations-Risiko-Test (Ratte). Substanz-Nr. 80/88. Unpublished
1599 report, dated 29.12.1980, of BASF AG, Ludwigshafen, Germany.

1600 BASF AG, 1991. Unpublished report 79/471, dated 10.08.1991. BASF AG, Ludwigshafen, Germany; cited in ECB
1601 (1999).

1602 Braun, W.H. and J.D. Young, 1977. Identification of β -hydroxyethoxyacetic acid as the major urinary metabolite of
1603 1,4-dioxane in rat. *Toxicol. Appl. Pharmacol.*, 39, 33-38; cited in DeRosa et al. (1996).

1604 Bronaugh, R., 1982. Percutaneous absorption of cosmetic ingredients. In: Frost, P. (Ed.). *Principles of Cosmetics*
1605 for the Dermatologist. Minneapolis, University of Minnesota Press, pp. 277-284, cited in NICNAS (1998).

1606 BUA, Beratergremium für umweltrelevante Altstoffe, 1992. "1,4-Dioxan", BUA-Stoffbericht 80. S. Hirzel Verlag,
1607 Stuttgart, Germany.

1608 BUA, Beratergremium für umweltrelevante Altstoffe, 1993. "Dioxan (Nr. 80)" in: BUA-Stoffbericht 114,
1609 Ergänzungsberichte I. S. Hirzel Verlag, Stuttgart, Germany.

1610 Buffler, P.A., S.M. Wood, L. Suarez, and D.J. Kilian, 1978. Mortality follow-up of workers exposed to 1,4-dioxane.
1611 *J. Occup. Med.* 20, 255-259, cited in DeRosa et al. (1996) and NIOSH (1977).

1612 David, H., 1964. Elektronenmikroskopische Befunde bei der dioxanbedingten Nephrose der Ratteniere. Beiträge
1613 zur pathologischen Anatomie und zur allgemeinen Pathologie, 130, 187-212.

1614 De Navasquez, S., 1935. Experimental tubular necrosis of the kidneys accompanied by liver changes due to dioxane
1615 poisoning. *J. Hyg.*, 35, 540-548.

1616 DeRosa, C.T., S. Wilbur, J. Holler, P. Richter and Y. W. Stevens, 1996. Health evaluation of 1,4-dioxane. *Toxicol.*
1617 *Ind. Health*, 12, 1-43.

1618 Drew, R.T., J.M. Patel and F.-N. Lin, 1978. Changes in serum enzymes in rats after inhalation of organic solvents
1619 singly and in combination. *Toxicol. Appl. Pharmacol.*, 45, 809-819.

1620 ECB, European Chemicals Bureau, 1999. Risk Assessment Report. 1,4-Dioxane. European Chemicals Bureau, Joint
1621 Research Centre, Ispra, Italy.

1622 ECETOC, European Centre for Ecotoxicology and Toxicology of Chemicals, 1983. Joint Assessment of Commodity
1623 Chemicals Report No. 2. 1,4-Dioxane. European Chemical Industry Ecology and Toxicology Centre, Brussels,
1624 Belgium.

1625 EPA, U.S. Environmental Protection Agency, 1988a. 1,4-Dioxane. IRIS, Integrated Risk Information System,
1626 <http://www.epa.gov/iris>.

1627 EPA, Environmental Protection Agency, 1988b. Recommendations and Documentation of Biological Values for
1628 Use in Risk Assessment. U.S. Environmental Protection Agency, Washington, DC, 1988.

1629 Fairley, A., E.C. Linton and A.H. Ford-Moore, 1934. The toxicity to animals of 1,4-dioxane. *J. Hyg.*, 34, 486-501.

1630 Frantik, E., M. Hornychova and M. Horvath, 1994. Relative acute neurotoxicity of solvents: isoeffective air
1631 concentrations of 48 compounds evaluated in rats and mice. *Environ. Res.*, 66, 173-185.

1632 Galloway, S.M., M.J. Armstrong, C. Reuben, S. Coleman, B. Brown, C. Cannon, A.D. Bloom, F. Nakamura, M.
1633 Ahmed, S. Duk, J. Rimpo, B.H. Margolin, M.A. Resnik, B. Anderson and E. Zeiger, 1987. Chromosome aberrations
1634 and sister chromatid exchanges in Chinese hamster ovary cells: evaluations of 108 chemicals. *Environ. Mol.*
1635 *Mutag.*, 10 (Suppl. 10), 1-175; cited in ECB (1999).

1636 Giavini, E., C. Vismara and M.L. Broccia, 1985. Teratogenesis study of dioxane in rats. *Toxicol. Lett.*, 26, 85-88; cited in ECB (1999) and DeRosa et al. (1996).

1637

1638 Goldberg, M.E., C. Haun and H.F. Smyth, 1962. Toxicologic implication of altered behavior induced by an industrial vapor. *Toxicol. Appl. Pharmacol.*, 4, 148-164.

1639

1640 Goldberg, M.E., H.E. Johnson, U.C. Pozzani and H.F. Smyth, 1964. Effect of repeated inhalation of vapors of industrial solvents on animal behavior. I. Evaluation of nine solvent vapors on pole-climb performance in rats. *Am. Ind. Hyg. Assoc. J.*, 25, 369-375.

1641

1642

1643 Goldsworthy, T.L., T.M. Monticello, K.T. Morgan, E. Bermudez, D.M. Wilson, R. Jackh and B.E. Butterworth, 1991. Examination of potential mechanisms of carcinogenicity of 1,4-dioxane in rat nasal epithelial cells and hepatocytes. *Arch. Toxicol.*, 65, 1-9.

1644

1645

1646 Greim, H., 1996. 1,4-Dioxan. Nachtrag 1996. In: H. Greim, *Gesundheitsschädliche Arbeitsstoffe, Toxikologisch-arbeitsmedizinische Begründungen von MAK-Werten*. 23. Lieferung. DFG, Deutsche Forschungsgemeinschaft, VCH Verlag Weinheim, Germany, 1996, pp.1-11.

1647

1648

1649 Greim, H., 1998. 1,4-Dioxan. Nachtrag 1998. In: H. Greim, *Gesundheitsschädliche Arbeitsstoffe, Toxikologisch-arbeitsmedizinische Begründungen von MAK-Werten*. 26. Lieferung. DFG, Deutsche Forschungsgemeinschaft, VCH Verlag Weinheim, Germany, 1998, pp.1-3.

1650

1651

1652 Greim, H., 2000. 1,4-Dioxan. Nachtrag 2000. In: H. Greim, *Gesundheitsschädliche Arbeitsstoffe, Toxikologisch-arbeitsmedizinische Begründungen von MAK-Werten*. 30. Lieferung. DFG, Deutsche Forschungsgemeinschaft, VCH Verlag Weinheim, Germany, 2000, p.1.

1653

1654

1655 Gross, E., 1943. Glycols and glycol derivatives. In: *Toxicology and Hygiene of Industrial Solvents*, Lehmann, K.B. and F. Flury (Eds.), Williams and Wilkens Co., Baltimore, 1943, pp. 263-268, 303-307, cited in NIOSH (1977).

1656

1657 Hartung, R., 1989. Health and environmental effects assessment for 1,4-dioxane. *Gelman Sciences, Inc.*, Ann Arbor, MI; cited in DeRosa et al., (1996).

1658

1659 Hayes, A.W. (Ed.), 1994. *Principles and Methods of Toxicology*. 3rd Ed., Raven Press, New York, NY, 1994, pp. 760-761.

1660

1661 Hellman, T.M. and F.H. Small, 1974. Characterization of the odor properties of 101 petrochemicals using sensory methods. *J. Air Pollution Control Assoc.* 24, 979-982.

1662

1663 Henry, S.A., 1933. Annual report of Chief Inspector of Factories, Great Britain, 1933; pp. 66-68, cited in NIOSH (1977).

1664

1665 Henschler, D., 1976/77. Dioxan. In: D. Henschler, *Gesundheitsschädliche Arbeitsstoffe, Toxikologisch-arbeitsmedizinische Begründungen von MAK-Werten*. 5. Lieferung. DFG, Deutsche Forschungsgemeinschaft, VCH Verlag Weinheim, Germany, 1976/77, pp.1-9.

1666

1667

1668 IARC, International Agency for Research on Cancer, 1999. 1,4-Dioxane. In: *International Agency for Research on Cancer IARC, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans*. Vol. 71. Re-Evaluation of some Organic Chemicals, Hydrazine and Hydrogen Peroxide (Part 1-3).

1669

1670

1671 Izmerov, N.F., I.V. Sanotsky and K.K. Sidorov, 1982. Toxicometric parameters of industrial toxic chemicals under single exposure. *Centre of International Projects, GKNT, Moscow*.

1672

1673 JBRC, Japan Bioassay Research Center, 1998. Two-year studies of 1,4-dioxane in F344 rats and BDF1 mice
1674 (drinking water studies). Japan Bioassay Research Center, Kanagawa, Japan; cited in ATSDR (2004).

1675 Johnstone, R.T., 1959. Death due to dioxane? Am. Med. Assoc. Arch. Ind. Health, 20, 445-447.

1676 King, M.E., A.M. Shefner and R.R. Bates, 1973. Carcinogenesis bioassay of chlorinated dibenzodioxins and related
1677 chemicals. Environ. Health Perspect., 5, 163-170, cited in DeRosa et al. (1996).

1678 Kitchin, K.T. and J.L. Brown, 1990. Is 1,4-dioxane a genotoxic carcinogen? Canc. Lett., 53, 67-71; cited in ECB
1679 (1999).

1680 Kitchin, K.T. and J.L. Brown, 1994. Dose-response relationship for rat liver DNA damage caused by 49 rodent
1681 carcinogens. Toxicol., 88, 31-49.

1682 Knoefel, P.K., 1935. Narcotic potency of some cyclic acetals. J. Pharmacol. Exp. Ther., 53, 440-444; cited in ECB
1683 (1999) and NIOSH (1977).

1684 Kociba, R.J., S.B. McCollister, C. Park, T.R. Torkelson and P.J. Gehring, 1974. 1,4-dioxane. I. Results of a 2-year
1685 ingestion study in rats. Toxicol. Appl. Pharmacol., 30, 275-286; cited in DeRosa et al. (1996).

1686 Laug, E.P., H.O. Calvery, H.J. Morris and G. Woodward, 1939. The toxicology of some glycols and derivatives. J.
1687 Ind. Hyg. Toxicol., 21, 173-201; cited in ECB (1999) and NIOSH (1977).

1688 Lundberg, I.M., J. Högberg, T. Kroveny and B. Holmberg, 1987. Three industrial solvents investigated for tumor
1689 promoting activity in the rat liver. Canc. Lett., 36, 29-33, cited in DeRosa et al. (1996).

1690 Marzulli, F.N., D.M. Anjo and H.I. Maibach, 1981. In vivo skin penetration studies of 2,4-toluenediamine, 2,4-
1691 diaminoanisole, 2-nitro-p-phenylenediamine, p-dioxane and N-nitrosodiethanolamine in cosmetics. Food Cosmet.
1692 Toxicol., 19, 743-747, cited in DeRosa et al. (1986).

1693 May, J. 1966. Geruchsschwellen von Lösemitteln zur Bewertung von Lösemittelgerüchen in der Luft. [Odor
1694 thresholds of solvents for evaluating solvent odors in air]. Staub - Reinhaltung Luft 26, 385-389.

1695 McFee, A.F., M.G. Abbott, D.K. Gulati and M.D. Shelby, 1994. Results of mouse bone marrow micronucleus
1696 studies on 1,4-dioxane. Mutat. Res., 322, 145-148; cited in ECB (1999).

1697 Mirkova, E.T., 1994. Activity of the rodent carcinogen 1,4-dioxane in the mouse bone marrow micronucleus assay.
1698 Mutat. Res., 322, 142-144; cited in ECB (1999).

1699 Miyagawa, M., T. Shirotori, M. Tsuchitani and K. Yoshikawa, 1999. Repeat-assessment of 1,4-dioxane in rat-
1700 hepatocyte replicative DNA synthesis (RDS) test: evidence for stimulus of hepatocyte proliferation. Exp. Toxicol.
1701 Pathol., 51, 555-558.

1702 Morita, T., 1994. No clastogenicity of 1,4-dioxane as examined in the mouse peripheral blood micronucleus test.
1703 Mamm. Mutagen. Study Group Commun., 2, 7-8; cited in ECB (1999).

1704 Morita, T. and M. Hayashi, 1998. 1,4-Dioxane is not mutagenic in five in vitro assays and mouse peripheral blood
1705 micronucleus assay, but is in mouse liver micronucleus assay. Environ. Mol. Mutagen., 32, 269-280.

1706 NCI, National Cancer Institute, 1978. Bioassay of 1,4-dioxane for possible carcinogenicity. Carcinogenesis
1707 Technial Report Series No. 80. National Cancer Institute, U.S. Department of Health, Education and Welfare,

1708 Public Health Service, National Institutes of Health, Division of Cancer Cause and Prevention, Carcinogenesis
1709 Prevention Program, Bethesda, MD; cited in DeRosa et al. (1996).

1710 Nelson, N., 1951. Solvent toxicity with particular reference to certain octyl alcohols and dioxanes. *Med. Bull.*, 11,
1711 226-238; cited in ECB (1999) and NIOSH (1977).

1712 Nestmann, E.R., R. Otson, D.J. Kowbel, P. Bothwell and T.R. Harrington, 1984. Mutagenicity in a modified
1713 Salmonella assay of fabric-protecting products containing 1,1,1-trichloroethane. *Environ. Mutagenesis*, 6, 71-80;
1714 cited in ECB (1999).

1715 NICNAS, National Industrial Chemicals Notification and Assessment Scheme, 1998. 1,4-Dioxane. Priority existing
1716 chemical assessment report. NICNAS, Camperdown, Australia, 1998.

1717 NIOSH, National Institute for Occupational Safety and Health, 1977. Criteria for a Recommended Standard -
1718 Occupational Exposure to Dioxane. HEW Publication No. (NIOSH) 77-226. U.S. Department of Health, Education
1719 and Welfare, Public Health Service, Center for Disease Control, National Institute of Occupational Safety and
1720 Health.

1721 NIOSH, National Institute of Occupational Safety and Health, 1996. Dioxane. Documentation for Immediately
1722 Dangerous to Life and Health Concentrations. [Http://www.cdc.gov/niosh/idlh/123911.html](http://www.cdc.gov/niosh/idlh/123911.html). Download date
1723 17.10.2001.

1724 OSHA, Occupational Health and Safety Administration. Code of Federal Regulations 29, Part 1910, 1910.1000. Air
1725 Contaminants; amended by Fed. Reg. 58, 35308, 35340 (June 30, 1983); correct by Fed. Reg. 58, 40191 (July 27,
1726 1983); http://www.osha-slc.gov/OshStd_data/1910_1000_TABLE_Z-1.html. Download date 04.05.2000.

1727 Perone, V.B., L.D. Scheel and W.P. Tolos, 1976. Dioxane Toxicity. Unpublished report dated 03.11.1976, Toxicity
1728 Branch, Division of Laboratories and Criteria Development, National Institutes for Occupation Safety and health,
1729 Cincinnati, OH; cited in DeRosa et al. (1996).

1730 Pilipyuk, Z.I., G.M. Gorban, G.I. Solomin and A.I. Gorshunova, 1977. Toxicology of 1,4-dioxane [in Russian].
1731 Kosmicleskaja Biologiya i Aviakosmicheskaya Medicina, 11, 53-57.

1732 Pozzani, U.C., C.S. Weil and C.P. Carpenter, 1959. The toxicological basis of threshold limit values. 5. The
1733 experimental inhalation of vapor mixtures by rats with notes upon the relationship between single dose inhalation
1734 and single dose oral data. *Am. Ind. Hyg. Assoc. J.*, 20, 364-369.

1735 Reitz, R.H., P.S. McCroskey, N.C. Park, M.E. Andersen, M.L. Gargas, 1990. Development of a physiologically
1736 based pharmacokinetic model for risk assessment with 1,4-dioxane. *Toxicol. Appl. Pharmacol.*, 105, 37-54.

1737 Sheu, C.W., F.M. Morland, J.K. Lee and V.C. Dunkel, 1988. In vitro BALB/3t3 cell transformation assay of
1738 nonoxynol-9 and 1,4-dioxane. *Environ. Mol. Mutagen.*, 11, 41-48; cited in ECB (1999).

1739 Silverman, L., H.F. Schulte and M.W. First, 1946. Further studies on sensory response to certain industrial solvent
1740 vapors. *J. Ind. Hyg. Toxicol.*, 28, 262-266.

1741 Sina, J.F., C.L. Bean, G.R. Dysart, V.I. Taylor and M.O. Bradley, 1983. Evaluation of the alkaline elution/rat
1742 hepatocyte assay as a predictor of carcinogenic/mutagenic potential. *Mutat. Res.*, 113, 357-391; cited in ECB
1743 (1999).

1744 Smyth, H.F., J. Seaton and L. Fischer, 1941. The single dose toxicity of some glycols and derivatives. *J. Ind. Hyg. Toxicol.*, 23, 259-268; cited in ECB (1999) and NIOSH (1977).

1745

1746 Stickney, J.A., S.L. Sager, J.R. Clarkson, L.A. Smith, B.J. Locey, M.J. Bock, R. Hartung and S.F. Olp (2003). An updated evaluation of the carcinogenic potential of 1,4-dioxane. *Regul. Toxicol. Pharmacol.*, 38, 183-195.

1747

1748 Stott, W.T., J.F. Quast and P.G. Watanabe, 1981. Differentiation of the mechanisms of oncogenicity of 1,4-dioxane and 1,3-hexachlorobutadiene in the rat. *Toxicol. Appl. Pharmacol.*, 60, 287-300; cited in ECB (1999).

1749

1750 Thiess, A., E. Tress and I. Fleig, 1976. Arbeitsmedizinische Untersuchungsergebnisse von Dioxan-exponierten Mitarbeitern. [Results of occupational-medical examinations of dioxane-exposed workers]. *Arbeitsmedizin, Sozialmedizin, Präventivmedizin*, 11, 34-46.

1751

1752

1753 Tinwell, H. and J. Ashby, 1994. Activity of 1,4-dioxane in mouse bone marrow micronucleus assays. *Mutat. Res.*, 322, 148-150; cited in ECB (1999).

1754

1755 Torkelson, T.R., B.K.J. Leong, R.J. Kociba, W.A. Richter and P.J. Gehring, 1974. 1,4-Dioxane. II. Results of a 2-year inhalation study in rats. *Toxicol. Appl. Pharmacol.*, 30, 287-298.

1756

1757 Van Doorn, R., M. Ruijten and T. Van Harreveld (2002). Guidance for the application of odor in chemical emergency response. Version 2.1, 29.08.2002.

1758

1759 WHO, World Health Organization, 1999. Principles for the Assessment of Risks to Human Health from Exposure to Chemicals. Environmental Health Criteria 210. World Health Organization, Geneva, Switzerland, 1999.

1760

1761 Wirth, W. and O. Klimmer, 1936. On the toxicology of organic solvents. 1,4-Dioxane (Diethylene Dioxide). *Archiv für Gewerbepathologie und Gewerbehygiene*, 17, 192-206.

1762

1763 Woo, Y., J.C. Arcos, M.F. Argus, G.W. Griffen and K. Nishama, 1977. Structural identification of p-dioxane-2-one as the major urinary metabolite of p-dioxane. *Naunyn-Schmiedeberg's Arch. Pharmacol.*, 299, 283-287; cited in DeRosa et al. (1996) and ECB (1999).

1764

1765

1766 Woo, Y., M.F. Argus and J.C. Arcos, 1978. Effect of mixed-function oxidase modifiers on metabolism and toxicit of the oncogen dioxane. *Canc. Res.*, 36, 1621-1625; cited in DeRosa et al. (1996) and ECB (1999).

1767

1768 Yant, W.P., H.H. Schrenk, F.A. Patty and C. P. Waite, 1930. Acute response of Guinea pigs to vapors of some new commercial organic compounds - VI. Dioxan. Division of Industrial Hygiene, National Institute of Health, U.S. Public Health Service, Washington, DC, U.S. Treasury Department. Reprint No. 1407 from Public Health Reports, No. 35, 45, 2023-2032.

1769

1770

1771

1772 Young, J.D., W.H. Braun, L.W. Rampy, M.B. Chenoweth and G.E. Blau, 1977. Pharmacokinetics of 1,4-dioxane in humans. *J. Toxicol. Environ. Health*, 3, 507-520.

1773

1774 Young, D.J., W.H. Braun and P.J. Gehring, 1978a. The dose-dependent fate of 1,4-dioxane in rats. *J. Environ. Pathol. Toxicol.*, 2, 263-282.

1775

1776 Young, J.D., W.H. Braun and P. J. Gehring, 1978b. Dose-dependent fate of 1,4-dioxane in rats. *J. Toxicol. Environ. Health*, 4, 709-726.

1777

1778 **References evaluated, but not cited** (for reasons given in parenthesis)

1779 Appel, K.E., 1988. Zur gesundheitlichen Bewertung von Dioxan. *Bundesgesundheitsblatt* , 31, 37-46. (review
1780 article without new relevant information).

1781 Cortese, O., 1941. Ricerche ematologiche nell'intoxicazione sperimentale de dioxan [Hematological
1782 investigations in experimental dioxane poisoning]. *Folia Medica*, Napoli, 17, 653-673. (reported hematological
1783 effects after subcutaneous administration).

1784 Ehrenreich, T., 1977. Renal disease from exposure to solvents. *Ann. Clin. Labor. Sci.*, 7, 6-16. (review on renal
1785 effects of industrial solvents with only little information on dioxane).

1786 Estler, W., 1935. Gewerbliche und experimentelle Vergiftungen mit Dioxan im Schrifttum [Industrial and
1787 experimental poisonings by dioxane in the literature]. *Ärztlche Sachverständigen-Zeitung*, 41, 119-122. (older
1788 review on dioxane toxicity without relevant new information).

1789 Grasso, P., M. Sharratt, D.M. Davies and D. Irvine, 1984. Neurophysiological and psychological disorders and
1790 occupational exposure to organic solvents. *Food Chem. Toxicol.* 22, 819-852. (Review on different solvents,
1791 reporting dioxane experiments of Goldberg et al., 1964).

1792 Muir,C.K., 1985. Opacity of bovine cornea in vitro induced by surfactants and industrial chemicals compared with
1793 ocular irritancy in vivo. *Toxicol. Lett.*, 24, 157-162. (in the bovine corneal opacity test in vitro, 5 % dioxane had a
1794 very small effect, while 10 % led to marked opacity).

1795 Sayers, R.R., 1938. Report on acute response of Guinea pigs to inhalation of some organic chemicals. (Paper
1796 presented at VIII. Kongreß für Unfallmedizin und Berufskrankheiten, Frankfurt, Germany, Sept. 30, 1938).
1797 Proceedings of the 8th International Congress on Occupational Diseases and Accidents, Georg Thieme , Leipzig,
1798 Germany, 1938, pp. 1160-1174. (short review on acute inhalation toxicity of dioxane without relevant new
1799 information).

1800 Tikhonova, G.P., G.I. Solomin, Y.P. Bizin, Z.I. Pilipyuk, 1979. Effect of hypokinesia on animal resistance to
1801 chemical agents. *Kosmicheskaya Biologiya i Aviakosmicheskaya Meditsina*, 13, 46-50. (A 20-day hypokinesia
1802 increased the lethality of rats upon inhalation exposure to dioxane; the study is not considered relevant for the
1803 derivation of AEGL values).

1804

APPENDIX A

1805

Time Scaling Calculations for AEGLs

1806		AEGL-1
1807	Key study:	Young et al. (1977)
1808	Toxicity endpoint:	eye irritation occurred at 50 ppm throughout the 6-hour exposure period in this pharmacokinetic study. Since this was a pharmacokinetic study, no emphasis was put on reporting of symptoms and the authors did not define the severity level of the eye irritation. The irritation was nevertheless considered to be below the notable discomfort level as described in the AEGL-1 definition because the authors (Young et al., 1977) considered 50 ppm as an adequate workplace standard and a level of 50 ppm has been used as a workplace standard in the past.
1815	Scaling:	Since the study by Young et al. (1977) reported eye irritation throughout the whole exposure period of 6 hours and did not report an increase of the effect with time, it is considered adequate to use the same exposure concentration for all relevant time points (flat line). C = 50 ppm
1820	Uncertainty/ modifying factors:	3 for intraspecies variability
1823	Calculations:	
1824	<u>10-minute AEGL-1</u>	C = 50 ppm 10-min AEGL-1 = 50 ppm/3 = 17 ppm (60 mg/m ³)
1826	<u>30-minute AEGL-1</u>	C = 50 ppm 30-min AEGL-1 = 50 ppm/3 = 17 ppm (60 mg/m ³)
1828	<u>1-hour AEGL-1</u>	C = 50 ppm 1-hour AEGL-1 = 50 ppm/3 = 17 ppm (60 mg/m ³)
1830	<u>4-hour AEGL-1</u>	C = 50 ppm 4-hour AEGL-1 = 50 ppm/3 = 17 ppm (60 mg/m ³)
1832	<u>8-hour AEGL-1</u>	C = 50 ppm 8-hour AEGL-1 = 50 ppm/3 = 17 ppm (60 mg/m ³)

1834	AEGL-2	
1835	Key study #1:	Goldberg et al. (1964)
1836	Toxicity endpoint:	In rats, exposure to 6000 ppm for 4 hours resulted in a reduced performance in a conditioned response test, but did not affect the escape response.
1837		
1838	Scaling:	$C^3 * t = k$ for extrapolation to 1 hours, 30 minutes and 10 minutes
1839		$k = 6000^3 \text{ ppm}^3 * 4 \text{ h} = 8.64 * 10^{11} \text{ ppm}^3 \text{ h}$
1840		$C^1 * t = k$ for extrapolation to 8 hours
1841		$k = 6000^1 \text{ ppm} * 4 \text{ h} = 24,000 \text{ ppm h}$
1842	Uncertainty/	Combined uncertainty factor of 30
1843	modifying factors:	3 for interspecies variability
1844		10 for intraspecies variability
1845	Calculations:	
1846	<u>10-minute AEGL-2</u>	$C^3 * 0.167 \text{ h} = 8.64 * 10^{11} \text{ ppm}^3 \text{ h}$
1847		$C = 17,295 \text{ ppm}$
1848		10-min AEGL-2 = $17,295 \text{ ppm} / 30 = 580 \text{ ppm (2100 mg/m}^3\text{)}$
1849	<u>30-minute AEGL-2</u>	$C^3 * 0.5 \text{ h} = 8.64 * 10^{11} \text{ ppm}^3 \text{ h}$
1850		$C = 12,000 \text{ ppm}$
1851		30-min AEGL-2 = $12,000 \text{ ppm} / 30 = 400 \text{ ppm (1400 mg/m}^3\text{)}$
1852	<u>1-hour AEGL-2</u>	$C^3 * 1 \text{ h} = 8.64 * 10^{11} \text{ ppm}^3 \text{ h}$
1853		$C = 9524.0 \text{ ppm}$
1854		1-hour AEGL-2 = $9524 \text{ ppm} / 30 = 320 \text{ ppm (1200 mg/m}^3\text{)}$
1855	<u>4-hour AEGL-2</u>	4-hour AEGL-2 = $6000 \text{ ppm} / 30 = 200 \text{ ppm (720 mg/m}^3\text{)}$
1856	<u>8-hour AEGL-2</u>	$C^1 * 8 \text{ h} = 24,000 \text{ ppm h}$
1857		$C = 3000.0 \text{ ppm}$
1858		8-hour AEGL-2 = $3000 \text{ ppm} / 30 = 100 \text{ ppm (360 mg/m}^3\text{)}$

1859	AEGL-2	
1860	Key study #2:	Drew et al. (1978)
1861	Toxicity endpoint:	In rats, a 2-3fold increased serum activities of liver enzymes (ornithine carbamyl transferase, aspartate aminotransferase and alanine aminotransferase) occurred
1862		after a single 4-hour exposure to 1000 or 2000 ppm dioxane. An exposure to
1863		2000 ppm for 4 hours was used as a basis for AEGL derivation.
1864		
1865	Scaling:	$C^3 * t = k$ for extrapolation to 1 hours, 30 minutes and 10 minutes
1866		$k = 2000^3 \text{ ppm}^3 * 4 \text{ h} = 3.2 * 10^{10} \text{ ppm}^3 \text{ h}$
1867		$C^1 * t = k$ for extrapolation to 8 hours
1868		$k = 2000^1 \text{ ppm} * 4 \text{ h} = 8000 \text{ ppm h}$
1869	Uncertainty/	Combined uncertainty factor of 10
1870	modifying factors:	1 for interspecies variability
1871		10 for intraspecies variability
1872	Calculations:	
1873	<u>10-minute AEGL-2</u>	$C^3 * 0.167 \text{ h} = 3.2 * 10^{10} \text{ ppm}^3 \text{ h}$
1874		$C = 5765.2 \text{ ppm}$
1875		10-min AEGL-2 = $5765 \text{ ppm} / 10 = 580 \text{ ppm (2100 mg/m}^3\text{)}$
1876	<u>30-minute AEGL-2</u>	$C^3 * 0.5 \text{ h} = 3.2 * 10^{10} \text{ ppm}^3 \text{ h}$
1877		$C = 4000.0 \text{ ppm}$
1878		30-min AEGL-2 = $4000 \text{ ppm} / 10 = 400 \text{ ppm (1400 mg/m}^3\text{)}$
1879	<u>1-hour AEGL-2</u>	$C^3 * 1 \text{ h} = 3.2 * 10^{10} \text{ ppm}^3 \text{ h}$
1880		$C = 3174.8 \text{ ppm}$
1881		1-hour AEGL-2 = $3175 \text{ ppm} / 10 = 320 \text{ ppm (1200 mg/m}^3\text{)}$
1882	<u>4-hour AEGL-2</u>	4-hour AEGL-2 = $2000 \text{ ppm} / 10 = 200 \text{ ppm (720 mg/m}^3\text{)}$
1883	<u>8-hour AEGL-2</u>	$C^1 * 8 \text{ h} = 8000 \text{ ppm h}$
1884		$C = 1000.0 \text{ ppm}$
1885		8-hour AEGL-2 = $1000 \text{ ppm} / 10 = 100 \text{ ppm (360 mg/m}^3\text{)}$

1886		AEGL-3
1887	Key study:	Pozzani et al. (1959)
1888	Toxicity endpoint:	LC ₅₀ of 14,300 ppm in rats for 4 hours of exposure.
1889	Extrapolation factor:	3 for extrapolation of LC ₅₀ to lethality threshold
1890		14,300 ppm / 3 = 4767 ppm
1891	Scaling:	C ³ * t = k for extrapolation to 4 hours, 1 hours, 30 minutes and 10 minutes
1892		k = 4767 ³ ppm ³ * 4 h = 4.333 * 10 ¹¹ ppm ³ h
1893		C ¹ * t = k for extrapolation to 8 hours
1894		k = 4767 ¹ ppm * 4 h = 19,068 ppm h
1895	Uncertainty/	Combined uncertainty factor of 10
1896	modifying factors:	1 for interspecies variability
1897		10 for intraspecies variability
1898	Calculations:	
1899	<u>10-minute AEGL-3</u>	10-min AEGL-3 = 30-min AEGL-3 = 950 ppm (3400 mg/m ³)
1900	<u>30-minute AEGL-3</u>	C ³ * 0.5 h = 4.333 * 10 ¹¹ ppm ³ h
1901		C = 9533.9 ppm
1902		30-min AEGL-3 = 9534 ppm/10 = 950 ppm (3400 mg/m ³)
1903	<u>1-hour AEGL-3</u>	C ³ * 1 h = 4.333 * 10 ¹¹ ppm ³ h
1904		C = 7567.1 ppm
1905		1-hour AEGL-3 = 7567 ppm/10 = 760 ppm (2700 mg/m ³)
1906	<u>4-hour AEGL-3</u>	4-hour AEGL-3 = 4767 ppm/10 = 480 ppm (1700 mg/m ³)
1907	<u>8-hour AEGL-3</u>	C ¹ * 8 h = 19,068 ppm h
1908		C = 2383.5 ppm
1909		8-hour AEGL-3 = 2384 ppm/10 = 240 ppm (860 mg/m ³)

1910

APPENDIX B

1911

Level of Distinct Odor Awareness

1912 **Derivation of the Level of Distinct Odor Awareness (LOA)**

1913 The level of distinct odor awareness (LOA) represents the concentration above which it is
1914 predicted that more than half of the exposed population will experience at least a distinct odor intensity,
1915 about 10 % of the population will experience a strong odor intensity. The LOA should help chemical
1916 emergency responders in assessing the public awareness of the exposure due to odor perception. The
1917 LOA derivation follows the guidance given by van Doorn et al. (2002).

1918 For derivation of the odor detection threshold (OT_{50}), two studies are available in which the odor
1919 threshold for the reference chemical n-butanol (odor detection threshold 0.04 ppm) have also been
1920 determined:

1921 May (1966):
1922 odor detection threshold for dioxane: 170 ppm
1923 odor detection threshold for n-butanol: 11 ppm
1924 corrected odor detection threshold (OT_{50}) for dioxane: $170 \text{ ppm} * 0.04 \text{ ppm} / 11 \text{ ppm} = 0.62 \text{ ppm}$

1925 Hellman and Small (1974):
1926 odor detection threshold for dioxane: 0.8 ppm
1927 odor detection threshold for n-butanol: 0.3 ppm
1928 corrected odor detection threshold (OT_{50}) for dioxane: $0.8 \text{ ppm} * 0.04 \text{ ppm} / 0.3 \text{ ppm} = 0.11 \text{ ppm}$

1929 Since the n-butanol value from the Hellman and Small (1974) study was much closer to the reference
1930 value, this study was used to derive the LOA.

1931 The concentration (C) leading to an odor intensity (I) of distinct odor detection (I=3) is derived
1932 using the Fechner function:

$$I = k_w * \log (C / OT_{50}) + 0.5$$

1933 For the Fechner coefficient, the default of $k_w = 2.33$ will be used due to the lack of chemical-specific data:
1934 $3 = 2.33 * \log (C / 0.11) + 0.5$ which can be rearranged to
1935 $\log (C / 0.11) = (3 - 0.5) / 2.33 = 1.07$ and results in
1936 $C = (10^{1.07}) * 0.11 = 11.8 * 0.11 = 1.30 \text{ ppm}$

1938 The resulting concentration is multiplied by an empirical field correction factor. It takes into
1939 account that in every day life factors, such as sex, age, sleep, smoking, upper airway infections and
1940 allergy as well as distraction, increase the odor detection threshold by a factor of 4. In addition, it takes
1941 into account that odor perception is very fast (about 5 seconds) which leads to the perception of
1942 concentration peaks. Based on the current knowledge, a factor of 1/3 is applied to adjust for peak
1943 exposure. Adjustment for distraction and peak exposure lead to a correction factor of $4 / 3 = 1.33$

1944 $LOA = C * 1.33 = 1.30 \text{ ppm} * 1.33 = 1.7 \text{ ppm}$

1945 The LOA for 1,4-dioxane is 1.7 ppm.

1946

APPENDIX C

1947

Preliminary Cancer Assessment of 1,4-Dioxane

1948

Preliminary Cancer Assessment of 1,4-Dioxane

1949

No inhalation slope factor is available for dioxane. As discussed in Section 4.2, the relevance to humans of the nasal tumors in rats observed in the drinking water studies is doubtful. Therefore, dose-response data for liver tumors in rats and mice will be used for calculation.

1952

Stickney et al. analyzed the available tumor dose-response data and calculated a geometric mean oral slope factor of 2.4×10^{-3} (mg/kg/day)⁻¹.

1954

As described in Section 3.4, some studies indicate that dioxane or one of its metabolites may exert clastogenic effects in vivo at high oral doses and in vitro at high concentrations: increased micronuclei formation in rat hepatocytes was found after a single oral dose of 2000 mg/kg (Morita and Hayashi, 1998); an increased rate of DNA strand breaks was found in rats after a single oral dose of 2550 mg/kg, but not at 840 mg/kg (Kitchin and Brown, 1990; 1994); moreover, dioxane induced sister chromatid exchanges in CHO cells (Galloway et al., 1987) and transformation of Balb 3T3 cells (Sheu et al., 1988) in vitro. However, there is also considerable evidence that dioxane causes tumors via a non-genotoxic, cytotoxic mechanism (see Section 4.2): increased hepatocyte cell proliferation has been reported in rats after a single oral dose of 1000 mg/kg or higher (Miyagawa et al., 1999), while in other studies (Stott et al., 1981; Goldsworthy et al., 1991) repeated oral doses of 2000 mg/kg were necessary to induce increases in hepatocyte proliferation. Consistent with this effect level, an inhalation exposure of rats to 1000 ppm for 4 hours, corresponding to a body dose of about 630 mg/kg, resulted in increased serum activities of liver enzymes (Drew et al., 1978). The non-linear toxicokinetics of dioxane in rats leads to saturation of the oxidation of dioxane to 2-hydroxyethoxyacetic acid and 1,4-dioxane-2-one at doses between 10 and 1000 mg/kg (Young et al. 1978a; 1978b); this could result in the accumulation of dioxane and possibly of its metabolites, such as 1,4-dioxane-2-one and 2-hydroxyethoxy-acetaldehyde.

1970

Overall, it is concluded that there is little evidence of carcinogenicity from a short-term exposure to dioxane.

1972

Calculation:

1973

The inhalation slope factor can be estimated by dividing the oral slope factor by a body weight of 70 kg and multiplying by the inhalation rate of 20 m³/day:

$$\text{Inhalation slope factor} = 2.4 \times 10^{-3} \text{ (mg/kg/day)}^{-1} * 20 \text{ m}^3/\text{d} * 1/70 \text{ kg} = 6.9 \times 10^{-4} \text{ (mg/m}^3\text{)}^{-1}$$

1976

To calculate a concentration of dioxane that would cause a theoretical excess cancer risk of 10^{-4} (a virtually safe dose), the risk is divided by the slope factor:

$$\text{dose} = \text{risk/slope factor} = 1 \times 10^{-4} / 6.9 \times 10^{-4} \text{ (mg/m}^3\text{)}^{-1} = 0.14 \text{ mg/m}^3$$

1979

To convert a 70-year exposure to a 24-hour exposure, the virtually safe dose is multiplied by the number of days in 70 years:

$$\text{24-hour exposure concentration} = 0.14 \text{ mg/m}^3 * 25600 \text{ days} = 3584 \text{ mg/m}^3$$

1982

To adjust for uncertainties in assessing potential cancer risks under short-term exposures under the multistage model, the 24-hour exposure is divided by an adjustment factor of 6 (see SOP):

$$3584 \text{ mg/m}^3 / 6 = 597 \text{ mg/m}^3$$

1985 If the exposure is limited to a fraction (f) of a 24-hour period, the fractional exposure becomes
1986 $1/f * 24 \text{ h}$:
1987 24-hour exposure = 597 mg/m³ (166 ppm)
1988 8-hour exposure = 1791 mg/m³ (498 ppm)
1989 4-hour exposure = 3582 mg/m³ (996 ppm)
1990 1-hour exposure = 14328 mg/m³ (3983 ppm)
1991 30-minute exposure = 28656 mg/m³ (7966 ppm)
1992 10-minute exposure = 85968 mg/m³ (23899 ppm)

1993 For 10^{-5} and 10^{-6} risk levels, the 10^{-4} values are reduced by 10-fold and 100-fold, respectively.

1994 These values based on carcinogenicity exceed the AEGL-3 and AEGL-2 values based on non-
1995 carcinogenic effects and are, therefore, not proposed for AEGL-3 or AEGL-2. The current scientific
1996 knowledge suggests that dioxane will only induce cancer after multiple exposures.

1997

APPENDIX D

1998

Derivation Summary for 1,4-Dioxane AEGLs

ACUTE EXPOSURE GUIDELINES FOR 1,4-DIOXANE (CAS NO. 123-91-1)

AEGL-1 VALUES				
10 minutes	30 minutes	1 hour	4 hours	8 hours
17 ppm	17 ppm	17 ppm	17 ppm	17 ppm
Reference: Young, J.D., W.H. Braun, L.W. Rampus, M.B. Chenoweth and G.E. Blau, 1977. Pharmacokinetics of 1,4-dioxane in humans. <i>Journal of Toxicology and Environmental Health</i> , 3, 507-520.				
Test Species/Strain/Number: Humans/ n.a. / 4 males				
Exposure Route/Concentrations/Durations: Inhalation / 50 ppm / 6 hours				
Effects:				
Eye irritation was a frequent complaint throughout the exposure. The perception of odor diminished with time; two of the subjects could not perceive the odor after 4 and 5 hours in the chamber, while the other two subjects could still detect the odor at the end of the exposure period. No other clinical effects were observed in this pharmacokinetic study.				
Endpoint/Concentration/Rationale:				
For the derivation of AEGL-1 values, irritation was considered the most relevant endpoint. As key study, the pharmacokinetic study of Young et al. (1977) was chosen, because this was the only adequately reported and analytically controlled study available for this endpoint. Young et al. (1977) reported eye irritation at 50 ppm throughout the 6-hour exposure period. Since this was a pharmacokinetic study, no emphasis was put on reporting of symptoms and the authors did not define the severity level of the eye irritation. The irritation was nevertheless considered to be below the notable discomfort level as described in the AEGL-1 definition because the authors (Young et al., 1977) considered 50 ppm as an adequate workplace standard and a level of 50 ppm has been used as a workplace standard in the past. In the study by Silverman et al. (1946) 300 ppm caused irritation to eyes, nose and throat. At a similar concentration, 280 ppm, Wirth and Klimmer (1936) found slight mucous membrane irritation. More distinct irritation was observed at higher concentrations of 1400-1600 ppm and severe irritation occurred at 2800-5500 ppm (Wirth and Klimmer, 1936; Yant et al., 1930). The shallow increase of irritative effects with concentration also supports the interpretation that the effects found at 50 ppm in the study of Young et al. (1977) can be considered as mild and as a basis for AEGL-1 derivation.				
Uncertainty Factors/Rationale:				
Total uncertainty factor: 3				
Interspecies: not applicable				
Intraspecies: 3 - because for local effects, the toxicokinetic differences do not vary considerably within and between species.				
Modifying Factor: Not applicable				
Animal to Human Dosimetric Adjustment: Not applicable				

2037
2038
2039
2040
2041
2042
2043**Time Scaling:**

Since the study by Young et al. (1977) reported eye irritation throughout the whole exposure period of 6 hours and did not report an increase of the effect with time, it is considered adequate to use the same exposure concentration for all relevant time points. Using a constant value for AEGL-1 is also supported by the observation of Yant et al. (1930) who reported no eye irritation, squinting and lacrimation in Guinea pigs exposed to 1000 ppm for up to 6 hours, while at 2000 ppm or higher these symptoms were observed within 8 minutes or less.

2044
2045
2046
2047
2048
2049
2050**Level of distinct odor awareness (LOA)**

The level of distinct odor awareness (LOA) for 1,4-dioxane is 1.7 ppm. This value is based on the odor detection threshold reported by Hellman and Small (1974). The LOA represents the concentration above which it is predicted that more than half of the exposed population will experience at least a distinct odor intensity, about 10 % of the population will experience a strong odor intensity. The LOA should help chemical emergency responders in assessing the public awareness of the exposure due to odor perception

2051
2052
2053
2054
2055
2056
2057
2058
2059**Data Adequacy:**

Although only a small number of subjects were investigated and the irritative effects were not the focus of this pharmacokinetic study, the study was considered adequate as AEGL-1 key study. The AEGL-1 value is between the odor detection and odor recognition thresholds for dioxane of 12 and 22 ppm, respectively (AIHA, 1983). At the derived AEGL-1 concentration, sensitive individuals may experience slight eye irritation which is considered unlikely to exceed the AEGL-1 effect level. The derived AEGL-1 values is, thus, considered to have warning properties, although it should be noted that human exposure studies indicated that individuals get accustomed to the odor after the first minutes (Young et al., 1977; Failey et al., 1934).

ACUTE EXPOSURE GUIDELINES FOR 1,4-DIOXANE (CAS NO. 123-91-1)

AEGL-2 VALUES				
10 minutes	30 minutes	1 hour	4 hours	8 hours
580 ppm	400 ppm	320 ppm	200 ppm	100 ppm

Reference:

#1: Goldberg, M.E., H.E. Johnson, U.C. Pozzani and H.F. Smyth, 1964. Effect of repeated inhalation of vapors of industrial solvents on animal behavior. I. Evaluation of nine solvent vapors on pole-climb performance in rats. *American Industrial Hygienists Association Journal*, 25, 369-375.

#2: Drew, R.T., J.M. Patel and F.-N. Lin, 1978. Changes in serum enzymes in rats after inhalation of organic solvents singly and in combination. *Toxicology and Applied Pharmacology*, 45, 809-819.

Test Species/Strain/Sex/Number: #1: Rats / Carworth Farms Elias female / 8 per group
#2: Rats / CD1 male / number of rats per group not stated

Exposure Route/Concentrations/Durations: #1: Inhalation / 1500, 3000 and 6000 ppm / 4 hours/day, 5 days/week for 2 weeks
#2: Inhalation / 0, 1000 and 2000 ppm / 4 hours

Effects:

#1: A conditioned response (pole climbing in response to buzzer to avoid electrical shock) and escape response (pole climbing to electrical shock without buzzer signal) were determined on days 1, 2, 3, 4, 5 and 10 before, during and 2 hours after removal from exposure. At 1500 ppm, no effects occurred. At 3000 ppm, the conditioned response was delayed in 2/8 rats after the first and in 2-3/8 rats after the subsequent exposures. At 6000 ppm, about 6/8 rats showed a delay of the conditioned response after the 1st exposure, and 3-8/8 rats were affected in the subsequent exposures. No effects were found on escape response (unconditioned stimulus) after the first exposure (for any of the exposure conditions); an effect was found in 3/8 animals after the 2nd exposure to 6000 ppm, but not in the subsequent exposures.

#2: No effect on glucose-6-phosphatase was found. The activities of ornithine carbamyl transferase and aspartate aminotransferase were dose-dependently increased (about 2-3-fold) at 24 and 48 h; the activity of alanine aminotransferase was about 2-fold increased at 2000 ppm at 24 and 48 hours while it was only marginally increased at 1000 ppm.

2090	Endpoint/Concentration/Rationale:
2091	#1: Like other solvents, dioxane can induce narcosis at very high concentrations. Yant et al.(1930) reported that 30,000 ppm induced narcosis in guinea pigs after 1-2 hours exposure, while at 10,000 ppm eye and nose irritation and labored breathing, but no narcosis, were observed. In mice, 8300 ppm for 3.5 hours caused narcosis (Wirth and Klimmer, 1936). Goldberg et al. (1964) reported that 6000 ppm for 4 hours affected the performance of rats in an conditioned response test (pole climbing in response to buzzer to avoid electrical shock), but did not affect the escape response to an electrical shock. The exposure level of 6000 ppm for 4 hours was considered a NOEL for central nervous system depression, while higher concentrations could impair the ability to escape.
2092	#2: Drew et al. (1978) reported a 2-3-fold increase in serum activities of liver enzymes in rats after exposure to 1000 or 2000 ppm for 4 hours. The release of liver enzymes into the blood are a sign of cytotoxic liver damage; this effect is, however, normally transient in nature. A 2-3-fold increase in liver enzymes was considered a weak response because liver damage by chemicals, viruses or tumor can easily increase aminotransferase levels by 10- to 100-fold in rats and humans (Hayes et al., 1994). At a concentration of 5000 ppm for 2x1.5 hours/day, all rats died after several days from severe liver and kidney damage (Fairley et al., 1934). Therefore, an exposure to 2000 ppm for 4 hours is considered a NOEL for AEGL-2 effects in rats and is used as the basis for AEGL-2 derivation.
2093	
2094	
2095	
2096	
2097	
2098	
2099	
2100	
2101	
2102	
2103	
2104	
2105	
2106	
2107	Uncertainty Factors/Rationale:
2108	#1: The interspecies factor was reduced to 3 because the toxicodynamic differences between species were considered limited for CNS depression and because application of the default factor would have lowered the AEGL-2 values to a level that humans are known to tolerate without adverse effects (Young et al., 1977). An intraspecies factor of 10 was applied.
2109	#2: An interspecies uncertainty factor of 1 was applied because metabolism in humans and rats is very similar, involving the same metabolic steps and intermediate metabolites (see Section 4.3.2) and because application of a total uncertainty factor of 30 would reduce the AEGL-2 level to an exposure concentration of 17 ppm for 8 hours and 33 ppm for 4 hours, which humans are known to tolerate without adverse effect (pharmacokinetic study exposing subjects to 50 ppm for 6 hours; Young et al., 1977). An intraspecies factor of 10 was applied.
2110	
2111	
2112	
2113	
2114	
2115	
2116	
2117	
2118	Total uncertainty factor: #1: 30 #2: 10
2119	Interspecies: #1: 3 #2: 1
2120	Intraspecies: #1: 10 #2: 10
2121	Modifying Factor: Not applicable
2122	Animal to Human Dosimetric Adjustment: Not applicable
2123	Time Scaling:
2124	Time scaling using the equation $C^n * t = k$ was done to derive the other exposure duration-specific values. Due to lack of a definitive data set, an n of 3 was used in the exponential function for extrapolation from the experimental period (4 hours) to shorter exposure periods and an n of 1 was used for extrapolation to longer exposure periods. Time extrapolation was continued to the 10-minute period because even at considerably higher concentrations of 1600 ppm for 10 minutes (Yant et al., 1930) or 1400 ppm for 5 minutes (Wirth and Klimmer, 1936) exposed subjects did not experience more severe effects than moderate eye, nose and throat irritation.
2125	
2126	
2127	
2128	
2129	
2130	

2131
2132
2133
2134
2135
2136
2137
2138

Data Adequacy:

Due to the lack of appropriate human studies, the AEGL-2 values were based on central nervous system effects in rats and liver toxicity in rats. The derived values are considered adequate with respect to the carcinogenicity assessment. Assuming a body weight of 70 kg, a ventilation rate of 10 m³ during an 8-hour shift, and an absorption rate of 43 % (Young et al., 1977), the AEGL-2 values correspond to total body doses between 1.8 mg/kg for the 10-minute period and 14 mg/kg for the 8-hour period. This dose level was far below that associated with metabolic saturation or proliferative effects on the liver, which has been implicated in dioxane carcinogenicity.

ACUTE EXPOSURE GUIDELINES FOR 1,4-DIOXANE (CAS NO. 123-91-1)

AEGL-3 VALUES							
10 minutes	30 minutes	1 hour	4 hours	8 hours			
950 ppm	950 ppm	760 ppm	480 ppm	240 ppm			
Reference: a) Pozzani, U.C., C.S. Weil and C.P. Carpenter, 1959. The toxicological basis of threshold limit values. 5. The experimental inhalation of vapor mixtures by rats with notes upon the relationship between single dose inhalation and single dose oral data. <i>American Industrial Hygiene Association Journal</i> , 20, 364-369; b) Pilipyuk, Z.I., G.M. Gorban, G.I. Solomin and A.I. Gorshunova, 1977. Toxicology of 1,4-dioxane [in Russian]. <i>Kosmicheskaja Biologija i Aviakosmicheskaya Medicina</i> , 11, 53-57.							
Test Species/Strain/Sex/Number:		a) Rat / Carworth Farms-Nelson / females, number not stated b) Rat / not stated / not stated					
Exposure Route/Concentrations/Durations:		a) Inhalation / not stated / 4 hours b) Inhalation / not stated / 4 hours					
Effects:		a) LC_{50} for dioxane was 14300 ppm (51.3 mg/l) b) $LC_{16} = 11,100$ ppm, $LC_{50} = 12800$ ppm and $LC_{84} = 14,500$ ppm					
Endpoint/Concentration/Rationale:							
LC ₅₀ values in rats were considered most relevant for the derivation of the AEGL-3 values. No acute inhalation toxicity study that followed today's standards and guidelines was available for dioxane. The derivation was based on the 4-hour LC ₅₀ of 14,300 ppm in rats reported by Pozzani et al. (1959). Although this study did not use the most sensitive species (cats), it was used as key study because it was the only study that was adequately described and because study details were far better described in this study than in the study by Pilipyuk et al. (1977). The equivalent body dose for an inhalation exposure of female rats (assuming a body weight of 0.250 kg) to 14,300 ppm dioxane for 4 hours can be calculated as 8786 mg/kg. The estimated total inhaled dose is comparable to oral LD ₅₀ values in rats which were between 5170 and 7339 mg/kg (BASF, 1958; 1973; Laug et al., 1939; Nelson, 1951; Pozzani et al., 1959; Smyth et al., 1939) and thus supports the LC ₅₀ value of Pozzani et al. (1959) used as basis for AEGL-3 derivation.							
For extrapolation from the LC ₅₀ value to the threshold for lethality, a factor of 3 was used. This factor was considered adequate because available data indicate a very steep dose-response curve for lethality after inhalation exposure: a) Pilipyuk et al. (1977) reported a factor of 1.3 between the LC ₈₄ and the LC ₁₆ ($LC_{16} = 11,100$ ppm and $LC_{84} = 14,500$ ppm); b) at 40,000 ppm, BASF AG (1973; 1980) reported no deaths after exposure for 1 hour, while in two experiments 50 and 100 %, respectively, of the rats died after a 3-hour exposure; and c) Yant (1930) reported death of all guinea pigs after 3-hour exposure at 30,000 ppm, while no lethality occurred after 10,000 ppm for 8 hours.							

2175	Uncertainty Factors/Rationale:
2176	Total uncertainty factor: 10
2177	Interspecies: 1 because metabolism in humans and rats is very similar, involving the same metabolic steps and intermediate metabolites (see Section 4.3.2) and because a higher uncertainty factor would have resulted in AEGL-3 values of 480 ppm for 10 and 30 minutes, which contrasts with the observation that exposure of human subjects to 1600 ppm for 10 minutes (Yant et al., 1930) resulted in moderate irritation, but not in more severe effects.
2178	Intraspecies: 10
2179	Modifying Factor: Not applicable
2180	Animal to Human Dosimetric Adjustment: Insufficient data
2181	Time Scaling:
2182	Time scaling using the equation $C^n * t = k$ was done to derive the other exposure duration-specific values. Due to lack of a definitive data set, an n of 3 was used in the exponential function for extrapolation from the experimental period (4 hours) to shorter exposure periods and an n of 1 was used for extrapolation to longer exposure periods. For the 10-minute AEGL-3 the 30-minute value was applied because the derivation of AEGL values was based on a long experimental exposure period and no supporting studies using short exposure periods were available for characterizing the concentration-time-response relationship. Moreover, considerable uncertainty exists as to the concentration of dioxane in air at which cytotoxic effects occur in the nasal mucosa, which probably contributes to the mechanism leading to carcinogenic effects of dioxane.
2183	Data Adequacy:
2184	No well-documented inhalation LC ₅₀ study in laboratory animals performed to today's standards was available for the derivation of AEGL-3 values. Therefore, a study in rats was used, which was supported by other inhalation as well as acute oral toxicity studies.
2185	
2186	
2187	
2188	
2189	
2190	
2191	
2192	
2193	
2194	
2195	
2196	
2197	
2198	
2199	