

National Institute for Public Health
and the Environment
Ministry of Health, Welfare and Sport

Screening and prioritising PMT substances: development of a robust T-score

Julia Hartmann¹, Eric Verbruggen¹, Emiel Rorije¹, Monique van der Aa¹, Pim Wassenaar¹, André Bannink²

¹ National institute for Public Health and the Environment (RIVM)

² Association of river water works (RIWA Meuse)

Wrap-up PMT workshop 2020: continuous P and M scores, initial T score

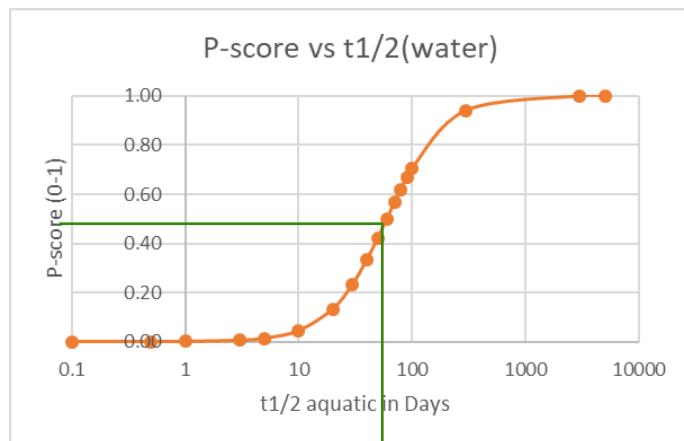
- Continuous P and M-score 0 to 1, based on QSAR estimates

- 0.33 is P or M, 0.5 is vP, vM
 - P score based on BIOWIN 3:
 - > Half-life in surface water:
 - > P-score centered at 60 d:

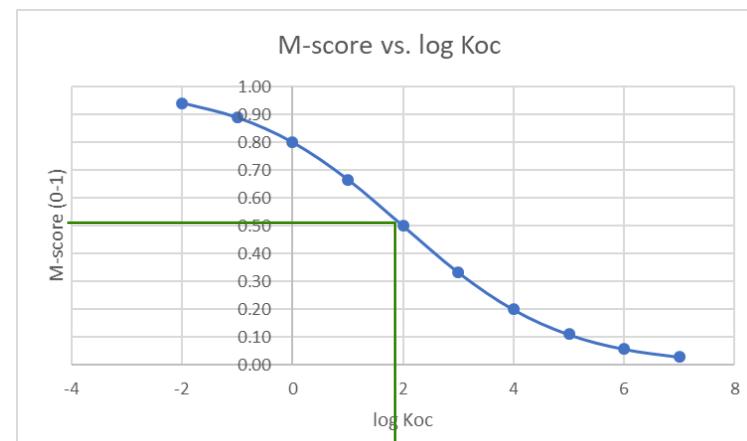
$$t_{0.5} = 5377 * e^{-1.95 * BIOWIN3}$$

$$P - score = \frac{1}{1 + 10^{\log 2 \left(\frac{\log 60 - \log t_{0.5}}{\log 60 - \log 40} \right)}}$$

- M score based on KOCWIN (Kow Method):
 - > M-score centered at log Koc 3:


$$M - score = \frac{1}{1 + 10^{\log 2 \left(\frac{3 - \log K_{oc}}{3 - 2} \right)}}$$

- T score preliminary based on Cramers classes
 - > Five distinctive classes
 - > Risk-based rather than hazard-based
 - > Low discriminative power

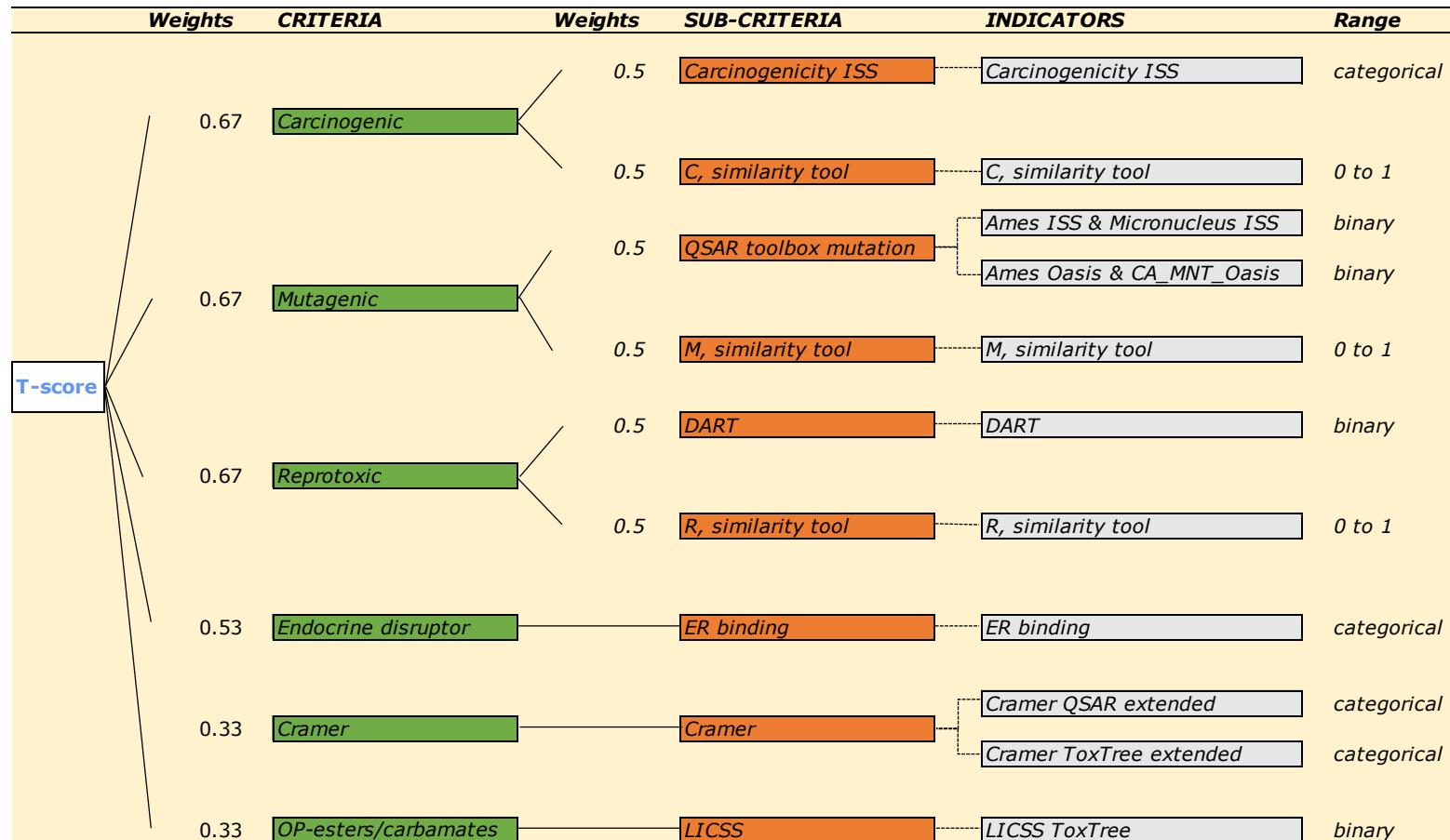


A robust T-score?

- Using different profilers for the same endpoint increases robustness
- A continuous T-score (0-1) increases distinctive power
 - Similar to P and M-scores

$vP=0.5, t_{1/2}=60$ days

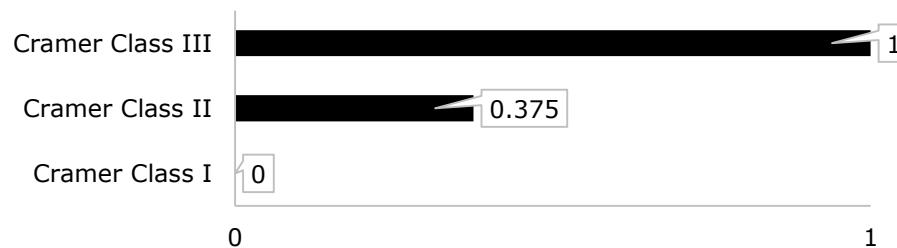
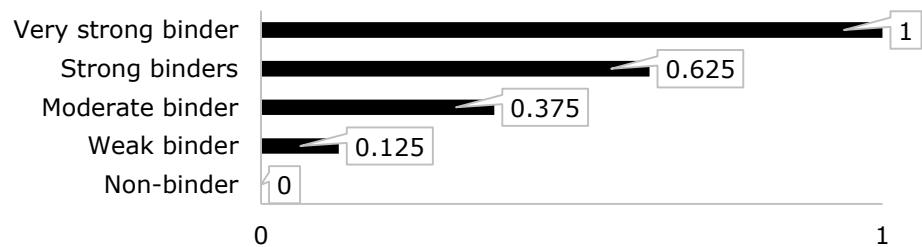
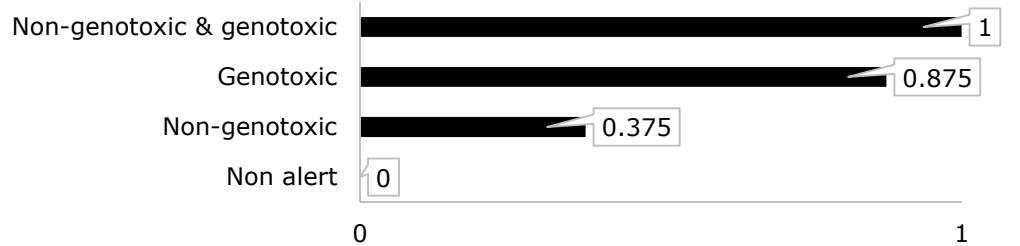
$vM=0.5, \log K_{oc}= 2$


Continuous T-score: the components

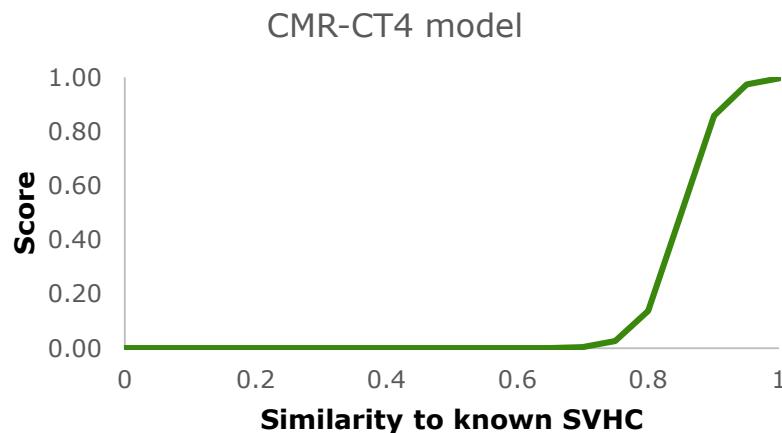
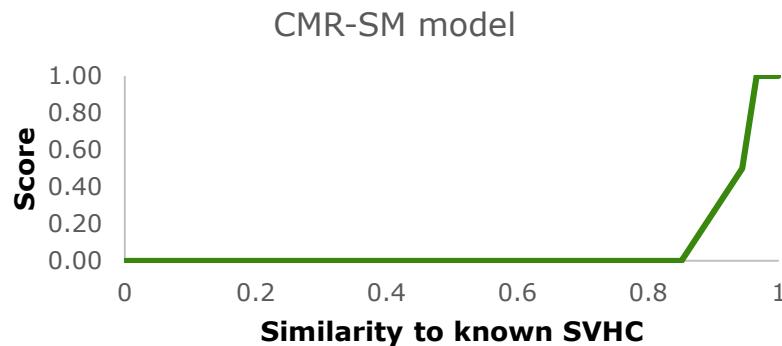
Endpoints	QSAR profilers	SVHC Similarity¹
Carcinogenicity	ISS Carcinogenicity	Similarity to Carc (cat.1a/b) SVHC
Mutagenicity	ISS or OASIS Mut.	Similarity to Mut (cat.1a/b) SVHC
Reprotoxicity	DART scheme	Similarity to Repro (cat.1/2) SVHC
Endocrine Disruption	ER binding	
General tox	Cramer classification, OP-esters, carbamates	

¹ Wassenaar PN, Rorije E, Janssen NM, Peijnenburg WJ, Vijver MG. Chemical similarity to identify potential Substances of Very High Concern–An effective screening method. Journal of Computational Toxicology. 2019;12:100110.

T-score calculation: overview

Categorical & continuous indicators: nonlinear scoring



Transform functions used for QSAR toolbox profilers

INDICATORS	Range
Carcinogenicity ISS	categorical
<i>C, similarity tool</i>	0 to 1
Ames ISS & Micronucleus ISS	binary
Ames Oasis & CA_MNT_Oasis	binary
<i>M, similarity tool</i>	0 to 1
DART	binary
<i>R, similarity tool</i>	0 to 1
ER binding	categorical
Cramer QSAR extended	categorical
Cramer ToxTree extended	categorical
LICSS ToxTree	binary

Transform functions: SVHC similarity based on optimized cut-off points by Wassenaar et al. (2019)

INDICATORS	Range
Carcinogenicity ISS	categorical
C, similarity tool	0 to 1
Ames ISS & Micronucleus ISS	binary
Ames Oasis & CA_MNT_Oasis	binary
M, similarity tool	0 to 1
DART	binary
R, similarity tool	0 to 1
ER binding	categorical
Cramer QSAR extended	categorical
Cramer ToxTree extended	categorical
LICSS ToxTree	binary

¹ Wassenaar PN, Rorije E, Janssen NM, Peijnenburg WJ, Vijver MG. Chemical similarity to identify potential Substances of Very High Concern—An effective screening method. Journal of Computational Toxicology. 2019;12:100110.

Calculating scores on each endpoint: C, M, R, ED or general tox

Endpoint	Score
Carcinogenicity	$C - score = \sum_{carcinogenicity\ ISS, C-similarity} 0.5score$
Mutagenicity	$M - score = \sum_{QSAR\ profilers\ mutagenicity, M-similarity} 0.5score$
Reprotoxicity	$R - score = \sum_{DART, R-similarity} 0.5score$
Endocrine Disruption	$ED - score = score_{ER\ binding}$
General tox	$Cramer - score = score_{Cramer\ classes}$ $OPester - score = score_{LICSS\ ToxTree}$

T-score calculation: summing different endpoints

- Starting points
 - Either one of the endpoints C, M, R, ED or general tox sufficient for T
 - › T-score 0.33 or higher
 - Two endpoints fulfilled is worse than one
- Solution: Response addition equation
 - › Score not filled by one endpoint can be filled proportionally by second

$$T-score = 1 - \prod \left(1 - weight * score_{C,M,R,ED,Cramer,OP-esters,carbamates} \right)$$

Weights for combining all endpoints to one score

	Weights	CRITERIA	Weights	SUB-CRITERIA	INDICATORS	Range
T-score	0.67	Carcinogenic	0.5	Carcinogenicity ISS	Carcinogenicity ISS	categorical
	0.67		0.5	C, similarity tool	C, similarity tool	0 to 1
	0.67	Mutagenic	0.5	QSAR toolbox mutation	Ames ISS & Micronucleus ISS Ames Oasis & CA_MNT_Oasis	binary
	0.67		0.5	M, similarity tool	M, similarity tool	0 to 1
	0.67	Reprotoxic	0.5	DART	DART	binary
	0.67		0.5	R, similarity tool	R, similarity tool	0 to 1
	0.53	Endocrine disruptor		ER binding	ER binding	categorical
	0.33	Cramer		Cramer	Cramer QSAR extended Cramer ToxTree extended	categorical
	0.33	OP-esters/carbamates		LICSS	LICSS ToxTree	binary

Combining continuous P, M and T-scores

$$PMT\text{-}score = P\text{-}score^a * M\text{-}score^b * T\text{-}score^c$$

- Sum of weights a, b, and c should be one
 - For now: a & b = 0.4, c = 0.2
 - Weights can be adjusted, for example more weight to P
- PMT-score of PMT substances should be at least 0.33
- Score not filled by one endpoint can be filled by another
 - Comparable to way of thinking in GUS score

Illustrating PMT-criteria

Association of river water works (RIWA) database:

→ 1161 compounds, target screening by drinking water companies

- › 628 compounds detected above LOD, including:
 - 248 industrial chemicals
 - 206 ppp and biocides
 - 108 pharmaceuticals (both human & veterinary)

Results T scoring RIWA database

- 414 substances: $T > 0.67$
- 550 substances: $0.66 > T > 0.33$
- 136 substances: $T = 0.33$ (C,M,R,ED or general tox)
- 61 substances: $0.33 > T$
- Highest T-scores
(59 subst. > 0.9)
- Lowest T-scores
(31 subst. < 0.1)

5-chloor-2-nitro-toluene

4-methyl-3-nitro-aniline

1,2-dichloro-propane

1,2 dibromo-3-chloro-propane (DBCP)

dibenzo(a,h)antracene + other PAHs

.....

.....

Octacosane

Hexacosane

Tetracosane

Acetylsalicylic acid (Aspirine)

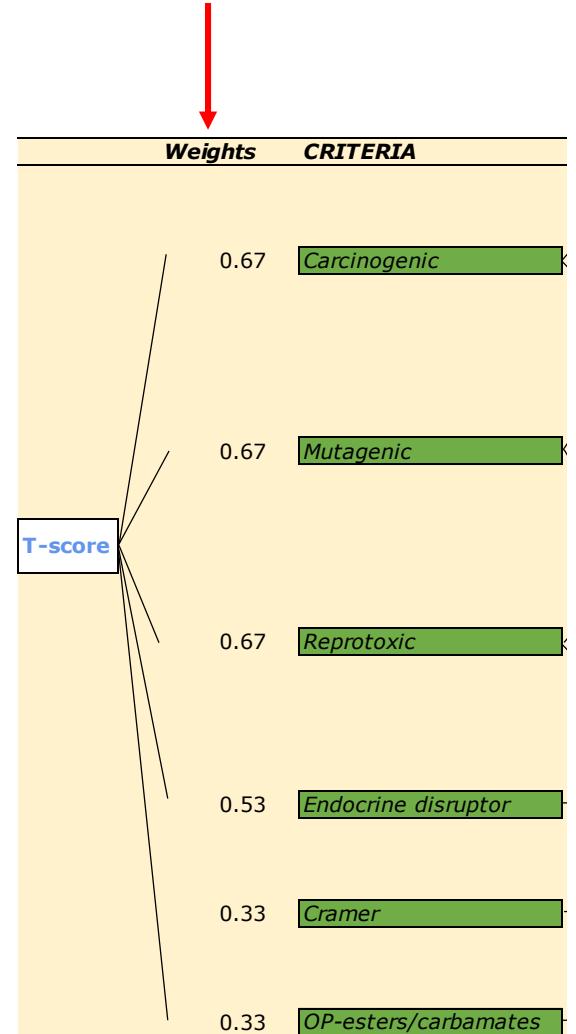
Aspartame

T-scores for some “marker substances”

● 1,2-diBr-3-Cl-propane (DBCP)	- 0.96	(C, M, R + SVHC similarity)
● Dibenz(a,h)anthracene	- 0.96	(C, M, R + SVHC similarity)
● Bisphenol A	- 0.90	(ED, Repro)
● 1,4-dioxane	- 0.84	(C, M, R)
● 17-b-Estradiol	- 0.77	(ED, C, M)
● Warfarin	- 0.75	(C, M, R, Cramer III)
● Morphine	- 0.69	(ED, Cramer Class III)
● Melamine	- 0.61	(C, Cramer Class III)
● Tetrabromo Bisphenol A	- 0.56	(not ED, Repro)
● Butyl Benzyl Phthalate (BBP)	- 0.42	(Repro, Carc.)
● Nitrilo Tri Acetic Acid (NTA)	- 0.18	(Repro, Carc.)
● Salicylic acid	- 0.07	(weak ER binder)
● Acetyl salicylic acid	- 0.00	(no alerts)
● Aspartame	- 0.00	(no alerts)

Results PMT-scoring RIWA database

- 258 / 1161 (P, M and T > 0.33)
- 221 / 1161 (P, M > 0.33, T>0.5)
- **48 / 1161 (P, M, T > 0.5)**
 - Most of the pharmaceuticals (tetracycline, etoposide, cortison, doxycycline, ...), and Melamine also scores high
- NOT PMT → low persistence
 - pyrazole **not P** (0.07), M (0.59), T (0.33), PMT (0.23)
 - glyphosate **not P** (0.05), M (0.96), T (0.34), PMT (0.23)
 - glufosinate **not P** (0.05), M (0.95), T (0.67), PMT (0.27)
 - 1,4-dioxane **not P** (0.09), M (0.73), T (0.84), **PMT (0.33)**



Discussion (1): extension database needed

- High T is overrepresented (?) in the RIWA database → target screening
 - RIWA dataset contains **125 (11%) CMR SVHC substances!**
 - › Known carcinogen, mutagen and/or reprotoxic
 - Almost all subst. (96.5%) have at least 1 alert OR Cramer Class III
 - Most (82%) are Cramer Class III
 - › This already gives a $T \geq 0.33$ score
- A 'proper' distribution of T-scores should come from an unbiased dataset (e.g., 65.000 structures EINECS + PPP + Pharma)

Discussion (2)

- Is the T-score intrinsically too 'conservative'?
 - Cramer class III (highly toxic, TTC = 90 µg/person/day) → T?
 - › Weight of Cramer Class too high?
 - Strong estrogen receptor binder → T?
 - › Weight of Endocrine disruption too high?

Discussion (3)

- Is the T-score intrinsically too 'conservative'?
- Not all compounds with PMT-score > 0.33 fulfill individual P, M and T criteria
 - Filtering or adjusting weights

$$PMT - score = P - score^{0.4} * M - score^{0.4} * T - score^{0.2}$$

Discussion (4)

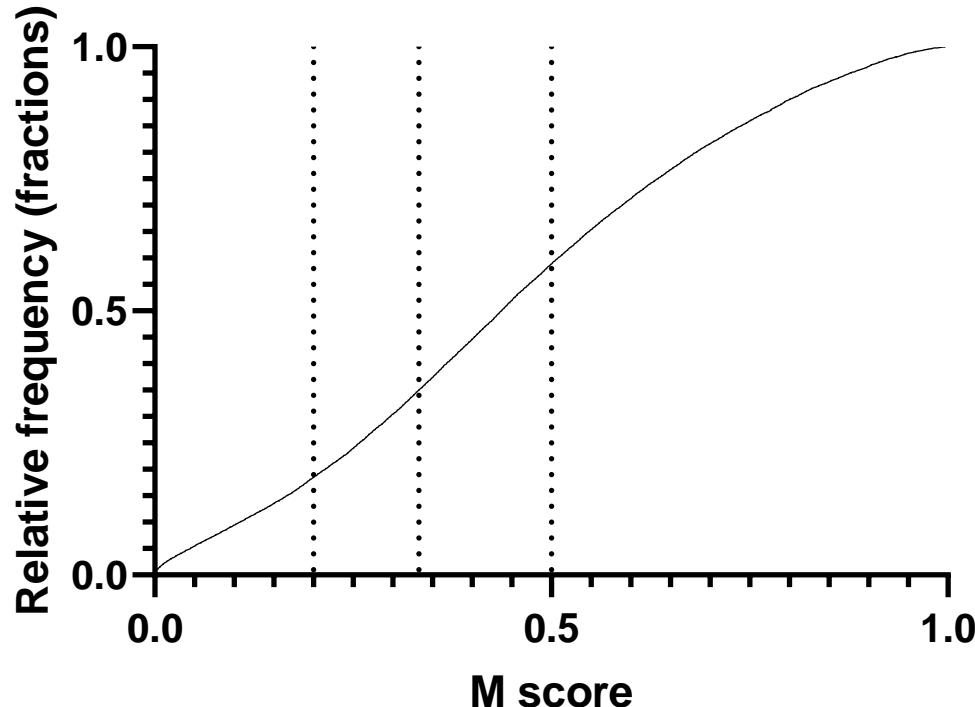
- Is the T-score intrinsically too 'conservative'?
- Not all compounds with PMT > 0.33 are PMT
 - Filtering or adjusting weights
- Semi-continuous, more robust T-score
 - Additional endpoints needed?
 - › E.g. ecotox

$$T-score = 1 - \prod (1 - weight * score_{C,M,R,ED,Cramer,OP-esters,carbamates})$$

National Institute for Public Health
and the Environment
Ministry of Health, Welfare and Sport

Thank you for your
attention!

Questions or remarks?


✉ julia.hartmann@rivm.nl

Extra slides

Histogram for Mobility (based on 65,000 compounds)

- Drawn lines represent $\log K_{oc}$ 4, 3 and 2
- $\log K_{oc} < 4$: 81%; $\log K_{oc} < 3$: 65%; $\log K_{oc} < 2$: 41%
- For more distinctive power $\log K_{oc}$ 3 and 2 used as M and vM criteria
 - Centered around $\log K_{oc}$ 2

Combination of Persistence and Mobility (65,000)

- All combinations possible

– P	25405
– vP	17350
– M	42324
– vM	26627
– PM	12949
– vPM	7680
– PvM	6334
– vPvM	3566

CMR substances:

CMR substances are substances that are **carcinogenic, mutagenic** or **toxic to reproduction (CMR)**. They are of specific concern due to the long term and serious effects that they may exert on human health. Under [GHS](#), CMR substances can be classified into 3 categories depending on the severity of hazards:

- **Category 1A:** Known human carcinogen (H340), mutagen (H350) or reproductive toxicant (H360) based on human evidence ;
- **Category 1B:** Presumed human carcinogen (H340), mutagen (H350) or reproductive toxicant (H360) based on animal studies;
- **Category 2:** Suspected carcinogen (H341), mutagen (H351) or reproductive toxicant (H361) based on limited evidence from animal studies or/and human.