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Energy, resources and climate change

* Each issue seen as separate problems, but they are closely linked

* Reduce emissions of CO,; the big ones are
* Fossil fuel combustion
* Calcination to cement
* Roasting of carbonate ores

* Find new, large volume, cost-efficient, non-emitting ways to produce
energy. Costs energy and needs rare materials to do that....

* Improve use efficiency in all aspects of finite material resources
essential for technological development. Costs energy to do that

* Invent the necessary technologies not yet available
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Hidden challenges emanating from the nexus
of energy, resources and climate change

* Growth in a finite world is not growth but a redistribution of a limited
amount of wealth.

* Erosion of the middle class, erodes the resilience of a modern
prosperous hations, eroding democracy participation and governance
efficiency



Solutions in view

* Elimination of fossil fuel combustion mitigates:
* CO,, N,O and CH, pollution that drive climate change

* Long range transboundary air pollution (SO,, NO,, O,, particles), toxic
residuals.

* Large scale land degradation through huge scale mining operations and waste
landfills

* Running out of fossil fuels unprepared

* Take Germany away from dependency on oil and gas imports, save
money for domestic needs, industrial structural change. Probably
more jobs, but different ones...

* Keep German industry competitive by being innovators and initiators



Our language for understanding this nexus

* Systems thinking
* Think of the whole made up from parts

* Causal loop mapping,
* finding things out,
* mapping knowledge and understanding
* Mapping lack of understanding

* Modelling;
* simplified reconstructions of world parts to explain
* use models to investigate the outputs of interventions or lack of interventions



From effects to policy
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From Issues
over policy
and to
solutions
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Everything is
connected, and
our sustainability
policies must
reflect that
understanding to
be useful
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Energy, resources, food and pollution links
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A global Energiewende may cause som
intermittent problems with some resources
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For copper, zinc and lead, physical supply wi
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Photovoltaic collector may
global level unless recyc
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Electric vehicles need resource management,
with focus on lithium and cobalt

Electric vehicle potential as a function of lithium requirement and size of the

extractable amount available. Today; 1.2 billion cars globally

Recycling fraction of supply alternatives used
URR Alternative 1; 50% Alternative 2; 65% Alternative 3; 80%
million ton Lithium requirement per battery unit, kg lithium contained
lithium 3 10 30 3) 10 30 3 10 30
Millions of electric battery units possible
1,200 610 203 2,884 1,442 481 3,050 1,525 508
800 400 133 1,892 946 315 2,000 1,000 333
396 198 66 880 440 147 932 466 155

116
34



Assessing different sustainabiliy aspects of
different energy production methods
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The fraction of all energy used for keeping the
resource production going

Business-as-usual Cut all fossil hydrocarbons to 2100
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What can we do?
Recycling and delay-times system dynamics of the
supply maximum
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Scales matter

* Global scale
* Sometimes challenging generalizations
e Country boundaries cancel out
 Many uncertainties cancel out
 Many interregional issues cancel out
* Policy relevant

e Regional scale
* Import-export dynamics is challenging

Regional causality differences; differences in paradigms and causality parameterizations. Supply
and value chain cascades and complex nestings

Very challenging parameterizations
Informal and criminal capital flows and decision networks are challenging but required
Policy relevant

* Business scale
* Physical basis
* Depends on larger scales for price mechanisms and policy inputs
* Easy parameterization
e Socially relevant




Insights

The economic system may have problems before the physical systems

All resources will get into soft scarcity (Price goes up). Key materials may get
into physical scarcity (Limits to amounts)

Economic crisis cause risk for social stresses and problems for governance
Business-as-usual is a risky policy in some aspects

Business-as-unusual has large possibilities for change of trajectory by design



Insights I e

Getting resources from recycling use 40-80% less energy than primary
extraction from ore

Key technology elements required for new technologies (Antimony, cadmium,
indium, gallium, germanium, silver, selenium, tellurium) are dependent on
primary extraction of mother metals (Copper, zinc, lead, silver, nickel,
aluminium)

Some key technology minerals (Rare Earth Elements, lithium) have major
environmental issues with their extraction and refining

Some key technology minerals (tantalum, cobalt) have major social and
environmental issues with extraction and refining



Conclusions

* A systemic approach is a condition for resolving the challenges and the potential
goal conflicts

* It is not only about adjusting the parameters of the present system;
* Narrow sectorial appoaches are neither systemic, nor sufficient

» Systemic changes need to be multi-sectorial, causaly linked and pervasive
* Energiewende is linked to a Ressourcenwende

* Both are about rearranging the basic structure of the systems and resetting
parameters; transformative changes; industrial dynamics, economic dynamics
and social dynamics, innovation and technological development.

* The successful change-makers are the new winners. Net gain of jobs, old jobs go
away and new jobs take their place.

* It may imply substaintial changes to existing power structures



