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Abstract: Software for a simplified estimation of CO2 equivalents of individual flights 

In order to achieve a reduction in non-CO2 effects, the European Parliament (EP) voted on  
June 8, 2022 to expand the scope of the EU Emission Trading System (EU ETS) (EP, 2022) to 
non-CO2 effects. In December 2022 the European Council, the European Commission (EC) and 
the EP reached an agreement on the revision of the EU ETS. According to the agreement, non-
CO2 effects can no longer be ignored and the EC should set up a monitoring, reporting and 
verification (MRV) scheme for non-CO2 aviation emissions from 2025, as a first step for the full 
integration of non-CO2 effects into the EU ETS. This project focuses on the development and 
testing of such an MRV system. For this purpose, non-CO2 effects are integrated according to the 
principle of equivalent CO2 emissions (CO2e). Since several CO2e calculation methods are in 
principle available, the selection process involves a trade-off between the level of atmospheric 
uncertainties, the level of climate mitigation incentives, and the resulting effort of MRV activities 
(see Section 1.2). 

The present report is about the development of an application for a simplified estimate of CO2 
equivalents per flights. The simplified calculation method should estimate non-CO2 climate 
effects of air traffic as precisely as possible, without detail information of the actual flight route, 
actual fuel burn and the current weather situation. For this purpose, we evaluate a data set 
containing a global set of detailed flight trajectories, flight emissions and climate responses (see 
Section 2.1). Based on the data set regression formulas for fuel consumption, NOx emissions (see 
Section 2.3) and climate responses (see Section 3) are generated. A user manual of the tool is 
described in section 4. This simplified estimate of CO2 equivalents is not intended for the use in 
an emission trading system, but could serve for plausibility checks or as a backup, if airlines are 
not able to provide the needed data. 

Kurzbeschreibung: Software zur vereinfachten Abschätzung von CO2-Äquivalenten einzelner Flüge 

Mit dem Ziel, die Klimawirkung des Luftverkehrs zu reduzieren, votierte das Europäische 

Parlament (EP) am 8. Juni 2022 dafür, das EU-Emissionshandelssystem (EU ETS) um Nicht-CO2-

Effekte zu erweitern (EP, 2022). Im Dezember 2022 einigten sich der Europäische Rat, die Euro-

päische Kommission (KOM) und das EP auf eine entsprechende Änderung des EU ETS. Gemäß 

des Gesetzesänderungsbeschlusses dürfen Nicht-CO2-Effekten Effekte nicht länger ignoriert 

werden und sollen, als erster Schritt zur vollständigen Integration in das EU-ETS, ab 2025 durch 

ein von der KOM entworfenes Überwachungs-, Berichterstattungs- und Verifizierungssystem 

(MRV) erfasst werden. Dieses Projekt behandelt die Entwicklung und Erprobung eines solchen 

Systems. Die Nicht-CO2-Effekte werden dabei nach dem Prinzip der CO₂-Äquivalente (CO2e) 

erfasst. Da verschiedene Ansätze zur Berechnung von CO2e zur Verfügung stehen, muss bei der 

Wahl der Berechnungsmethode eine Abwägung zwischen möglichst geringen atmosphärischen 

Unsicherheiten, möglichst hohen Klimaschutzanreizen und ein möglichst geringer Aufwand für 

MRV-Aktivitäten gefunden werden (siehe Abschnitt 1.2). 

Der vorliegende Bericht befasst sich mit der Entwicklung einer Anwendung zur vereinfachten 

Abschätzung von CO2-Äquivalenten pro Flug. Die vereinfachte Berechnungsmethode soll Nicht-

CO2-Klimaeffekte des Flugverkehrs möglichst genau abschätzen, ohne auf Detailinformationen 

über die tatsächliche Flugroute, tatsächlichen Treibstoffverbräuchen und aktuelle Wetter-

situationen zurückgreifen zu müssen. Zu diesem Zweck werten wir einen globalen Datensatz 

von detaillierter Flugtrajektorien aus, der die dabei ausgestoßenen Flugemissionen und Klima-

reaktionen enthält (siehe Abschnitt 2.1). Auf Basis dieses Datensatzes werden Regressions-

formeln für Treibstoffverbrauch, NOx-Emissionen (siehe Abschnitt 2.3) und Klimareaktionen 

(siehe Abschnitt 3) erstellt. Ein Benutzerhandbuch für das Tool wird in Abschnitt 4 beschrieben. 

Diese vereinfachte Schätzung der CO2-Äquivalente ist nicht für die Verwendung in einem 

Emissionshandelssystem gedacht, sondern kann zur Plausibilitätsprüfung oder als Backup 

dienen, falls die Fluggesellschaften nicht in der Lage sind, die erforderlichen Daten zu liefern. 
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1 Introduction 

1.1 Short overview of climate effects of aviation and possible mitigation 
approaches 

The climate change gets more and more noticeable. Over the last decades, global aviation in 

terms of revenue passenger kilometers has doubled every 15 years and is expected to grow 

further (e.g., ICAO, 2013a).  As aviation is one of the fastest growing sectors, the share in global 

CO2 emission could rise from currently about 2 up to even 22% in 2050 (Cames et al., 2015).  

Beside CO2 emissions, also non-CO2 emissions contributes to aviation induced climate change. 

Especially the impact of contrail cirrus and the effect of NOx emissions on the concentration of 

ozone increases the climate impact of aviation. The impact of non-CO2 effects of the historical 

emissions of aviation caused about two third of the total aviation impact (Lee et al., 2021). 

There are different options to mitigate the climate impact of aviation. Beside reducing the 

number of flights, the climate impact can be reduced by technical measures, alternative fuel or 

operational measures. Technical measures include reduction of specific fuel consumption, 

reduced weight and optimized aerodynamic. In addition, optimized aircraft design for flying in 

lower altitudes or a broader altitude band could reduce offsets of flying climate optimized.  The 

climate impact can also be reduced by using alternative fuels like sustainable aviation fuel (SAF) 

or liquid hydrogen. This does not only reduce the impact of CO2 (as it is climate neutral if the fuel 

is produced with renewable energy), but has also an impact on non-CO2 effects, e.g. contrails. 

Efficient flight guidance can reduce the fuel consumption and the impact on climate. As climate 

impact depends beside the emission strength also on emission location and time of emission, it 

is possible to reduce the climate impact if climate sensitive regions are avoided (climate 

optimized flights). 

The climate mitigation of non-CO2 effects often come along with an increase of cash operating 

costs. As operators of aircraft have little incentives to pay these additional costs voluntarily, 

incentives for reducing climate impacts of non-CO2 effects are necessary. Therefore, including 

also non-CO2 effects in emission trading schemes or marked based measures (MBM) could be a 

significant contribution to the agreed climate goals of Paris. 

1.2 Options for estimating CO2 equivalents of individual flights 

Carbon dioxide equivalents (CO2e or CO2eq or CO2-e) are a common metric for unitizing the 

climate impact of various climate agents. Since the climate impact of CO2 is well understood (due 

to its independence of emission source and location) and one of the major anthropogenic 

greenhouse gasses, it is reasonable to express the impacts of non-CO2 effects in relation to the 

impacts of one kg of CO2. For a given type and amount of a climate agent i, resulting CO2e cause 

the same climate response (e.g. RF or ΔT) over a specific time horizon (e.g. 20, 50 or 100 years) 

as CO2: 

CO2eagent 𝑖 =
Climate Impactagent 𝑖

Climate Impact1 kg CO2

CO2etotal = CO2 + ∑ CO2eagent 𝑖

𝑖

 

In principle, there are several CO2e calculation methods available (see Figure 1) that are 

designed for different applications and differ, among other things, in the accuracy of the climate 

assessment.  As a general rule, CO2 equivalents should be easily calculable, predictable and 
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transparent.  If CO2e are used for the compensation market or emissions trading, the calculation 

method must create incentives to actually reduce non-CO2 effects. In order to avoid misguiding 

incentives at least the altitude dependency of non-CO2 effects has to be considered in the CO2e 

calculation method (Faber et al., 2008; Niklaß et al., 2020; Scheelhaase et al., 2016). This 

requires at least detailed information about the flown aircraft trajectory (altitude profile) of 

each flight. However, the query of flight data is an elaborate process that does not have to be 

carried out for ecological footprint assessments of single flights. Instead, much simpler CO2e 

calculation methods can be used here.  

Figure 1: Mitigation benefit and MRV effort of different CO2e calculation methods (adapted from 
Niklaß et al. 2020, p.43). 

© DLR: Dahlmann, Niklaß, 2020 

The simplest options are constant CO2e factors, such as the Radiative Forcing Index (RFI), as 

well as distance-dependent ones. The accuracy of these simple factors was investigated, for 

example, by Dahlmann et al. (2021), who analysed the climate impact of one typical long-haul 

aircraft type of A330-200 aircraft for more than 1000 international city pairs. Results of this 

study are shown in Figure 2, which plots calculated CO2 equivalent factors from the climate 

response model Airclim (blue crosses) (Dahlmann et al., 2016) against simplified CO2e estimates 

(a constant factor of 2.4 is shown as a gray line).  

Figure 2: Climate impact in CO2 equivalent factors of total non-CO2 emissions in dependency of 
flight distances (blue crosses) as well as the constant factor (gray line) and the parametric 
values analyzed with the function flight distance dependency (black line). To obtain total 
CO2e values the impact of CO2 (per definition equal 1) has to be added.  

© DLR: Dahlmann, 2021 
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In general, we see an increase of CO2e factors because increasing flight distances also increases 

the average flight altitude. This increase in total CO2e values becomes less significant for flight 

distances longer than 4000 km, as average flight altitudes hardly changes on long-haul flights. 

With the total CO2e dependence on distance showing a large change for small distances but a 

smaller one for large distances, Dahlmann et al. (2021) fitted arc tangent functions to the results 

(black lines in Figure 2) that obey the pattern 

CO2eagent(𝐷) = 𝑎0 + 𝑎1 ∙ arctan (𝑎2 ∙ 𝑑) 

While the constant factors show large deviations from the calculated CO2e values, there is much 

higher agreement with distance-dependent factors. This is also illustrated in Figure 3, showing 

the correlation between the CO2e factors calculated with AirClim and simplified estimate based 

on constant (left) and distance dependent (right) CO2e factors. Gray lines represent perfect 

agreements. 

Figure 3: Correlation between CO2 equivalent (CO2e) factors calculated with AirClim and 
simplified estimate based on constant (left) and distance dependent (right) CO2e 
factors.  To obtain total CO2e values the impact of CO2 (per definition equal 1) has 
to be added. 

© DLR: Dahlmann, 2021 

For a constant factor of 3.4, only very few missions are correctly represented. The specific 

climate impact is underestimated by up to about 40% (mean square error is about 1.18) or 

shows even a wrong sign compared to the AirClim results. By applying a flight distance 

dependent factor, 95% of the estimates lie within a ±20% range, which reduces the root mean 

square error to about 0.24. 

Integrating the latitudinal dependency in addition to the distance dependency in the calculation 

formulas further increases the accuracy of the results. Such an approach was carried out by 

Dahlmann et al. (2021), who defined 4th order polynomial equations: 

CO2eagent(𝐿, 𝐷) = (𝑎agent,0𝐿4 + 𝑎agent,1𝐿3 + 𝑎agent,2𝐿2 + 𝑎agent,3𝐿 + 𝑎agent,4)(𝑎agent,5𝐷

+ 𝑎agent,6) 

where L is the mean-latitude in deg North between origin and destination airport, D is the flown 
distance in 1000 km, and 𝑎agent,0 to 𝑎agent,6 are polynomial coefficients. This further reduces the 

mean square error to about 0.19. Calculated CO2e factors in dependency of the flown distances 

and mean latitude are show in Figure 4. 
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Figure 4: CO2 equivalent factors of all non-CO2 effects in dependence of mean latitude and 
flight distance. To obtain total CO2e values the impact of CO2 (per definition equal 
1) has to be added.

© DLR: Dahlmann, 2021 

CO2e regression formulas for aircraft types other than the A330 are not available. For larger 

route networks and different aircraft categories, clusters (e.g. for different climate zones or 

different distance categories) might also help to further increase the accuracy of CO2e 

regressions formulas. 

1.3 Integration into the Project 

In this project on behalf of the German Environment Agency (UBA), three out of five work 

packages focus on the calculation of non-CO2 climate effects (see Figure 5). The present report is 

about the development of an application for a simplified estimate of CO2 equivalents per flights 

(task 3).  

© DLR

Figure 5: Overview of current project activities 
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The simplified calculation method should estimate non-CO2 climate effects of air traffic as 

precisely as possible, without detail information of the actual flight route, the amount of 

emissions and the current weather situation. For this purpose, we evaluate a data set containing 

a global set of detailed flight trajectories, flight emissions and climate responses (see Section 

2.1). Based on the data set regression formulas for fuel consumption, NOx emissions (see Section 

2.3) and climate responses (see Section 3) are generated. A user manual of the tool is described 

in section 4. This simplified estimate of CO2 equivalents is not intended for use in an emissions 

trading system but could be applied for plausibility checks or as a backup when airlines are 

unable to provide the required data 

In work package 1 and 2, we take the perspective of an aircraft operator and a government 

agency to test all steps for monitoring, reporting, and verification (MRV) of CO2 equivalents (see 

Plohr et al., 2022; Niklaß et al., 2023). Calculated CO2e values for all three approaches are 

compared in work package 2 (see Niklaß et al., 2023). 
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2 Data Basis 
As a basis for the derivation of regression formulas that allow for the determination of CO2 

equivalent emissions (see chapter 3), data from the former DLR internal project WeCare 

(Utilizing Weather information for Climate efficient and ecoefficient future aviation) was used. 

The project ran from 2013 to 2017 an addressed both an improvement of the understanding of 

aviation-influenced atmospheric processes and an assessment of different mitigation options. An 

essential output of the project was a new set of emission inventories for global aviation (Grewe 

et al., 2017). These datasets constitute the basis for this work and are described in more detail in 

the following sections. 

2.1 Global emission inventories and climate responses of the DLR project 
WeCare 

One of the objectives of the WeCare project was to create new global aviation emission 

inventories to be used to assess the climate impact of aviation. These inventories were 

developed following a four-layer approach implemented in the AIRCAST methodology (Ghosh et 

al., 2016), starting from an origin-destination passenger demand network that was built-up from 

exogenous socio-economic scenarios, via the passenger routes network (sequence of flight 

segments, a passenger actually travelled from origin to destination) to an aircraft movements 

network, which assigns aircraft categories to the resulting flight routes and provides flight 

frequency information. The final step constitutes a simulation of trajectories based on the 

aircraft movements obtained from the Aircraft Movements Network layer using the Global Air 

Traffic Emissions Distribution Laboratory (GRIDLAB) developed by DLR (Linke, 2016). Each 

mission defined by departure and arrival cities, aircraft type and load factor was simulated 

under typical operational conditions, resulting in a network of flight trajectories. For this 

purpose, DLR's Trajectory Calculation Module (TCM) (Lührs et al., 2014) was used that applies 

simplified equations of motion known as the Total Energy Model. Based on the aircraft's engine 
state (e.g. thrust, fuel flow) the engine emission distribution of NOx, CO and HC species along the 

trajectory was determined applying the Boeing Fuel Flow Method 2 (DuBois et al., 2006). The 

amount of CO2 and H2O was calculated assuming a linear relationship to the fuel burn. The 

emission distributions of all flights were mapped into a geographical grid resulting in 3D 

inventories. These were the essential input for the climate impact assessment tool AirClim 

(Dahlmann et al., 2016), which determines concentration changes of different radiative forcing 

agents (CO2, H2O, O3) as well as aviation-induced cloudiness. Based on that, various climate 

metrics for the given emission scenario were calculated. In WeCare, using the approach 

mentioned above, emission inventories and the corresponding climate impact were calculated 

for the years 2015 to 2050 in 5-year steps, while the forecast was based on the reference year 

2012. The resulting flight plan of the base year consisted of 47.057 airport pairs and 

approximately 31 million flights. As it was found that aircraft with more than 100 seats 

contribute to about 95% of the globally available seat kilometres (ASK), only aircraft larger than 

100 seats were covered by the study to reduce complexity and ensure model availability. 

Therefore, five different aircraft size categories (based on the number of seats) were considered 

in the inventories (101-151 seats; 152-201 seats; 202-251 seats; 252-301 seats; 302-600 seats) 

and each size category was modelled using one representative aircraft type (plus one backup 

aircraft type). The representative aircraft type was selected such that it contributes to a 

significant share of the respective size category. Respective engine emission characteristics were 

taken from the ICAO Aircraft Engine Emissions Databank. 
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Figure 6: Aggregated global air traffic emission inventories until 2050 from the WeCare project 

© DLR: Ghosh et al., 2016 

2.2 Processing of WeCare data 

From the WeCare project only aggregated flight and emission inventories were available. The 

determination of regression formulas that can be applied to individual flights requires a 

disaggregation of the WeCare dataset. Therefore, for the entire flight inventory from WeCare 

emission distributions were calculated on a per-flight basis following the above described 

methodology. The resulting single trajectory inventories were then processed with the climate 

assessment tool AirClim, to obtain the climate impact metrics per species for each flight in the 

flight plan. The results were stored in an Access database to allow for an efficient handling of the 

resulting data including data queries, sorting and filtering. In the data structure for each flight 

characterized by origin and destination airport as well as aircraft size category, the resulting 

amounts of engine emissions were stored together with the climate impact per species. From 

that database the mathematical relationships were derived. 

2.3 Derivation of fuel and NOx functions 

Using the access database, all flights of a seat category were selected.  For each data set a 

regression formula is derived which approximates the burnt fuel (BF) and the emission index of 
NOx (EINOx

) for a given flight distance (d). Fuel functions obey the pattern

BF = 𝑎0 + 𝑎1 ∙ 𝑑 + 𝑎2 ∙ 𝑑2

with the coefficients a as given in Table 1. 
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Table 1: Best fit solutions for fuel regression formulas 

Seat Category Max. Range (km) 𝒂𝟎 𝒂𝟏 𝒂𝟐 R² 

101-151 6,000 632.36 2.5809 5.01E-05 1.000

152-201 7,000 629.27 2.5388 3.83E-05 0.999

202-251 13,000 997.62 4.6586 7.32E-05 0.999

252-301 13,450 3,770,.31 5.7234 3.77E-04 0.999

302-600 14,500 2,277.30 8.5406 2.38E-04 1.000

Derived EINOx
 regression formulas vary for distances smaller and larger than 2000 km.

EINOx =  {
𝑎0 + 𝑎1 ∙ ln (𝑑) 𝑖𝑓 𝑑 < 2000 𝑘𝑚

𝑎2 + 𝑎3 ∙ 𝑑 + 𝑎4 ∙ 𝑑² + 𝑎5 ∙ 𝑎3 𝑖𝑓 𝑑 ≥ 2000 𝑘𝑚

Best fit solutions for EINOx
 regression formulas are provided in Table 2.

Table 2: Best fit solutions for EINOx regression formulas 

Seat 
Category 

𝒂𝟎 𝒂𝟏 R² 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 R2

101-151 34.403 -2.667 0.868 17.478 -2.493E-03 5.232E-07 -3.660E-11 0.975

152-201 26.942 -2.135 0.881 13.163 -1.701E-03 3.251E-07 -2.050E-11 0.985

202-251 35.813 -3.007 0.923 14.742 -1.139E-03 1.534E-07 -6.290E-12 0.970

252-301 29.287 -2.221 0.930 13.428 -5.998E-04 6.578E-08 -2.374E-12 0.933

302-600 31.803 -2.488 0.971 13.992 -7.569E-04 9.646E-08 -3.375E-12 0.972
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3 Clustering of climate response inventories and derivation 
of simple regression 

This section describes the clustering of flight connection based on their climate effect 

components and the derivation of regression formulas, which allow for a quick determination of 

the climate effect of a flight for each of three detected clusters. 

The analysis in this section is based on a set of 34790 flight connections (airport pairs) and uses 

the following quantities: flight distance along a great circle, mean latitude along the great circle, 

fuel use, NOx emissions, and climate effect. The climate effect uses the average temperature 

response over 100 years (ATR100) as a metric, and is further divided into climate effect through 

different pathways (CO2, H2O, contrail cirrus, O3, PMO, CH4). 

In the first step, the flight connections are clustered using the K-Means clustering algorithm. This 

clustering is based solely on the share of the six aforementioned components of the climate 

effect in the total climate effect: 

ATR100CO2

ATR100tot
,
ATR100H2O

ATR100tot
,
ATR100CiC

ATR100tot
,
ATR100O3

ATR100tot
,
ATR100PMO

ATR100tot
,
ATR100CH4

ATR100tot

This ensures that connections in a given cluster have similar climate effect characteristics. The 

clustering is not directly dependent on proxy quantities to the climate effect, such as the 

emissions and the emission location. We use an implementation by scikit-learn (Pedregosa et al., 

2011) and scale the input quantities to the standard normal distribution before clustering. We 

find a partition into three clusters to be most useful, as larger numbers of clusters lead to some 

clusters, whose distinctions do not have a clear physical interpretation. 

Figure 7: Clustering of flight connections, as obtained by the K-Means clustering algorithm, 
shown in the latitude-distance space. Each color corresponds to one cluster. 

© DLR: Thor, 2022 

The resulting three clusters (Figure 7) have distinct characteristics. The short-flight cluster 

(green) has a negligible contribution of contrails to the climate effect, and a strong contribution 

of CO2. Flight connections in this cluster often do not reach sufficient altitudes for contrail 

formation. The climate effect of the tropical cluster (orange) is dominated by contrails because 

contrails have a particularly large climate effect in the tropics. The mid-latitude cluster (blue) 
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contains the remaining flight connections and has large climate effect contributions from NOx 

and H2O. 

Figure 8: Three clusters of flight connections, delineated by simple thresholds, shown in the 
latitude-distance space. Each color corresponds to one cluster. 

© DLR: Thor, 2022 

In the second step, simple thresholds are derived which separate the flight connections into 

three categories that approximate the found clusters. This is necessary to be able to categorize 

also new flight connections that are not contained in the data set used for this analysis. One 

threshold is a maximum distance for the short-flight cluster, and another threshold is the 

absolute mean latitude confining the tropical cluster. We choose the values for these thresholds 

in such a way that the amount of wrongly categorized flight connections is minimized. This leads 

to a threshold distance of 462.5 km below which connections are categorized as belonging to the 

short-flight cluster, and a threshold mean latitude of ±29.7° within which flight connections are 

categorized as belonging to the tropical cluster. All other flight connections are categorized into 

the mid-latitude cluster. This approximation wrongly categorizes 16.8% of flight connections 

(5859 flight connections). The resulting simplified clustering is shown in Figure 8. 

In the third step, for each of the simplified clusters, a regression formula is derived which 

approximates the climate effect for a given flight. Following Dahlmann et al. (2021), the 

regression formulas obey the pattern 

ATR100tot = 𝑐CO2
𝑓 + 𝑐NOx

(𝑑, 𝜙̅)𝑒 + 𝑐H2O(𝑑, 𝜙̅)𝑓 + 𝑐CiC(𝑑, 𝜙̅)𝑑,

where f is the fuel use, e are the NOx emissions, d is the flown distance, ϕ¯ is the mean latitude, 

𝑐CO2
, 𝑐NOx

, 𝑐H2O, and 𝑐CiC are cluster-dependent regression formulas. These formulas are 
intended to fit the respective partial climate effects ATR100CO2

/f, ATR100NOx
/e, ATR100H2O/f, 

and ATR100CiC/d, where ATR100NOx
 = ATR100O3

 + ATR100PMO+ATR100CH4
 is the combined 

climate effect of NOx emissions. The cluster-dependent regression formulas for CO2 is fixed at 

cCO2 = 8.145·10-11mKkg-1(fuel), because the same simple linear relationship is used during the 

computation of the ATR100 in AirClim, so that no fit is required. 

The other cluster-dependent regression formulas are chosen based on the behavior of the 

respective values in latitude-distance space (Fig. 3-5) as 
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𝑐NOx
= (𝑎NOx,𝑠,0𝑑 + 𝑎NOx,𝑠,1)(𝑎NOx,𝑠,2𝜙̅4 + 𝑎NOx,𝑠,3𝜙̅3 + 𝑎NOx,𝑠,4𝜙̅2 + 𝑎NOx,𝑠,5𝜙̅ + 𝑎NOx,𝑠,6)

𝑐H2𝑂 = 𝑎H2O,𝑠,0

𝑐CiC = (𝑎CiC,𝑠,0𝑑2 + 𝑎CiC,𝑠,1𝑑 + 𝑎CiC,𝑠,2)𝜙̅2

for the short-flight cluster, 

𝑐NOx
= 𝑎NOx,𝑚,0 tan−1(𝑎NOx,𝑚,1𝑑) + 𝑎NOx,𝑚,2𝑑 + 𝑎NOx,𝑚,3

𝑐H2𝑂 = (𝑎H2O,𝑚,0 tan−1(𝑎H2O,𝑚,1𝑑))(𝑎H2O,𝑚,2𝜙̅2 + 𝑎H2O,𝑚,3)

𝑐CiC = (𝑎CiC,𝑚,0𝑑2 + 𝑎CiC,𝑚,1𝑑 + 𝑎CiC,𝑚,2)(𝑎CiC,𝑚,3𝜙̅4 + 𝑎CiC,𝑚,4𝜙̅3 + 𝑎CiC,𝑚,5𝜙̅2 + 𝑎CiC,𝑚,6𝜙̅

+ 𝑎CiC,𝑚,7) 

for the mid-latitude cluster, and 

𝑐NOx
= (𝑎NOx,𝑡,0 tan−1(𝑎NOx,𝑡,1𝑑) + 𝑎NOx,𝑡,2)(𝑎NOx,𝑡,3𝜙̅2 + 𝑎NOx,𝑡,4𝜙̅ + 𝑎NOx,𝑡,5)

𝑐H2𝑂 = (𝑎H2O,𝑡,0 tan−1(𝑎H2O,𝑡,1𝑑))(𝑎H2O,𝑡,2𝜙̅2 + 𝑎H2O,𝑡,3)

𝑐CiC = (𝑎CiC,𝑡,0 tan−1(𝑎CiC,𝑡,1𝑑) + 𝑎CiC,𝑡,2𝑑 + 𝑎CiC,𝑡,3)(𝑎CiC,𝑡,4𝜙̅4 + 𝑎CiC,𝑡,5𝜙̅2 + 𝑎CiC,𝑡,6)

for the tropical cluster, where the coefficients a are determined by a non-linear least-squares fit 

and are given by Table 1. The regression formulas can generally capture the trend, as can be 

seen by the fits (orange dots in Figure 9-Figure 11) and the mean absolute relative error, which 

is 9.4 % for the short-flight cluster, 16.1 % for the mid-latitude cluster, and 15.0 % for the 

tropical cluster. When combining results from the different clusters, this leads to a mean 

absolute relative error of 15.0 % and a root-mean-square error of 1.24 nK. The true model 

values obtained by AirClim are generally strongly correlated with the values obtained from the 

regression formulas (Figure 12). 
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Figure 9: Climate metrics 𝐀𝐓𝐑𝟏𝟎𝟎𝐍𝐎𝒙
/𝒆 (top), 𝐀𝐓𝐑𝟏𝟎𝟎𝐇𝟐𝐎/𝒇 (middle row), 𝐀𝐓𝐑𝟏𝟎𝟎𝐂𝐢𝐂/𝒅 (bottom) as a function of distance d

(middle column), mean latitude 𝝓 (right column), and both (left column) for the short-flight cluster. Blue dots denote the 

values obtained from AirClim, orange dots are fit results from the regression formula (Eq. 2) 

© DLR: Thor, 2022 
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Figure 10:  Same as Fig. 5, but for the mid-latitude cluster. 

© DLR: Thor, 2022 
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Figure 11: Same as Fig. 5, but for the tropical cluster. 

© DLR: Thor, 2022 
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Figure 12:  Correlation contrasting the true model values of quantities ATR100𝐍𝐎𝒙
/e,

                      ATR100𝐇𝟐𝐎/f, ATR100𝐂𝐢𝐂/d, and ATR100𝐭𝐨𝐭 obtained by AirClim (true model value)

with those obtained from the regression formulas (fit value).  The color indicates flight

 distance. Grey lines indicate a perfect correlation. 

© DLR: Thor, 2022 

Since the regression formulas for the different clusters are independent from each other, 

mismatches at the cluster boundaries cannot be avoided. The solid lines in Figure 13 to Figure 

15 indicate the climate effect at the cluster boundary calculated using the equations for either 

cluster for a flight with average NOx emissions and fuel use. The difference between the solid 

lines indicates the mismatch. For average NOx emissions and fuel use cases, the mismatch is 

never larger than a factor of two. Particularly large mismatches are found between the short-

flight and the tropical cluster for flight with a mean latitude in the equatorial region, as well as 

for very long flight connections between the mid-latitude and tropical clusters. The figures also 

indicate the climate effect at the cluster boundary calculated using either cluster for flights with 

minimal and maximal NOx emissions (dashed lines) and for flights with minimal and maximal 

fuel use (dotted lines). 

In conclusion, the resulting regression formulas (Eq. 2-11) can be used in combination with their 

best-fit coefficients (Table 3) to efficiently compute the climate effect in terms of ATR100 of any 

flight with given distance, mean latitude, fuel use, and NOx emissions without the need to run a 

climate response model. 
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Figure 13: ATR100 at the cluster boundary of 462 km computed from different clusters’ 
regression formulas under five different sets of conditions: average NOx emissions 
and fuel use, high and low NOx emissions, as well as high and low fuel use. Average 
conditions are taken as the average from all flight connections in a region around 
the boundary, whereas high and low are obtained from the respective maximum 
and minimum values. 

© DLR: Thor, 2022 

Figure 14: Same as Fig. 9, but for the cluster boundary at 29.7°N values. 

© DLR: Thor, 2022 
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Figure 15: Same as Fig. 9, but for the cluster boundary at 29.7°S values. 

© DLR: Thor, 2022 

Table 3:  Best fit solutions for CO2e regression formulas. Coefficients for NOx are in units of 
mK / kg(NO2), coefficients for H2O are in units of mK / kg(fuel), and coefficients for 
H2O are in units of mK / km 

Cluster 
quantity 

short-flight mid-latitude tropical 

NOx H2O CiC NOx H2O CiC NOx H2O CiC 

0 2.00E-15 9.03E-13 4.56E-19 4.79E-04 1.12E-12 2.57E-21 1.41E-01 4.64E-13 3.59E-05

1 -7.14E-14   - -1.96E-17  1.29E02 1.44E-03 -5.84E-17              1.16E-03 1.35E-03 2.19E01

2 2.37E-04 - -1.46E-14 5.28E-14 5.91E-03 -3.03E-14 4.93E-02 1.72E-02 -1.91E-13

3 1.54E-04 - - -7.52E-04 4.86 -1.37E-03 6.06E-12   6.66 -5.64E-05

4 -1.46 - - - - -1.18E-02 -2.90E-10 - 5.92E-07

5 1.17 - - - - 5.45 5.03E-08 - -1.64E-03

6 6.47E03 - - - - 5.03E01 - - 1.14

7 - - - - - -7.73E03 - - -
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4 User guide 
For simplifying the estimation of CO2 equivalents per flight, resulting regression formulas for 

fuel, NOx and CO2e were embedded into an Excel application. The basic user version of the Excel 

application consists of three Excel sheets: “Info” (see “A” in Figure 16), “Calculator” (“B”) and 

“AirportDatabase” (“C”): 

a) The “Info” sheet provides general information such as the release date and the version

number. In addition, you will find an instruction for the use of DLR's simplified CO2

equivalent Estimator and an exclusion of liability.

b) The “Calculator” sheet is the core of the application. All input values are entered in this

sheet (see Section 4.1) and all calculation results are displayed (see Section 4.2).

c) The “AirportDatabase” provides detailed position information for almost 9.000 airports.

Airports are identified via the IATA airport code, which is a three-letter geocode defined

by the International Air Transport Association (IATA). If the desired airports are not

included in the "AirportDatabase" sheet, users are free to add them.

In the developer version of the Excel application there are two more Excel sheets: Fuel & NOx 

functions (see “D” in Figure 16) and “CO2e functions” (“E”) 

d) In the “Fuel & NOx functions” sheet, regression formulas and polynomial coefficients are

stored for various aircraft classes. These formulas and coefficients are used for the

calculation of the fuel consumption and the cruise emission index of nitrogen oxides.

e) The “CO2e functions” sheet provides all necessary formulas and polynomial coefficients

for the carbon dioxide equivalent calculation. Formulas and coefficients are stored

separately for the “short-flight”, “mid-latitude” and “tropical” cluster and differ according

to the climate agent (CO2, H2O, NOx, CiC) (see Chapter 3). In addition, conversion factors

are stored here, which allow to express the CO2e either in the climate metric ATR100

(average temperature response over 100 years) or in AGWP100 (absolute global warming

potential over 100 years).
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Figure 16:  Graphical User Interface 

© DLR 
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1. Selection of the preferred climate metric for the calculation of CO2 equivalents in cell

"B2".  The drop-down list allows the user to choose between ATR100 or AGWP100.

2. Selection of the preferred aircraft seat category in column “A”. A drop-down list allows

the user to choose between five different seat categories. The proposed seat categories

range from 101-151 seats to 302-600 seats and represent following aircraft types:

101-151 seater: like Airbus A319, A320, Boeing 737

152-201 seater: like Airbus A320, A321, Boeing 737, 757

202-251 seater: like Airbus A330, Boeing 767, 777

252-301 seater: like Airbus A330, A340, Boeing 777

302-600 seater: like Airbus A340, A380, Boeing 747, 777

3. Enter the IATA airport code of the origin and destination airports in columns “B” and “C”.

Columns “E” and “F” indicate whether the airports are in included in the

"AirportDatabase" sheet or not (see “B3” in Figure 16). If one of the desired airports is

not included, users are free to add it in the "AirportDatabase" sheet (“C” in Figure 16).

Also indicated in the "G" column of the "Calculator" sheet is whether the selected origin-

destination pair is flyable with the selected aircraft seat category.

4. The number of flights performed on the city pair connection is entered into column “D”.

The value "1" is the minimum input value here.

4.1 Input parameters 
The calculation of CO2 equivalents is based on following input parameters, which users enter into 

the "Calculator" spreadsheet of the Excel application (see “B1” and “B2” in Figure 16): 

4.2 Output parameters 

If all entries have been made correctly the “Simplified CO2e Estimator” will return the following 

output data in columns “H” to “T” of the “Calculator” sheet (see “B4” and “B6” in Figure 16):  

► The great circle distance (GCD) plus 95km for arrival and departure procedures (in km),

► The fuel burn estimate (in kg),

► The estimated amount of CO2 emissions (in kg),

► The estimated amount of NOx emissions (in kg),

► The estimated CO2 equivalents of H2O, NOx and CiC (in kg), expressed as ATR100 and

AGWP100

► The estimated CO2 equivalents of all non-CO2 effects (in kg),

► The estimated CO2 equivalents of all effects (CO2 and non-CO2 effects) (in kg),

► The estimated CO2 equivalent factor of the flight (CO2 equivalents / CO2).

In row 2 the “Calculator” sheet, aggregated values for all flights are displayed for the distance, 

fuel consumption, emissions (CO2, NOx) and CO2 equivalents (total value, value of all non-CO2 

effects, mean factor) (see “B5” in Figure 17). 
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Figure 17: Graphical User Interface part 2 

© DLR 
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5 Summary 
Within this study, an application for a simplified estimate of CO2 equivalents per flights has been 

developed. The simplified calculation method estimates non-CO2 climate effects of air traffic as 

precisely as possible, without detail information of the actual flight route, actual fuel burn and 

the current weather situation. For this purpose, we evaluated a data set containing a global set of 

detailed flight trajectories, flight emissions and climate responses for various aircraft types. 

Based on the data set regression formulas for fuel consumption, NOx emissions and climate 

responses have been generated. 

In order to increase the accuracy of CO2e regressions formulas, flight connections were 

clustered using the K-Means clustering algorithm. The resulting three clusters have distinct 

characteristics. The short-flight cluster (green) has a negligible contribution of contrails to the 

climate effect, and a strong contribution of CO2. Flight connections in this cluster often do not 

reach sufficient altitudes for contrail formation. The climate effect of the tropical cluster 

(orange) is dominated by contrails because contrails have a particularly large climate effect in 

the tropics. The mid-latitude cluster (blue) contains the remaining flight connections and has 

large climate effect contributions from NOx and H2O. 

By deriving regression formulas for each of the simplified clusters, the mean absolute relative 

error of all flights and aircraft types was reduced to 15.0%, which represents the AirClim 

computations 5% better than the CO2e regression formulas of Dahlmann et al. (2021) for the 

A330-200 aircraft. The new mean absolute relative error is 9.4% for the short-flight cluster, 

16.1% for the mid-latitude cluster, and 15.0% for the tropical cluster. Since the regression 

formulas for the different clusters are independent from each other, mismatches at the cluster 

boundaries cannot be avoided. For average NOx emissions and fuel use cases, the mismatch is 

never larger than a factor of two. Particularly large mismatches are found between the short-

flight and the tropical cluster for flight with a mean latitude in the equatorial region, as well as 

for very long flight connections between the mid-latitude and tropical clusters.

For simplifying the estimation of CO2 equivalents per flight, resulting regression formulas for 

fuel, EINOx and CO2e were embedded into an Excel application called “Simplified CO2e 

estimator”. After selecting the preferred input values (climate metric, aircraft seat category, 

origin and destination airports, flight frequency), the tool returns  

► the great circle distance (GCD) plus 95km for arrival and departure procedures (in km),

► a fuel burn estimate (in kg),

► estimated CO2 and NOx emissions (in kg), and

► CO2 equivalents for H2O, NOx and CiC.

The level of the CO2e factor strongly dependents on the level of the CO2 reference. Since the 

simplified estimate of CO2 equivalents is designed for ecological footprint assessments of 

present and future flights, we do not consider any emissions of historic aviation. As the climate 

impact of CO2 is more affected by the historical emission than short lived non-CO2 effects, the 

relation between non-CO2 effects and CO2 is higher than the known factor from the literature for 

non-CO2 effects of 2-3, which is based on the total CO2 level from preindustrial times (e.g. from 

1940 to 2018 for Lee et al., 2021). 

This simplified estimate of CO2 equivalents is not designed for use in an emissions trading 

system but could also be applied for plausibility checks or as a backup when airlines are unable 

to provide the required data. 



CLIMATE CHANGE Software for a simplified estimation of CO2 equivalents of individual flights  –

32

6 List of references 
Cames, M., Graichen, J., Siemons, A., Cook, V. (2015): Emission Reduction Targets for International Aviation and 

Shipping, Policy Department A for the Committee on Environment, Public Health and Food Safety (ENVI). 

IP/A/ENVI/2015-11. 

Dahlmann, K., Grewe, V., Frömming, C., and Burkhardt, U.: Can we reliably assess climate mitigation options for 

air traffic scenarios despite large uncertainties in atmospheric processes?, Transportation Research Part D: 

Transport and Environment, 46, 40–55, 2016. 

Katrin Dahlmann, Volker Grewe, Sigrun Matthes, and Hiroshi Yamashita. Climate assessment of single flights: 

Deduction of route specific equivalent co2 emissions. International Journal of Sustainable Transportation, 

pages 1–12, 2021. 

DuBois, D., and Paynter, G. ’Fuel Flow Method2’ for Estimating Aircraft Emissions. SAE Technical Paper 2006-

01-1987, Society of Automotive Engineers (SAE), 2006. 

Faber, J., Greenwood, D., Lee, D., Mann, M., de Leon, P. M., Nelissen, D., Owen, B., Ralph, M., Tilston, J., van 

Velzen, A., & van de Vreede, G. (2008). Lower NOx at higher altitudes. Policies to reduce the climate impact of 

aviation NOx emission. CE Delft. 

R. Ghosh, K. Wicke, K. Kölker, I. Terekhov, F. Linke, M. Niklaß, B. Lührs and V. Grewe, “An Integrated Modelling 

Approach for Climate Impact Assessments in the Future Air Transportation System – Findings from the WeCare 

Project,” 2nd Environmentally Compatible Air Transport System (ECATS) Conference, Athens, Greece, Nov. 

2016. 

Lee, D.S.,Fahey, D.W., Skowron, A., Allen, M.R., Burkhardt, U., Chen, Q., Doherty, S.J., Freeman, S., Forster, 

P.M., Fuglestvedt, J., Gettelman, A., De León, R.R., Lim, L.L., Lund, M.T., Millar, R.J., Owen, B., Penner, J.E., 

Pitari, G., Prather, M.J.. Sausen, R., Wilcox, L.J. (2021): The contribution of global aviation to anthropogenic 

climate forcing for 2000 to 2018, Atmospheric Environment, Volume 244, 2021, 117834, ISSN 1352-2310, 

https://doi.org/10.1016/j.atmosenv.2020.117834. 

F. Linke, “Environmental Analysis of Operational Air Transportation Concepts (German: Ökologische Analyse 

operationeller Lufttransportkonzepte),” Dissertation, Hamburg University of Technology, published as research 

report DLR-FB–2016-10, German Aerospace Center, ISSN 1434-8454, Feb. 2016. 

B. Lührs, F. Linke and V. Gollnick, “Erweiterung eines Trajektorienrechners zur Nutzung meteorologischer Daten 

für die Optimierung von Flugzeugtrajektorien,” 63rd German Aerospace Congress (DLRK), published in German, 

Augsburg, Germany, Sep. 2014. 

Niklaß, M., Dahlmann, K., Grewe, V., Maertens, S., Plohr, H., Scheelhaase, M., Schwieger, J., Brodmann, U., 

Kurzböck, C., Repmann, M., Schweizer, N., & von Unger, M. (2020). Integration of non-CO2 effects of aviation in 

the EU ETS and under CORSIA. Climate Change: 20/2020, Umweltbundesamt. FKZ:3717-42-509-0. 

Niklaß, M., Lau, A. Dahlmann, K., Grewe, V., Plohr, M. (2024): Testing of a verification scheme for integrating  
non‐CO2 aviation effects into EU ETS, Climate Change: 26/2024, Umweltbundesamt. FKZ: 3720‐42‐502‐0. 

Plohr, M., Dahlmann, K., Niklaß, M. (2024): Testing of a monitoring and reporting scheme for integrating non‐
CO2 aviation effects into EU ETS and under CORSIA, Climate Change: 25/2024, Umweltbundesamt. FKZ: 3720‐
42‐502‐0. 

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. 

Weiss,V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-

learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. 

https://doi.org/10.1016/j.atmosenv.2020.117834


CLIMATE CHANGE Software for a simplified estimation of CO2 equivalents of individual flights  –

33

Scheelhaase, J., Dahlmann, K., Jung, M., Keimel, H., Nieße, H., Sausen, R., Schaefer, M., & Wolters, F. (2016). 

How to best address aviation’s full climate impact from an economic policy point of view? – Main results from 

AviClim research project. Transportation Research Part D: Transport and Environment, 45(1), 112–125. 

https://doi.org/10.1016/j.trd.2015.09.002. 


	Table of content
	List of figures
	List of tables
	List of abbreviations
	1 Introduction
	1.1 Short overview of climate effects of aviation and possible mitigation approaches
	1.2 Options for estimating CO2 equivalents of individual flights
	1.3 Integration into the Project

	2 Data Basis
	2.1 Global emission inventories and climate responses of the DLR project WeCare
	2.2 Processing of WeCare data
	2.3 Derivation of fuel and NOx functions

	3 Clustering of climate response inventories and derivation of simple regression
	4 User guide
	4.1 Input parameters
	4.2 Output parameters

	5 Summary
	6 List of references
	Leere Seite
	Leere Seite



