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Abstract: Evaluation and implementation of statistical methods to assess effects in count data  

The Federal Environment Agency (UBA) is currently reviewing the OECD Test Guideline No. 54, 

which outlines the statistical methods used in the analysis of ecotoxicological data. As part of 

this evaluation, the UBA identified a need to assess alternative statistical methods not covered in 

the guideline, particularly for Poisson-distributed data, common in mesocosm and field studies 

(e.g. non-target arthropod species). Additionally, the issue of multiple testing, which can lead to 

a reduction in test power, was identified as a concern. 

The main objective of this project was to develop an R package to enhance the analysis of 

Poisson-distributed data using methods such as ‘CPCAT’. Initially, errors in the existing CPCAT R 

script were corrected, including removing one-sided test options and addressing issues with p-

values for control treatments with zero values. The package was further expanded implementing 

a similar test for binomial data (CPFISH) and a GLM-based Dunnett test (Dunnett.GLM) 

applicable for overdispersed count data. 

Power calculations for CPCAT, CPFISH, and Dunnett.GLM were performed using simulated effect 

sizes to reflect typical reproduction and field test designs. Results showed that CPCAT and 

CPFISH exhibit sensitivity to the number of treatment groups without effects, potentially 

influencing p-values of affected groups. Therefore, caution is advised when using these methods 

in regulatory contexts. The project concluded with the successful development of a publicly 

available R package on CRAN and GitHub, providing statistical tools for the analysis of count 

data, which will support future revisions of OECD Test Guideline No. 54. 

Kurzbeschreibung: Bewertung und Implementierung statistischer Methoden zur Beurteilung von 
Effekten in Zähldaten  

Das Umweltbundesamt (UBA) überarbeitet derzeit die OECD-Prüfrichtlinie Nr. 54, in der 

statistische Methoden für die Analyse ökotoxikologischer Daten beschrieben sind. Im Rahmen 

dieser Bewertung stellte das UBA fest, dass alternative statistische Methoden, die nicht in der 

Richtlinie enthalten sind, bewertet werden müssen, insbesondere Methoden für Poisson-

verteilte Daten, die in Mesokosmen- und Feldstudien häufig vorkommen (z. B. bei non-target 

Arthropodenarten). Darüber hinaus wurde die Frage der gängigen Mehrfachtests, die zu einer 

Verringerung der Teststärke führen können, als Problem erkannt. 

Das Hauptziel dieses Projekts war die Entwicklung eines R-Pakets zur Verbesserung der Analyse 

von Poisson-verteilten Daten mit Methoden wie ‚CPCAT‘. Zunächst wurden Fehler im 

bestehenden CPCAT-R-Skript korrigiert, einschließlich der Entfernung einseitiger Testoptionen 

und der Lösung von Problemen mit p-Werten für Kontrollgruppen mit Nullwerten. Das Paket 

wurde durch die Implementierung eines ähnlichen Tests für Binomialdaten (CPFISH) und eines 

GLM-basierten Dunnett-Tests (Dunnett.GLM) erweitert, der auch für überdispergierte Zähldaten 

(Varianz > Mittelwert) geeignet ist. 

Power-Berechnungen für CPCAT, CPFISH und Dunnett.GLM wurden unter Verwendung 

simulierter Effektgrößen durchgeführt, um typische Reproduktions- und Feldtestdesigns 

widerzuspiegeln. Die Ergebnisse haben gezeigt, dass CPCAT und CPFISH sensitiv auf die Anzahl 

der Treatment-Gruppen ohne Effekte reagieren, was die p-Werte der betroffenen Gruppen 

beeinflussen kann. Daher ist bei der Anwendung dieser Methoden im regulatorischen Kontext 

Vorsicht geboten. Das Projekt wurde mit der erfolgreichen Entwicklung eines öffentlich 

zugänglichen R-Pakets auf CRAN und GitHub abgeschlossen, das statistische Tools für die 

Analyse von Zähldaten bereitstellt und künftige Überarbeitungen der OECD-Prüfrichtlinie Nr. 54 

unterstützen wird. 
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Summary 

The Federal Environment Agency (UBA) is currently reviewing the recommendations of the 

OECD Test Guideline No. 54 according to the current state of the knowledge. In the context of 

this project, it was considered necessary to evaluate alternative methods – not mentioned in this 

guideline – for the statistical analysis of Poisson-distributed data, which are typical endpoints of 

mesocosm studies or field studies (e.g. non-target arthropod species). Another issue was 

considered to be multiple testing (e.g. for several dose groups), for which correction methods 

are used, which can result in the reduction of alpha. The aim of the present project was to 

develop an R package, containing functions to statistically analyse Poisson-distributed data, 

namely the ‘CPCAT’ method. Initially, errors in the existing R script were corrected, including the 

removal of one-sided test procedures and issues with p-values for control treatments with all-

zero values. The package was then expanded to include additional features, such as a measure 

for overdispersed and underdispersed data, the integration of the ‘CPFISH’ test, which is a 

similar test as CPCAT, but is used for binomial data, and the development of a ‘Dunnett.GLM’ test 

function. The ‘Dunnett.GLM’ test is a test based on a Dunnett test for the model parameters of a 

GLM (Generalized Linear Model) which can model overdispersed count data. Furthermore, 

power calculations for the three implemented methods were performed based on simulated 

effect sizes for typical reproduction and field test designs. It was found that the Closure 

Principle, specifically CPCAT and CPFISH, seem to have a high sensitivity to the number of 

treatment groups without effects, i.e. that p-values of treatment groups with effects might 

strongly be affected by adding treatment groups without effects. It is therefore recommended to 

use CPCAT and CPFISH for the evaluation of field studies with more than one treatment group 

without any effect with caution as effects might be overseen. The final R package has been made 

publicly available on CRAN and GitHub. 
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Zusammenfassung 

Das Umweltbundesamt (UBA) überprüft derzeit die Inhalte der OECD-Prüfrichtlinie Nr. 54 im 

Hinblick auf den aktuellen Stand von Wissenschaft und Technik. Im Rahmen dieses Projektes 

wurde es als notwendig erachtet, alternative Methoden für die statistische Analyse von Poisson-

verteilten Daten zu evaluieren. Ziel des vorliegenden Projekts war die Entwicklung eines R-

Pakets, das Funktionen zur statistischen Analyse von Poisson-verteilten Daten enthält, 

namentlich die Methode ‚CPCAT‘. Zunächst wurden Fehler im bestehenden R-Skript korrigiert, 

einschließlich der Entfernung von einseitigen Testverfahren und Problemen mit p-Werten für 

Kontrollbehandlungen mit Nullwerten. Das Paket wurde um zusätzliche Funktionen erweitert, 

wie z. B. ein Maß für eine Über- und Unterdispersion der Daten, die Integration des ‚CPFISH‘-

Tests (ähnlich CPCAT, aber für binomial-verteilte Daten) und die Entwicklung einer 

‚Dunnett.GLM‘-Test-Funktion. Der 'Dunnett.GLM'-Test ist ein Test auf der Grundlage eines 

Dunnett Tests für die Modellparameter eines GLM (Generalized Linear Model), das auch 

Zähldaten mit Überdispersion modellieren kann. Darüber hinaus wurden Power-Berechnungen 

für die drei Methoden auf der Grundlage simulierter Effektgrößen für typische Reproduktions- 

und Feldtestdesigns durchgeführt. Es wurde festgestellt, dass das Closure Principle, 

insbesondere CPCAT und CPFISH, eine hohe Sensitivität gegenüber der Anzahl der Treatment-

Gruppen ohne Effekte zu haben scheint. Die p-Werte von Behandlungsgruppen mit Effekten 

durch das Hinzufügen von Behandlungsgruppen ohne Effekte stark beeinflusst werden können. 

Es wird daher empfohlen, CPCAT und CPFISH unter Vorliegen von mehreren 

Behandlungsgruppen ohne Effekte mit Vorsicht zu verwenden. Das R-Paket wurde auf CRAN 

und GitHub veröffentlicht. 
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1 Background 

1.1 Introduction 

The Federal Environment Agency’s mandate regarding chemical safety includes testing the 

effects of chemicals on ecosystems and groundwater, in line with European regulations. These 

regulations include data requirements for risk assessments based on standardized 

ecotoxicological laboratory and field tests, which are described in OECD Test Guidelines (TGs). 

The primary reference for statistical evaluation is the OECD TG No. 54, ‘Current approaches in 

the statistical analysis of ecotoxicity data: a guidance to application’ (2006). However, some 

methods mentioned in TG No. 54 need revision. A particularly important point, which is very 

relevant for the risk assessment of chemicals, is the statistical analysis of non-normally 

distributed data, in particular of count data, which are typically Poisson distributed. Such data 

occurs frequently in aquatic mesocosms and field studies on soil organisms and arthropods.  

Poisson-distributed data, which tends toward a normal distribution for large sample sizes, are 

often analysed using methods that assume (usually incorrectly) a normal distribution. 

Alternatively, non-parametric methods are sometimes used, which may have a poorer statistical 

performance (Daniels et al., 2021). 

Since the publication of the OECD TG No. 54, a new method for evaluating such Poisson 

distributed data, named ‘CPCAT’, has been published (Lehmann et al., 2016). This method has 

specifically been developed for the analysis of count data, and it also addresses another issue, 

which is currently not yet covered sufficiently by OECD TG No. 54: The decrease of test power 

when conducting multiple tests (die to so called ‘α-inflation’). Similar methods have also been 

developed for binomial data expressed as discrete values (e.g. ‘12 out of 20 animals affected’), 

like the Closure Principle and Fisher-Freeman-Halton test (CPFISH) or Cochran-Armitage test. 

These methods are possible candidates for a revised OECD TG No. 54. 

Currently, no update to OECD Document No. 54 is planned in the OECD Test Guidelines 

Programme. Since December 2023, the Federal Environment Agency has been working on 

updating Document No. 54 through an in-house research project. This project involves a 

comprehensive literature review to identify available statistical methods for laboratory and field 

test data evaluation. The identified methods are currently being assessed for their applicability 

and suitability within the chemical risk assessment. The present project has been initiated 

within this context. In particular, the evaluation of the methods CPCAT, CPAFISH and 

Dunnett.GLM were evaluated and an R-package was developed to make the methods more 

accessible to stakeholders.  

 

1.2 Description of CPCAT/CPFISH 

When conducting statistical tests with multiple treatments, such as a control group and 

increasing concentrations of a test substance, ANOVA and parametric post-hoc tests (e.g. 

Dunnett’s test) are commonly used. However, these tests require the assumptions of 

homogeneous variances and normally distributed data. For count data (e.g. counts of animals), 

these assumptions are typically violated, as the data are usually Poisson-distributed. 

Additionally, multiple testing using post-hoc tests can lead to α-inflation. To address these 

issues, CPCAT was proposed by Lehmann et al. (2016). 

CPCAT has two components. The first is the Closure Principle (CP), developed by Bretz et al. 

(2010), which aims to eliminate α-inflation. CP applies a stepwise approach to identify at which 
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concentration effects begin to occur. For example, in a study with a control group and three test 

concentrations, the following hypotheses are tested to determine if effects exist between the 

control mean µ0 and the lowest concentration group mean µ1: 

► H1;2;3: µ0 = µ1 = µ2 = µ3 

► H1;3: µ0 = µ1 = µ3 

► H1;2: µ0 = µ1 = µ2 

► H1: µ0 = µ1 

An effect is only considered statistically significant for a given concentration, if all the possible 

sub-hypotheses including the evaluated concentration are rejected. 

The second part of CPCAT is the actual significance test, CAT (Computational Approach Test; 

introduced by Chang et al., 2010), which uses a test based on the Poisson distribution rather 

than a parametric test based on normal distribution assumptions. The CAT basically consists of 

the following steps:  

1. Estimate individual Poisson parameter for each group 

2. Calculate the test statistic for the input data (‘distance’ between the Poisson parameters of 

the control and the Poisson parameters of the treatment groups) 

3. Estimate overall Poisson parameter from all groups (including the control) 

4. Generate artificial datasets using parametric bootstrapping with the overall Poisson 

parameter 

5. Calculate the test statistic for each artificial dataset 

6. Calculate the p-value from the proportion of test statistics of the artificial datasets greater 

than the initially calculated test statistic for the input data 

CPCAT is designed for the evaluation of Poisson distributed data (mean = variance). Therefore, 

the prerequisite for its application is to check the data distribution for Poisson distribution. 

Deviations from these assumptions, explicitly over- and underdispersion of data, should be 

within an acceptable range. Lehmann et al (2018a) suggested the ‘Hampel Identifier’ as a tool for 

detecting deviations from the standard assumption. However, the definition of a threshold for 

mild violations from the standard assumption needs to be discussed.  

For quantal data (e.g. survival data, ‘14 out of 20 animals died’) e.g. in the form of a contingency 

table, a similar method “CPFISH” was proposed by Lehmann et al. (2018b). Like CPCAT, CPFISH 

is based on the Closure Principle, but instead of a bootstrapping approach, a Fisher test is 

performed for all sub-hypotheses to be analyzed. 
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2 Overview about working tasks 
The general aim of this project was to provide technical support for the Federal Environment 

Agency's current in-house research project to review OECD Document No. 54. Specifically, the 

aim of the project was to develop an R package that includes a function for the statistical analysis 

of Poisson-distributed data using the ‘CPCAT’ method (Lehmann et al., 2016). The source code 

had been documented in the original publication of Lehmann et al. (2016). A citable R package 

needed to be created within this project, documented and made available to the public on the 

CRAN repository (for access and maintenance reasons, it was agreed that the UBA would upload 

the data to the platforms). In addition, the source code had to be uploaded on the GitHub 

https://opencode.de/de.  

The following steps and sub-steps were formulated before the start of the project and were 

partially reformulated during the course of the project in consultation with the Federal 

Environment Agency. Changes to the steps are explained in more detail in the results section. 

In a first step, errors already identified in the existing R source code for CPCAT should to be 

corrected, including:  

► Removing the source code for possible use as a one-sided test procedure. Only the two-sided 

test shall be implemented.  

► Error correction for the analysis of data sets with only zero values in all replicates of the 

control treatment: Currently, for treatments without response (also all replicates =0), a p-

value=0 is output in these cases (instead of p~1). A simple workaround for error correction 

exists and must be implemented.  

In a second step, the R package to be developed shall be expanded to include the following 

functions and properties in addition to the CPCAT function:  

► For the CPCAT test, a measure of the degree of overdispersion shall be output in the results 

display for all treatments in the data set (for example, ‘Hampel Identifier’, see Lehmann et al, 

2018a). 

► An additional R function shall be implemented for the statistical test CPFISH (Lehmann et al., 

2018b).  

► For the above-mentioned tests (CPCAT, CPFISH), an additional argument should be 

integrated within the functions to allow confidence intervals to be output for the calculated 

toxicity thresholds according to the concept of Mair et al (2020). Bootstrap methods can be 

used for this purpose.  

► A further R function shall be generated that performs a GLM-Dunnett test with a quasi-

Poisson link function (Hothorn et al., 2020) and outputs p-values with corresponding 

NOEC/LOEC derivations. The method can access the R package multcomp.  

► The implemented functions are to be compared with results from the literature and thus 

validated. 

► The functions to be developed for the above-mentioned test methods (CPCAT, CPFISH) 

should output all p-values of the respective sub-hypotheses and the corresponding 

maximum p-values of all treatments, including a derivation of the corresponding 

NOEC/LOEC value, as a summarised result.  

https://opencode.de/de
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In a third step, power calculations of the three implemented methods are performed as a 

function of simulated effect sizes for typical test designs of reproduction and field tests and 

reported.  
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3 Results 

3.1 Step 1: Error correction 

3.1.1 One-sided test procedure 

In the original publication by Lehmann et al. (2016), the option of performing the CPCAT method 

as a one- or two-sided test was implemented. This option was removed from the function. 

3.1.2 Erroneous p-values for all-zero data 

With the original R code from Lehmann et al. (2016), it was not possible to generate correct 

results in every case. If all values in the control group were zero and all values in a treatment 

group were also zero, the method as described in Lehmann et al. (2016) may return an incorrect 

(too small) p-value or even a p-value of 0. However, a p-value of 1 should actually be returned, 

as the groups are identical. For this reason, the code was modified to address such scenarios.  

Specifically, an additional check was added to the code to determine whether all values of the 

control and all values of the considered treatments are zero. In this case, a p-value of 1 is now 

returned directly. The problem emerged from the calculation of the p-values when comparing 

the test statistic of the measured data with those of the data artificially generated using 

bootstrapping. If all input data is zero, the parametric bootstrapping is conducted with a Poisson 

parameter of 0 producing always the same results. Therefore, the artificial data can never differ 

from the input data and subsequently also the test statistics are all the same and identical to the 

test statistic of the input data. As Lehmann et al. (2016) defined the p-value to be the proportion 

of test statistics from artificial data greater than the test statistic of the measured data, this 

proportion was always zero (test statistics were always identical).  

3.2 Step 2: Development of R functions 

3.2.1 CPCAT 

The basic algorithm of CPCAT was provided by the Federal Environment Agency. The code was 

thoroughly revised, particularly with regard to names of variables and comments in the code, to 

enhance readability. Furthermore, checks were introduced in the code to prevent errors (e.g. 

incorrect formatting of input data) and new functionality was added (see table below).  

Table 1: CPCAT function parameters introduced to the source code  

Parameter (see code) Description Default value 

groups Vector containing group 
information (e.g. dose or 
concentration); numbers or 
character strings allowed 

No default, must be specified 

counts Vector containing count data; 
only non-negative numbers 
allowed 

No default, must be specified 
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Parameter (see code) Description Default value 

control.name Character string specifying the 
control group name; if not 
specified, the first group in the 
groups vector is considered the 
control 

NULL 

bootstrap.runs Number of bootstrap runs 10000 

hampel.threshold Threshold for Hampel identifier 
(measure for over- and under-
dispersed data) 

5 

use.fixed.random.seed Use or don’t use fixed random 
seed for the bootstrapping 
procedure to enable reproducible 
results 

TRUE 

get.contrasts.and.p.values  Get each row of the contrast 
matrices evaluated 

FALSE 

show.output Print out results in the console 
(results will always be returned as 
R object when calling the 
function) 

TRUE 

 

Further details can be found in the published source code (provided in the Appendix, section 

A.2). 

3.2.2 Measure of degree of overdispersion and underdispersion 

By definition, the variance of Poisson-distributed data is equal to the mean of the data. If the 

variance is greater than the mean, there is overdispersion in the data. If the variance is less than 

the mean, there is underdispersion in the data. To quantify the over- and underdispersion, the 

‘Hampel identifier’ was implemented as a measure, as used in Daniels et al. (2021). The data is 

considered underdispersed, if the difference between the mean and variance is greater than a 

certain threshold (default threshold of 5 can be adjusted by changing a function parameter). The 

analogue applies to overdispersion. 

If data is considered to be over- or underdispersed, a notification text is printed when the CPCAT 

function is called. Further details can be found in the published source code. 

3.2.3 CPFISH 

The basic algorithm of CPFISH was provided by the Federal Environment Agency. The code was 

thoroughly revised, particularly with regard to names of variables and comments in the code, to 

enhance readability. Furthermore, checks were introduced in the code to prevent errors (e.g. 

incorrect formatting of input data) and new functionality was added (see table below).  
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Table 2: CPFISH function parameters introduced to the source code  

Parameter (see code) Description Default value 

contingency.table  The contingency table is a matrix 
with observed data (e.g. survival 
counts, whereas survival must be 
in the first row) 

No default, must be specified 

control.name Character string specifying the 
control group name; if not 
specified, the first column in the 
contingency table is considered 
the control 

NULL 

simulate.p.value Use simulated p-values in 
implemented Fisher test or not 
(not to use simulated p-values 
may lead to errors for higher 
sample sizes) 

TRUE 

use.fixed.random.seed Use or don’t use fixed random 
seed for simulating p-values in 
the Fisher test to enable 
reproducible results 

TRUE 

show.output Print out results in the console 
(results will always be returned as 
R object when calling the 
function) 

TRUE 

 

Further details can be found in the published source code (provided in the Appendix, section 

A.4). 

3.2.4 Confidence limits for toxicity thresholds 

The calculation of confidence intervals for toxicity thresholds was originally intended to be 

implemented in the main functions of the tests (CPCAT, CPFISH and Dunnett.GLM) and based on 

the concept of Mair et al. (2020). However, it was found that this was not reasonable as the data 

was transformed in Mair et al. (2020) to obtain approximated normally distributed data. 

However, this procedure is not appropriate in the context of CPCAT, as an explicit advantage of 

the method is that the data are not transformed and continue to be Poisson-distributed.  

An appropriate alternative for implementing power analyses and MDD (Minimum Detectable 

Difference) calculation is the use of the bootstrapping method (bMDD = bootstrap MDD). 

However, this means that the bootstrapping-based concept of CPCAT has to be wrapped by 

another bootstrapping iteration. The resulting time needed for the calculations is not suitable for 

integrating the functionality into the main functions of the tests. Instead, the calculation of the 

bMDD was outsourced and implemented in a joint function due to the similarity in content to the 

power calculation. Further details can be found in the chapter on power calculation.  

3.2.5 Dunnett.GLM test 

Another way to analyse count data is to fit a GLM and then apply a Dunnett test to the model 

parameters. By using a quasi-Poisson distribution and a logarithmic link function, even 
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overdispersed data can be modelled. The approach is also suitable for analysing count data as it 

can be used for non-normally distributed data (which is common for count data) and at the same 

time the Dunnett test controls the type I error rate when comparing multiple experimental 

groups with a control group. Therefore, the Dunnett.GLM function was implemented as an 

alternative for the CPCAT approach.   

The basic approach of the method was taken from the publication by Hothorn and Kluxen 

(2020). The code has been thoroughly reviewed, revised and extended, particularly with regard 

to error handling and commenting of the code.  

Since the method from Hothorn and Kluxen (2020) provides a quasi-Poisson link function for 

the GLM and the data are transformed accordingly, there is a methodological difficulty with all-

zero treatment groups. Although no results should actually emerge, the GLM returns an estimate 

with an extremely high standard error, which leads to a very high p-value for the all-zero 

treatment group (i.e. the deviation of this treatment group from the control is assessed as not 

statistically significant, even if the effect is very pronounced). To deal with this methodological 

shortcoming, two options were implemented:  

► The ‘identity.link’ option: the ‘identity’ link is used in the GLM instead of the ‘log’ link, i.e. the 

data are no longer transformed. Note that this means a methodological deviation from 

Hothorn and Kluxen (2020), which may distort the results. 

► The ‘log(x+1)’ option: The ‘log’ link is retained and 1 is added to each count value at the start 

of the procedure so that the subsequent log-transformation can be carried out without any 

problems. Note that the preceding data transformation may distort the results. 

Both options can only be used if the data contains groups that only contain zeros. A notification 

text is provided in the results if one of the options was actually used. 

A complete list of implemented function parameters is shown below. 

Table 3: Dunnett.GLM function parameters introduced to the source code  

Parameter (see code) Description Default value 

groups Vector containing group 
information (e.g. dose or 
concentration); numbers or 
character strings allowed 

No default, must be specified 

counts Vector containing count data; 
only non-negative numbers 
allowed 

No default, must be specified 

control.name Character string specifying the 
control group name; if not 
specified, the first group in the 
groups vector is considered the 
control 

NULL 

zero.treatment.action Character string specifying the 
method for dealing with 
treatments only containing zeros; 
either use “identity.link” or 
"log(x+1)" 

“identity.link” 
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Parameter (see code) Description Default value 

show.output Print out results in the console 
(results will always be returned as 
R object when calling the 
function) 

TRUE 

Further details can be found in the published source code (provided in the Appendix, section 

A.3). 

3.2.6 Verification of the code by comparison with results from the literature 

To verify the implementation of the functions CPCAT, CPFISH, and Dunnett.GLM, results from 

CPCAT were compared to results provided in Lehmann et al. (2016), results from CPFISH were 

compared to results provided in Lehmann et al. (2018b) and results from Dunnett.GLM were 

compared to results provided in Hothorn and Kluxen (2020). The comparison of the results 

refers to the data specified in the respective publication (simulation runs with artificial data and 

parameter variation excluded). 

CPCAT results from Lehmann et al. (2016) were identical to those from the implemented CPCAT 

function (see following table). Results for dataset 4 were not included in the table as the raw 

data were not provided in the original publication.  

Table 4: CPCAT results from Lehmann et al. (2016) compared with results from the 
implementation provided in the present document. 

Dataset Dose group Indicated as statistically 

significantly different from control 

in Lehmann et al. (2016) 

Indicated as statistically 

significantly different from control 

by present CPCAT implementation  

1 1.06 No No 

1 1.59 No No 

1 2.38 No No 

1 3.53 Yes Yes 

1 5.29 Yes Yes 

1 7.93 Yes Yes 

2 1.06 Yes Yes 

2 1.59 No No 

2 2.38 Yes Yes 

2 3.53 Yes Yes 

2 5.29 Yes Yes 
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Dataset Dose group Indicated as statistically 

significantly different from control 

in Lehmann et al. (2016) 

Indicated as statistically 

significantly different from control 

by present CPCAT implementation  

2 7.93 Yes Yes 

3 1.06 Yes Yes 

3 1.59 Yes Yes 

3 2.38 Yes Yes 

3 3.53 Yes Yes 

3 5.29 Yes Yes 

3 7.93 Yes Yes 

5 0.2 Yes Yes 

5 1 No No 

5 5 Yes Yes 

5 25 Yes Yes 

6 T1 Yes Yes 

6 T2 Yes Yes 

6 T3 No No 

6 T4 Yes Yes 

6 T5 Yes Yes 

7 T1 No No 

7 T2 No No 

7 T3 No No 

7 T4 Yes Yes 

7 T5 Yes Yes 

 

CPFISH results from Lehmann et al. (2018b) were identical to those from the implemented 

CPFISH function (see following table). 
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Table 5: CPFISH results from Lehmann et al. (2018b) compared with results from the 
implementation provided in the present document. 

Dataset Reference point according to Lehmann et 

al. (2018b) 

Reference point according to present 

CPFISH implementation 

1 NOEL at 3 mg/L (treatment 2) NOEL at 3 mg/L (treatment 2) 

2 LOEL at 3 mg/L (treatment 3) LOEL at 3 mg/L (treatment 3) 

 

In order to compare the Dunnett.GLM calculations with each other, the settings in the function 

call of Hothorn and Kluxen (2020) had to be adjusted (instead of a one-sided test, a two-sided 

test was used). In the implementation of Hothorn and Kluxen (2020), the zero values in the 

highest dose group cause that this group is no longer considered statistically significantly 

different from the control. In the present implementation of the Dunnett.GLM function, the 

method is adapted accordingly so that dose groups with all-zero values can also be considered. 

Consequently, the results differ with regard to the highest dose group (see following table). 

Table 6: Dunnett.GLM results based on source code from Hothorn and Kluxen (2020) 
compared with results from the implementation in the present document 
(‘daphnia’ data from Hothorn and Kluxen, 2020, used for comparison). 

Dose group p-values based on 

implementation 

provided in Hothorn and 

Kluxen (2020) 

p-values from present 

implementation of the 

Dunnett.GLM function 

(log(x+1) transformation 

used) 

p-values from present 

implementation of the 

Dunnett.GLM function 

(identity link used) 

1.56 0.401 0.393 0.342 

3.12 <0.001 <0.001 <0.001 

6.25 0.006 0.006 0.006 

12.5 <0.001 <0.001 <0.001 

25 1.000 <0.001 <0.001 

 

3.2.7 Output format 

The standard output of the R functions for CPCAT, CPFISH and Dunnett.GLM includes an R list 

object with a results variable containing hypothesis-specific p-values and levels of significance 

and an information variable containing additional information (e.g. Hampel identifier info for 

overdispersion if detected, information about used settings such as using simulated p-values for 

the Fisher test in CPFISH, or derivations for the NOEC and LOEC). 

An example of the output is provided in the Appendix (section C.1).  
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3.3 Sensitivity and test power  

In order to interpret the results of a statistical test, it is important to find out which effect size 

can be detected with which power. Otherwise, a test could show statistically insignificant 

differences simply because the difference between control and treatment was too small to be 

detected, e.g. due to a small sample size. The difference between the values of a control and 

those of a treatment group that can just be shown to be statistically significant with a given 

power (set to 80 %) is called Minimum Detectable Difference, MDD (Duquesne et al., 2020; Zar, 

2013). While MDD calculations are frequently used for parametric tests, such as the t-test, they 

can also be calculated for non-parametric tests using bootstrapping. 

The idea behind the bootstrap MDD (bMDD) calculation is to initially assume an effect size of 0 

for each treatment individually in a bootstrapping procedure and to gradually increase the effect 

size (the effect sizes of the other treatments remain unchanged). In each step, N data sets are 

generated by parametric sampling (N = number of bootstrap runs). The corresponding statistical 

test is carried out with each data set generated in this way. The proportion of statistically 

significant differences between the control and the considered treatment group corresponds to 

the power of the test for the given effect size. Conversely, the effect size can be interpreted as 

bMDD corresponding to the associated power. A similar method for bMDD determination has 

already been published by van der Hoeven (2007) involving a gradual shift in the data to 

determine an bMDD for the non-parametric Mann-Whitney-U test. 

More specifically, bMDD calculations for CPCAT and the Dunnett.GLM test were implemented as 

follows:  

1. Estimate Poisson parameter from the control group 

2. Conduct number of bootstrap iterations for each treatment group:  

a. Sample data from a Poisson distribution for the currently evaluated treatment group 

starting with the Poisson parameters of the control (data of other groups remain 

unchanged) 

b. Conduct the statistical test (CPCAT or Dunnett.GLM) and check for significance  

3. Stepwise shift the Poisson parameter and repeat the bootstrapping until all tests of step 2b 

showed significant differences 

4. The bMDD is considered the lowest shift value for which at least 80 % of the bootstrap runs 

showed significant differences (higher shift values are not allowed to result in less than 80 % 

significant differences) 

For CPFISH, contingency tables (quantal data) are used, i.e. the effect size must be controlled via 

the gradual change in the probability of a binomial distribution. Therefore, the bMDD calculation 

for CPFISH must be modified accordingly: 

1. Estimate probability of ‘success’ from the control group 

2. Conduct number of bootstrap iterations for each treatment group:  

a. Sample data from a binomial distribution for the currently evaluated treatment group 

starting with the ‘success’ probability of the control (data of other groups remain 

unchanged) 

b. Conduct CPFISH and check for significance 

3. Stepwise shift the probability and repeat the bootstrapping until all tests of step 2b showed 

significant differences 

4. The bMDD is considered the lowest shift value for which at least 80 % of the bootstrap runs 

showed significant differences (higher shift values are not allowed to result in less than 80 % 

significant differences) 
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Calculating the power for a given data set is straightforward: parametric bootstrapping is used 

to generate artificial data for each treatment group individually, which is then used to perform 

the statistical test. The proportion of significant results from the bootstrapping describes the 

power of the test for the corresponding treatment group. 

Further details can be found in the published source code. Exemplary power and bMDD 

calculations for the implemented methods were conducted as a function of simulated effect sizes 

for typical test designs of reproduction and field tests and reported in the appendix to the R 

package documentation. 

Finally, in order to test the influence of the effect size on the test power of CPCAT, Dunnett.GLM 

and CPFISH, artificial data sets were analysed. Data sets with different numbers of groups and 

replicates, different mean control counts and different dispersion factors were tested 

(dispersion factor DF=variance/mean; R package ZIGP used for sampling).  

Similar to the procedure for the bMDD calculation, the effect size was gradually increased for the 

highest concentration in relation to the control and the power was determined using parametric 

bootstrapping. For CPCAT and Dunnett.GLM two scenarios were used for four groups, 

representing one control and three treatments: In a first scenario, a deviation from the control 

was assumed in the highest dose group, while no deviations from the control were assumed in 

the other two dose groups. In the second scenario, a monotonically increasing deviation 

compared to the control was assumed across all three treatment groups (the first treatment 

showed 1/3 deviation of the deviation in the third treatment and the second treatment had 2/3 

of the deviation of the third treatment). An example of the selected deviations is provided in the 

following table. 

Table 7: Example for deviation implementation with mean control count of 25 and 20 % 
effect in the highest treatment group. The mean counts correspond to the lambda 
parameter of the Poisson distribution used for sampling. 

Group Mean counts for effects only in 

highest treatment 

(% of control / % effect) 

Mean counts for effects 

monotonically increasing 

(% of control / % effect) 

Control 25.00 

(100.0 % / 0.0 %) 

25.00 

(100.0 % / 0.0 %) 

T1 25.00 

(100.0 % / 0.0 %) 

23.33 

(93.3 % / 6.7 %) 

T2 25.00 

(100.0 % / 0.0 %) 

21.67 

(86.7 % / 13.3 %) 

T3 20.00 

(80.0 % / 20.0 %) 

20.00 

(80.0 % / 20.0 %) 

 

As expected, the relationship between effect size and power was described by a sigmoid curve 

(see figures in following sections). However, it was noticeable that the curve shifted depending 

on the total number of control and treatment groups. The same power is only achieved for data 
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with more groups with a more pronounced effect size. This phenomenon was analysed in more 

detail in the following chapter in order to determine the characteristics of the test procedures.  

As a first step the relationship between power and effect size was compared between CPCAT and 

Dunnett.GLM for a data set with four groups (including one control and three treatments), ten 

replicates per group and a mean control count of 25. For additional validation of the 

Dunnett.GLM approach, a standard Dunnett test (ANOVA post-hoc test) was also included. The 

Dunnett.GLM approach showed the best performance for scenarios with effects only in the 

highest treatment group (see Figure 1). Differences between the three methods were more 

pronounced for the scenario with deviations in the highest treatment group and no deviations in 

the two lower treatments (see Figure 1). The differences narrowed, when monotonic effects 

across all treatment groups were assumed (see Figure 2). 

Figure 1: Relationship between effect size and power of CPCAT, Dunnett.GLM and a standard 
Dunnett test for four groups (one control and three treatments with effects only in 
highest treatment). 

 

Source: own illustration, WSC Scientific GmbH. 
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Figure 2: Relationship between effect size and power of CPCAT, Dunnett.GLM and a standard 
Dunnett test for four groups (one control and three treatments with monotonically 
increasing effects). 

 

Source: own illustration, WSC Scientific GmbH. 

When considering only two groups (one control and one treatment with effects), the differences 

between CPCAT and Dunnett.GLM vanished and both methods performed slightly better than 

the standard Dunnett test due to the more appropriate distributional assumptions (see Figure 

3). It should be noted, that the complexity of the tests is reduced when only two groups are 

considered, i.e. the Closure Principle of CPCAT is not applied and the Dunnett test is reduced to a 

t-test. 
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Figure 3: Relationship between effect size and power of CPCAT, Dunnett.GLM and a standard 
Dunnett test for two groups (one control and one treatment with effects). 

 

Source: own illustration, WSC Scientific GmbH. 

3.3.1 CPCAT and Dunnett.GLM power analysis 

The following sections and figures describe the relationship between power and effect size for 

CPCAT and Dunnett.GLM considering various characteristics a dataset might have (different 

numbers of groups and replicates, different mean control counts and different dispersion 

factors). The default setup included four dose/concentration groups (including one control and 

three treatments), ten replicates per group, a mean control count of 25 and a dispersion factor of 

one (i.e. variance = mean). One of these parameters was varied while the others were fixed in 

order to evaluate the influence of the parameter. Each analysis was performed either with 

effects only in the highest treatment group or with monotonically increasing effects across all 

treatment groups.  

3.3.1.1 Varying the number of treatment groups 

To evaluate the sensitivity of CPCAT and Dunnett.GLM to the number of tested treatment groups, 

the tests were performed with two, four and six groups (including one control group). 

The graphs showing power vs. effect size for both CPCAT and Dunnett.GLM shifted with an 

increasing number of treatment groups. For two groups (one control and one treatment), CPCAT 

and Dunnett.GLM delivered almost identical results. For four and six treatment groups, Dunnett-

GLM had a higher power than CPCAT, whereby the difference was greater if only effects in the 

highest treatment group were assumed (see Figure 4). Differences between both methods 

became smaller, if monotonically increasing effects were present across all treatment groups 

(see Figure 5). The reduction in the differences was mainly due to the change in the power of 

CPCAT; the implementation of the effects (only in the highest treatment group or monotonically 

increasing) had no significant influence on Dunnett.GLM. 
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Figure 4: Relationship between effect size and power of CPCAT and Dunnett.GLM for 
different numbers of groups (one control and one to five treatments with effects 
only in the highest treatment). 

 

 

Source: own illustration, WSC Scientific GmbH. 

Figure 5: Relationship between effect size and power of CPCAT and Dunnett.GLM for 
different numbers of groups (one control and one to five treatments with 
monotonically increasing effects). 

 

Source: own illustration, WSC Scientific GmbH. 
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3.3.1.2 Varying the number of replicates 

The graphs, showing power vs. effect size for both CPCAT and Dunnett.GLM, shifted for raising 

numbers of replicates. Considering four groups (one control and three treatments), 

Dunnett.GLM showed a higher power for all numbers of replicates tested, compared to CPCAT. 

The power difference between the two methods was smaller for monotonically increasing 

effects over the treatment groups (see Figure 7) and larger for the scenario with effects only in 

the highest treatment group (see Figure 6). The power of CPCAT changed slightly more than the 

power of Dunnett.GLM. 

Figure 6: Relationship between effect size and power of CPCAT and Dunnett.GLM for 
different numbers of replicates (one control and three treatments with effects only 
in the highest treatment). 

 

Source: own illustration, WSC Scientific GmbH. 
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Figure 7: Relationship between effect size and power of CPCAT and Dunnett.GLM for 
different numbers of replicates (one control and three treatments with 
monotonically increasing effects). 

 

 

Source: own illustration, WSC Scientific GmbH. 

3.3.1.3 Varying the mean control count 

Additional calculations were conducted in order to test if the abundance has an effect on the 

performance of the tests, e.g. if CPCAT or Dunnett.GLM is more or less sensitive for higher or 

lower counts.  

The graphs, showing power vs. effect size for both CPCAT and Dunnett.GLM, shifted for different 

mean control counts. Considering four groups (one control and three treatments), Dunnett.GLM 

showed a slightly higher power for all mean control counts tested compared to CPCAT. The 

power difference between the two methods was smaller for monotonically increasing effects 

over the treatment groups (see Figure 9) and larger for effects only in the highest treatment 

group (see Figure 8).  
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Figure 8: Relationship between effect size and power of CPCAT and Dunnett.GLM for 
different mean control counts (one control and three treatments with effects only 
in the highest treatment). 

 

Source: own illustration, WSC Scientific GmbH. 

Figure 9: Relationship between effect size and power of CPCAT and Dunnett.GLM for 
different mean control counts (one control and three treatments with 
monotonically increasing effects). 

 

Source: own illustration, WSC Scientific GmbH. 

3.3.1.4 Varying the dispersion factor 

Since the dispersion of measured data may vary considerably, in particular regarding field trials, 

it was also analysed how the test power of the CPCAT and Dunnett.GLM changes for differently 
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dispersed data. A dispersion factor of 1 means that mean=variance. A dispersion factor < 1 

represents underdispersion, a dispersion factor > 1 represents overdispersion (e.g. a dispersion 

factor of 2 means that the variance is twice as large as the mean value).   

The graphs, showing power vs. effect size for Dunnett.GLM, shifted for different dispersion 

factors. The curves for CPCAT varied around an inflection point and were not shifted with the 

effect size (see Figure 10 and Figure 11). This was expected, as CPCAT only takes the group 

mean values into account for the data evaluation (the within-group variability is ignored in the 

calculations). Considering four groups (one control and three treatments), Dunnett.GLM showed 

a higher power for underdispersed data (dispersion factor < 1) and lower power for 

overdispersed data (dispersion factor > 1), compared to CPCAT. However, CPCAT showed a 

higher probability for false positive detection of significant effects, when evaluating 

overdispersed data. This can be explained, as CPCAT does not consider the within-group 

variability > or < mean. When comparing the power results of CPCAT, the power was generally 

higher for monotonically increasing effects over three treatment groups compared to effects 

only in the highest treatment group and no deviations from the control in two lower treatments.  

Figure 10: Relationship between effect size and power of CPCAT and Dunnett.GLM for 
different dispersion factors (one control and three treatments with effects only in 
the highest treatment). 

 

Source: own illustration, WSC Scientific GmbH. 
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Figure 11: Relationship between effect size and power of CPCAT and Dunnett.GLM for 
different dispersion factors (one control and three treatments with monotonically 
increasing effects). 

 

Source: own illustration, WSC Scientific GmbH. 

3.3.2 CPFISH power analysis 

The following figures describe the relationship between power and effect size for CPFISH 

considering various characteristics a data set might have (different numbers of groups and 

replicates). The default setup included four dose/concentration groups, four replicates per 

group and 10 introduced individuals per group. The number of groups and replicates were 

varied while the other parameters were fixed.   

3.3.2.1 Varying the number of treatment groups 

To evaluate the sensitivity of CPFISH to the number of tested treatment groups, the tests were 

performed with two, four, six and eight groups (including control group). 

The number of treatment groups was first varied assuming 100 % survival in the control. 

As the number of groups seemed to have no impact on the power (see Figure 12), another 

parameter (the background mortality / control survival) was varied and it could be shown that 

the number of groups affects the power, only if the survival in the control is lower than 100 % 

(see Figure 13). 
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Figure 12: Relationship between effect size and power of CPFISH for different numbers of 
groups (one control and one to seven treatments with effects only in the highest 
treatment) assuming 100 % survival in the control. 

 

Source: own illustration, WSC Scientific GmbH. 

Figure 13: Relationship between effect size and power of CPFISH for different numbers of 
groups (one control and one to seven treatments with effects only in the highest 
treatment) assuming 50 % survival in the control. 

 

Source: own illustration, WSC Scientific GmbH. 
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Figure 14: Relationship between effect size and power of CPFISH for different survival levels in 
the control (one control and three treatments with effects only in the highest 
treatment). 

 

Source: own illustration, WSC Scientific GmbH. 
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3.3.2.2 Varying the number of replicates 

The graphs showing power vs. effect size for CPFISH shifted significantly for different numbers 

of replicates. Considering four groups (one control and three treatments), CPFISH showed a 

higher power for a higher number of replicates (see Figure 15). 

Figure 15. Relationship between effect size and power of CPFISH for different numbers of 
replicates (one control and three treatments with effects only in the highest 
treatment). 

 

Source: own illustration, WSC Scientific GmbH. 
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3.4 Influence of increasing treatment levels 

3.4.1 The sensitivity of p-values to the number of treatments without effects 

During the testing of CPCAT and CPFISH it was observed that the test power was particularly 

low when there were several treatment levels without an effect. Therefore, it was decided to 

analyse systematically, how the sensitivity of the test methods change depending on the number 

of treatment groups without effects. 

To find out how sensitively the p-values react to different numbers of treatment groups without 

effects, the following configuration was set up:  

► Each group had a sample size of 5. 

► For the control and treatment groups without effects one set of Poisson-distributed data was 

sampled with a Poisson parameter of 30 (count of 30 individuals on average). 

► For the treatment group with effects (e.g. the highest concentration) effects of 10 %, 35 % 

and 65 % were assumed. To generate this data, the control data was multiplied with a factor 

of 0.9, 0.65 or 0.35. 

► The procedure started with the control group and the effect group (2 groups in total, no 

additional treatment groups without effects). Then treatment groups without effects were 

added. For each group constellation the test was conducted 500 times. The p-values for the 

effect group were saved and compared with each other at the end.  

It was shown that the p-values from CPCAT for data sets with many treatment groups without 

effects were significantly higher than for data sets with fewer groups. The calculations showed 

that CPCAT is particularly sensitive to the number of treatment groups without effects.  

The following graphs illustrates how quickly significant differences between groups with effects 

and the control are shown to be non-significant when treatment groups without effects are 

gradually added to the data set.  
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Figure 16: P-values for a treatment with 10 % effect when evaluating additional treatment 
groups without effects using CPCAT. 

 

Source: own illustration, WSC Scientific GmbH. 

Figure 17: P-values for a treatment with 35 % effect when evaluating additional treatment 
groups without effects using CPCAT.  

 

Source: own illustration, WSC Scientific GmbH. 
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Figure 18: P-values for a treatment with 65 % effect when evaluating additional treatment 
groups without effects using CPCAT.  

 

Source: own illustration, WSC Scientific GmbH. 

The same procedure was performed for the implemented Dunnett.GLM test. It was not shown to 

be particularly susceptible to this phenomenon and at the same time generally showed a higher 

sensitivity than CPCAT. It can also be seen, that there was a greater variance in the p-values from 

Dunnett.GLM compared to results from CPCAT. However, median p-values for Dunnet.GLM were 

consistently lower than the p-values from CPCAT. 

Figure 19: P-values for a treatment with 10 % effect when evaluating additional treatment 
groups without effects using Dunnett.GLM.  

 

Source: own illustration, WSC Scientific GmbH. 
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Figure 20: P-values for a treatment with 35 % effect when evaluating additional treatment 
groups without effects using Dunnett.GLM. 

 

Source: own illustration, WSC Scientific GmbH. 

Figure 21: P-values for a treatment with 65 % effect when evaluating additional treatment 
groups without effects using Dunnett.GLM. 

 

Source: own illustration, WSC Scientific GmbH. 

Sensitivity to added treatment groups without effects was also assessed for CPFISH. However, 

since binomial data are processed in CPFISH, the setup had to be adapted for the evaluation: 

► Each group had a sample size of 100 (higher number of individuals needed for a finer 

resolution of p-values as binomial data is always discrete). 
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► For the control and treatment groups without effects one set of binomial-distributed data 

was sampled with a probability of 75 % (‘success event’ for 75 out of 100 individuals on 

average). 

► For the treatment group with effects (e.g. the highest concentration) a reduction of ‘success 

events’ of 10 %, 15 %, 20 %, 35 % and 65 % were assumed (15 % and 20 % were added as 

there were already no differences in scenarios using 35 % and 65 %).  

► The procedure started with the control group and the effect group (2 groups in total, no 

additional treatment groups without effects). Then treatment groups without effects were 

added. For each group constellation the test was conducted 500 times. The p-values for the 

effect group were saved and compared with each other at the end.  

The results were similar to the results from CPCAT. It was shown that the p-values from CPFISH 

for data sets with many treatment groups without effects were significantly higher than for data 

sets with fewer groups. The calculations showed that CPFISH is particularly sensitive to the 

number of treatment groups without effects for effect sizes up to 20 %. For effect sizes of 35 % 

or higher, there was no difference observed in the scenario used (all p-values were zero). 

However, for other scenarios (e.g. using a different number of individuals introduced per group 

or using another level of background mortality), a difference might occur. 

Figure 22: P-values for a treatment with 10 % effect when evaluating additional treatment 
groups without effects using CPFISH. 

 

Source: own illustration, WSC Scientific GmbH. 
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Figure 23: P-values for a treatment with 15 % effect when evaluating additional treatment 
groups without effects using CPFISH. 

 

Source: own illustration, WSC Scientific GmbH. 

Figure 24: P-values for a treatment with 20 % effect when evaluating additional treatment 
groups without effects using CPFISH. 

 

Source: own illustration, WSC Scientific GmbH. 
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Figure 25: Sensitivity of p-values for a treatment with 35 % effect when evaluating additional 
treatment groups without effects using CPFISH. 

 

Source: own illustration, WSC Scientific GmbH. 

Figure 26: Sensitivity of p-values for a treatment with 65 % effect when evaluating additional 
treatment groups without effects using CPFISH. 

 

Source: own illustration, WSC Scientific GmbH. 
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4 Conclusions 
For most of the tested scenarios, CPCAT and Dunnett.GLM showed only slight differences in 

power and performance. Both methods showed variations in power, if more than one treatment 

was tested. CPCAT performed comparably well to Dunnett.GLM, when only two groups (one 

control and one treatment) were considered, delivering reliable results due to its appropriate 

distributional assumptions. 

For treatments with monotonous increasing effects, which are expected in ecotoxicology, both 

methods performed well. Please note that within this report no comparisons to other standard 

hypothesis tests (e.g. Jonkheere-Terpstra, U-test, etc.) were conducted. 

CPCAT and CPFISH demonstrated a high sensitivity to the number of treatment groups without 

effects, making their power and p-values particularly susceptible to study designs with multiple 

non-effect groups. This sensitivity can result in non-significant findings for pronounced 

deviations in treatments compared to the control at high concentrations in studies with many 

treatment groups. Similar effects might be detected in test designs with fewer dose groups. 

Those mechanisms are well-known from statistical analyses with alternative multiple test 

methods (especially Bonferroni-Holm methods but also Williams and Dunnett test). 

For overdispersed data, CPCAT shows higher probability for false positive detection of 

significant effects compared to the evaluation of the same data with Dunnett.GLM. This 

limitation may restrict the use of CPCAT in datasets with high variability. In future, a threshold 

for mild violations from the standard assumption (mean = variance) needs to be formulated and 

implemented as prerequisite for the use of CPCAT. In contrast, Dunnett.GLM adjusts for 

overdispersion and demonstrated more consistent power across the tested scenarios. 

For scenarios with effects only in the highest treatment group, Dunnett.GLM showed slightly 

higher power compared to CPCAT. Moreover, the sensitivity of Dunnett.GLM is less affected by 

the number of non-effect groups, compared to CPCAT.  

The finding of our evaluations emphasize, that CPCAT and CPFISH should be used with caution 

in study designs involving numerous non-effect groups or overdispersed data. Adjusting the 

design to minimize non-effect groups or variability may enhance the reliability of results, as 

CPCAT is still considered a robust choice for simpler test designs with fewer groups and less 

variability. 
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A Appendix – Source code 

A.1 Source code needed for the Closure Principle 

# Function to generate hypotheses for the Closure Principle concept using 0/1 

contrast matrices 

CP.hypotheses = function(n, treatment.names = NULL) { 

  combinations_list = list() 

   

  # Generate all possible combinations of treatments 

  for (subset_size in 1:n) { 

    combinations_list[[subset_size]] = combn(1:n, subset_size) 

  } 

   

  hypothesis_matrix_list = list() 

   

  # Create a hypothesis matrix for each treatment 

  for (treatment in 1:n) { 

    # Initialize a matrix with zeros 

    hypothesis_matrix = matrix(0, ncol = n, nrow = (2^(n - 1))) 

     

    # Set column names for the matrix 

    if (!is.null(treatment.names) & length(treatment.names) == n) { 

      colnames(hypothesis_matrix) = treatment.names 

    } else { 

      colnames(hypothesis_matrix) = paste("treatment", 1:n) 

    } 

     

    row_index = 1  # Start at the first row 

     

    # Fill the matrix based on the combinations 

    for (subset_size in 1:length(combinations_list)) { 

      for (col in 1:ncol(combinations_list[[subset_size]])) { 

        # Check if the current treatment is in the combination 

        if (any(combinations_list[[subset_size]][, col] == treatment)) { 

          # Mark the corresponding columns in the matrix 
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          hypothesis_matrix[row_index, combinations_list[[subset_size]][, col]] = 1 

          row_index = row_index + 1  # Move to the next row 

        } 

      } 

    } 

     

    # Store the matrix in the list 

    hypothesis_matrix_list[[treatment]] = hypothesis_matrix 

  } 

   

  # Name each hypothesis matrix according to its treatment 

  names(hypothesis_matrix_list) = paste("H0: mu_0 = mu_", 1:n, sep = "") 

   

  return(hypothesis_matrix_list) 

} 

A.2 Source code for CPCAT 

# Helper function for CPCAT 

CPCAT.Poisson.sub.test = function(dat,              # data to be evaluated 

                  contrast,           # contrast matrix 

                  bootstrap.runs = 10000) {    # number of bootstrap runs 

  # Exclude the treatment groups that are not indicated by the contrast information 

  datsheets = c(1, which(contrast == 1) + 1)    # Index to control and CONSIDERED 

treatments 

  dat2 = list()                                 # Control and considered treatment 

data as a list 

 

  # Populate dat2 with data from the specified treatments 

  for (l in 1:length(datsheets)) { 

    dat2[[l]] = dat[[datsheets[l]]] 

  } 

 

  # Initialize vectors for statistics 

  musML = ns = xs = rep(0, length(dat2)) 
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  # Calculate sample sizes, total abundance, and mean abundance for each group 

  for (i in 1:length(musML)) { 

    ns[i] = nrow(dat2[[i]])        # Sample size per group 

    xs[i] = sum(dat2[[i]][, 1])    # Total abundance per group 

    musML[i] = xs[i] / ns[i]       # Mean abundance per group 

  } 

 

  # Calculate 'total distance' etaML between control and all considered treatments 

  etaML = sum((sqrt(musML[-1]) - sqrt(musML[1]))^2) 

  n = sum(ns)                        # Total sample size over control and 

considered treatments 

  x = sum(xs)                        # Total abundance over control and considered 

treatments 

  mu0RML = x / n                     # Mean abundance over control and considered 

treatments 

 

  # Return a p-value of 1 if control and all (considered) treatments are zero 

(i.e., no difference) 

  if (mu0RML == 0) { 

    return(1) 

  } 

 

  # Create artificial data (Poisson distributed) 

  artificialdata = pseudomus = list() 

  for (j in 1:length(dat2)) { 

    artificialdata[[j]] = rpois(bootstrap.runs, ns[j] * mu0RML)  # Artificial total 

abundance per group 

    pseudomus[[j]] = artificialdata[[j]] / ns[j]    # Artificial mean abundance per 

group 

  } 

 

  # Calculate pseudo etas for the artificial data 

  pseudoetasML = rep(0, bootstrap.runs) 

  for (l in 1:bootstrap.runs) { 

    pseudomushelp = vector() 

    for (i in 1:length(pseudomus)) { 

      pseudomushelp[i] = pseudomus[[i]][l] 



TEXTE Evaluation and implementation of statistical methods to assess effects in count data  

51 

 

    } 

    pseudoetasML[l] = sum((sqrt(pseudomushelp[-1]) - sqrt(pseudomushelp[1]))^2) 

  } 

 

  # Calculate p-value from the number of artificial datasets causing a higher 

distance 

  pvalue = length(which(pseudoetasML > etaML)) / bootstrap.runs 

 

  return(pvalue) 

} 

 

# Helper function for CPCAT 

CPCAT.Poisson.test = function(dat, contrastmatrix, bootstrap.runs = 10000) { 

  # Re-structure the input data as a list object 

  dat2 = list() 

  treatments = levels(dat$Groups) 

 

  # Organize data by treatment 

  for (j in 1:length(treatments)) { 

    index = which(dat$Groups == treatments[j]) 

    dat2[[j]] = dat[index, ] 

  } 

 

  # Initialize p-values vector 

  pvalues = rep(0, nrow(contrastmatrix)) 

 

  # Perform Poisson test for each hypothesis (each row in contrastmatrix) 

  for (j in 1:nrow(contrastmatrix)) { 

    pvalues[j] = CPCAT.Poisson.sub.test(dat = dat2, 

                      contrast = contrastmatrix[j, ], 

                      bootstrap.runs = bootstrap.runs) 

  } 

 

  # For each treatment, provide the maximum p-value from all treatment-related 

hypotheses 
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  return(list(contrastmatrix_pvalues = cbind(contrastmatrix, pvalues), maxpvalue = 

max(pvalues))) 

} 

 

# CPCAT main function 

CPCAT = function(groups,                  # group vector 

         counts,                  # vector with count data 

         control.name = NULL,            # character string with control group name 

         bootstrap.runs = 10000,          # number of bootstrap runs 

         hampel.threshold = 5,            # default threshold for Hampel identifier 

(measure for over-/underdispersion) 

         use.fixed.random.seed = TRUE,        # use fixed seed for reproducible 

results 

         get.contrasts.and.p.values = FALSE,    # get each row of the contrast 

matrices evaluated 

         show.output = T) {              # show/hide output 

 

  # check if there is count data for each replicate (length of count and group 

vectors) - groups[i] is one replicate 

  if (length(groups) != length(counts)) { 

    stop("Lengths of groups and counts don't match!") 

  } 

  # check format of input data 

  if (!is.numeric(counts) | min(counts < 0)) {    #  | !all(counts == 

floor(counts)) 

    stop("Counts must be non-negative numeric values!") 

  } 

 

  # setup information to be stored 

  info = data.frame(matrix(nrow = 0, ncol = 1)) 

  info = rbind(info, "Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 

1") 

 

  # Re-structure the input to a data frame 

  dat = data.frame(Counts = counts, Groups = groups) 

 

  # Assign new order of levels if control.name was specified 
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  if (!is.null(control.name)) { 

    if (!is.character(control.name)) { 

      stop("Specified control must be provided as a character string!") 

    } 

    if (!is.element(control.name, unique(dat$Groups))) { 

      stop("Specified control cannot be found!") 

    } 

 

    # Put desired control in the first place 

    dat.temp.1 = dat[dat$Groups == control.name,] 

    dat.temp.2 = dat[dat$Groups != control.name,] 

    dat = rbind(dat.temp.1, dat.temp.2) 

  } 

 

  # Convert groups column to a factor, specifying the desired order of levels 

  dat$Groups = factor(dat$Groups, levels = unique(dat$Groups)) 

 

  # Use treatments vector for convenience 

  treatments = levels(dat$Groups) 

 

  # Exit if not enough data left 

  if (dim(na.omit(dat))[1] < 2) { 

    stop("Too few valid data!") 

  } 

  if (dim(dat)[1] != dim(na.omit(dat))[1]) { 

    info = rbind(info, paste0(dim(dat)[1] != dim(na.omit(dat))[1], " rows with NA 

values were excluded!")) 

  } 

  dat = na.omit(dat) 

 

  # Check for over- and under-dispersion using the Hampel identifier with a default 

cut-off value of 5 

  mean.dat = aggregate(dat$Counts, by=list(dat$Groups), mean)$x 

  var.dat = aggregate(dat$Counts, by=list(dat$Groups), var)$x 

  hampel.value = var.dat - mean.dat 



TEXTE Evaluation and implementation of statistical methods to assess effects in count data  

54 

 

  if (min(hampel.value) < -hampel.threshold) { 

    info = rbind(info, paste0("There was under-dispersed data identified in 

treatment(s) ", 

                  paste0(paste0(treatments, " (HI: ", round(hampel.value, 

digits=1), ")")[which(hampel.value < -hampel.threshold)], collapse = ", "), 

                  ". HI = Hampel Identifier.")) 

  } 

  if (max(hampel.value) > hampel.threshold) { 

    info = rbind(info, paste0("There was over-dispersed data identified in 

treatment(s) ", 

                  paste0(paste0(treatments, " (HI: ", round(hampel.value, 

digits=1), ")")[which(hampel.value > hampel.threshold)], collapse = ", "), 

                  ". HI = Hampel Identifier.")) 

  } 

 

  # All hypotheses to be tested 

  n = length(levels(dat$Groups)) 

  allhypotheses = CP.hypotheses(n = n - 1, treatment.names = treatments) 

 

  # Transform list to table data.frame 

  allhypothesescompact = numeric() 

  for (l in 1:length(allhypotheses)) { 

    allhypothesescompact = rbind(allhypothesescompact, allhypotheses[[l]]) 

  } 

 

  # Only unique rows are selected 

  allhypothesescompact = unique(allhypothesescompact) 

 

  results = list() 

  # Flag all hypotheses which have already been tested by assigning a p-value, 

  # else p-value = -9999 

  flagpvalues = matrix(-9999, nrow = nrow(allhypothesescompact), ncol = 

ncol(allhypothesescompact)) 

  pvalsCPCAT = rep(1, n - 1) 

 

  # Fix seed for random numbers if desired (enables to reproduce results) 
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  if (use.fixed.random.seed) { 

    set.seed(123) 

  } 

 

  for (j in 1:(n - 1)) { 

    # Identify contrasts a p-value != -9999 has been assigned to 

    # These contrasts must not be tested again 

    contrasts = CP.hypotheses(n = n - 1, treatment.names = treatments)[[j]] 

    matchingrows = numeric() 

    for (i in 1:nrow(contrasts)) { 

      matchingrows = c(matchingrows, which(apply(allhypothesescompact, 1, 

identical, contrasts[i, ]))) 

    } 

    alreadyflaggedindex = which(flagpvalues[matchingrows, j] != -9999) 

 

    # Shorten contrasts to be tested by elimination of already tested contrasts 

    if (length(alreadyflaggedindex) > 0) { 

      contrasts = contrasts[-alreadyflaggedindex, ] 

    } 

 

    # In the last step the contrast matrix reduces to a vector 

    # Make it a matrix consisting of nrow = 1 

    if (is.matrix(contrasts) == FALSE) { 

      contrasts = matrix(contrasts, nrow = 1) 

    } 

    notflaggedindex = which(flagpvalues[matchingrows, j] == -9999) 

    # Flag p-values which are still -9999 

    # After CPCAT corresponding p-values will be != -9999 

    tobeflagged = matchingrows[notflaggedindex] 

 

    results[[j]] = CPCAT.Poisson.test(dat = dat, 

                      contrastmatrix = contrasts, 

                      bootstrap.runs = bootstrap.runs)[[1]] 

 

    if (j == 1) { 
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      contrasts.and.p.values = results[[j]] 

    } else { 

      contrasts.and.p.values = rbind(contrasts.and.p.values, results[[j]]) 

    } 

 

    # Write obtained p-values into column j of flagpvalues and find max p-value 

    pvalshelp = results[[j]][, ncol(results[[j]])] 

    flagpvalues[tobeflagged, j] = pvalshelp 

 

    # Put together new p-values of reduced contrast matrix and relevant p-values in 

flagpvalues[, j] 

    if (j > 1) {  # In step j = 1 all flagpvalues equal -9999 

      pvalshelp2 = c(pvalshelp, flagpvalues[matchingrows[-notflaggedindex], j]) 

    } else { 

      pvalshelp2 = pvalshelp 

    } 

    pvalsCPCAT[j] = max(pvalshelp2) 

 

    # Copy p-values obtained so far to the next column of flagpvalues 

    if (j < (n - 1)) { 

      flagpvalues[, j + 1] = flagpvalues[, j] 

    } 

  } 

 

  # Assign significance levels based on p-values 

  significances = rep(NA, n - 1) 

  for (j in 1:(n - 1)) { 

    if (pvalsCPCAT[j] < 0.05) { 

      if (pvalsCPCAT[j] < 0.01) { 

        if (pvalsCPCAT[j] < 0.001) { 

          significances[j] = "***" 

        } else { 

          significances[j] = "**" 

        } 

      } else { 
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        significances[j] = "*" 

      } 

    } else { 

      significances[j] = "." 

    } 

  } 

 

  # Get NOEC and LOEC 

  NOEC = treatments[1] 

  LOEC = treatments[2] 

  for (j in 1:(n - 1)) { 

    if (pvalsCPCAT[j] < 0.05) { 

      break 

    } 

    NOEC = treatments[j] 

    if (j == (n - 1)) { 

      LOEC = NA 

      break 

    } 

    LOEC = treatments[j+1] 

  } 

  info = rbind(info, paste0("NOEC: ", NOEC, ", LOEC: ", ifelse(is.na(LOEC), 

"outside tested dose/concentration", LOEC), 

                ". Assuming that any effects are adverse. Otherwise, NOEC and LOEC 

should be reconsidered.")) 

 

  # Compile results into a data.frame 

  results = data.frame(Hypothesis = paste0("H0: ", treatments[1], " <-> ", 

treatments[2:n]), p.values = pvalsCPCAT, Signif. = significances) 

 

  # Set header for information object 

  colnames(info) = "Information and warnings:" 

 

  # Show output if desired 

  if (show.output) { 

    if (get.contrasts.and.p.values) { 
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      print(structure(list(Contrasts=data.frame(contrasts.and.p.values), 

Results=results, Info=info)), row.names = F, quote = F, right = F) 

    } else { 

      print(structure(list(Results=results, Info=info)), row.names = F, quote = F, 

right = F) 

    } 

  } 

 

  # Provide output as object even if not shown 

  if (get.contrasts.and.p.values) { 

    invisible(structure(list(Contrasts=data.frame(contrasts.and.p.values), 

Results=results, Info=info))) 

  } else { 

    invisible(structure(list(Results=results, Info=info))) 

  } 

} 

A.3 Source code for Dunnett.GLM 

# Dunnett GLM 

Dunnett.GLM = function(  groups,                    # group vector 

            counts,                    # vector with count data 

            control.name = NULL,            # character string with control group 

name 

            zero.treatment.action = "identity.link",  # method for dealing with 

treatments only containing zeros (alternative: "log(x+1)") 

            show.output = T){              # show/hide output 

   

  # do some error handling 

  if (length(groups) != length(counts)) { 

    stop("Lengths of groups and counts don't match!") 

  } 

   

  if (!is.numeric(counts) | min(counts < 0)) {   # | !all(counts == floor(counts)) 

    stop("Counts must be non-negative numeric values!") 

  } 
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  if (zero.treatment.action != "identity.link" & zero.treatment.action != 

"log(x+1)") { 

    stop("Parameter zero.treatment.action must be either \"identity.link\" or 

\"log(x+1)\"!") 

  } 

   

  # setup information to be stored 

  info = data.frame(matrix(nrow = 0, ncol = 1)) 

   

  # Re-structure the input to a data frame 

  dat = data.frame(Counts = counts, Groups = groups) 

   

  # Assign new order of levels if control.name was specified 

  if (!is.null(control.name)) { 

    if (!is.character(control.name)) { 

      stop("Specified control must be provided as a character string!") 

    } 

    if (!is.element(control.name, unique(dat$Groups))) { 

      stop("Specified control cannot be found!") 

    } 

     

    # Put desired control in the first place 

    dat.temp.1 = dat[dat$Groups == control.name,] 

    dat.temp.2 = dat[dat$Groups != control.name,] 

    dat = rbind(dat.temp.1, dat.temp.2) 

  }   

   

  # Convert groups column to a factor, specifying the desired order of levels 

  dat$Groups = factor(dat$Groups, levels = unique(dat$Groups)) 

   

  # Use treatments vector for convenience 

  treatments = levels(dat$Groups)    

   

  # Exit if not enough data left 

  if (dim(na.omit(dat))[1] < 2) { 
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    stop("Too few valid data!") 

  } 

  if (dim(dat)[1] != dim(na.omit(dat))[1]) { 

    info = rbind(info, paste0(dim(dat)[1] != dim(na.omit(dat))[1], " rows with NA 

values were excluded!")) 

  } 

  dat = na.omit(dat) 

   

   

  agg = aggregate(dat$Counts, by=list(dat$Groups), mean) 

   

  if (min(agg$x) > 0) { 

    # Dunnett GLM with quasi-Poisson link-function 

    mod = glm(Counts~Groups, data=dat, family=quasipoisson(link = "log")) 

  } else { 

    info = rbind(info, paste0("A treatment contained only zeros, hence, the 

zero.treatment.action \"", zero.treatment.action, "\" was applied.")) 

     

    # Use either the identity link or a data transformation if one treatment mean 

is zero (standard log link would fail) 

    if (zero.treatment.action == "identity.link") { 

      # use another link function (link="identity", i.e. E(Y) = b0 + b1 * X) 

      mod = try(glm(Counts~Groups, data=dat, family=quasipoisson(link = 

"identity")), silent = T) 

      if ("try-error" %in% class(mod)){  

        stop("Error in GLM calculation. Consider to change argument 

zero.treatment.action to \"log(x+1)\".") 

      } 

    } else { 

      # modify data to always get positive estimates using log link (link="log", 

i.e. log(E(Y)) = b0 + b1 * X) 

      dat$Counts = dat$Counts + 1 

      mod = try(glm(dat$Counts~Groups, data=dat, family=quasipoisson(link = 

"log")), silent = T) 

      if ("try-error" %in% class(mod)){  

        stop("Error in GLM calculation. Consider to change argument 

zero.treatment.action to \"identity.link\".") 
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      } 

    } 

  }   

   

  results = summary(glht(mod, linfct = mcp(Groups = "Dunnett"), 

alternative="two.sided")) 

   

  # Set header for information object 

  colnames(info) = "Information and warnings:" 

   

  # Provide output 

  if (show.output) { 

    print(structure(list('Results' = results, Info=info)), row.names = F, quote = 

F, right = F) 

  } else { 

    invisible(structure(list('Results' = results, Info=info))) 

  } 

} 

A.4 Source code for CPFISH 

# CPFISH function for testing hypotheses using Fisher's exact test 

CPFISH = function(contingency.table,          # contingency.table is a matrix with 

observed data (e.g. survival counts, survival must be in first row) 

          control.name = NULL,          # character string with control group name 

          simulate.p.value = TRUE,        # use simulated p-values or not 

          use.fixed.random.seed = TRUE,      # use fixed seed for reproducible 

results 

          show.output = T){            # show/hide output 

   

  # setup information to be stored 

  info = data.frame(matrix(nrow = 0, ncol = 1)) 

  info = rbind(info, "Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 

1") 

   

  # Assign new order of levels if control.name was specified 

  if (!is.null(control.name)) { 
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    if (!is.character(control.name)) { 

      stop("Specified control must be provided as a character string!") 

    } 

    if (!is.element(control.name, unique(colnames(contingency.table)))) { 

      stop("Specified control cannot be found!") 

    } 

     

    # Put desired control in the first place 

    dat.temp.1 = data.frame(contingency.table[, which(colnames(contingency.table) 

== control.name)]) 

    colnames(dat.temp.1) = control.name 

    dat.temp.2 = contingency.table[, which(colnames(contingency.table) != 

control.name)] 

    contingency.table = cbind(dat.temp.1, dat.temp.2) 

  } 

   

  treatment_names = colnames(contingency.table) 

  num_treatments = ncol(contingency.table) - 1 

  if (is.null(treatment_names)) { 

    treatment_names = as.character(1:(num_treatments+1)) 

  } 

   

  # Vector to store p-values for each treatment 

  pvalues = rep(1, num_treatments) 

   

  # Generate all possible hypotheses 

  all_hypotheses = CP.hypotheses(n = length(treatment_names) - 1, treatment.names = 

treatment_names) 

  compact_hypotheses = do.call(rbind, all_hypotheses) 

  compact_hypotheses = unique(compact_hypotheses) 

   

  # Matrix to track tested hypotheses and their p-values 

  pvalue_flags = matrix(-9999, nrow = nrow(compact_hypotheses), ncol = 

ncol(compact_hypotheses)) 

   

  # Fix seed for random numbers if desired (enables to reproduce results) 
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  if (use.fixed.random.seed) { 

    set.seed(123) 

  } 

   

  for (j in 1:num_treatments) { 

    # Retrieve contrast matrix for the current treatment hypothesis 

    contrasts = CP.hypotheses(n = num_treatments, treatment.names = 

treatment_names)[[j]] 

    matching_rows = numeric() 

    for (i in 1:nrow(contrasts)) { 

      matching_rows = c(matching_rows, which(apply(compact_hypotheses, 1, 

identical, contrasts[i, ]))) 

    } 

    already_tested = which(pvalue_flags[matching_rows, j] != -9999) 

     

    # Remove already tested contrasts from the matrix to be tested 

    if (length(already_tested) > 0) { 

      contrasts = contrasts[-already_tested, ] 

    } 

     

    # Ensure contrasts matrix is still a matrix after subsetting 

    if (!is.matrix(contrasts)) { 

      contrasts = matrix(contrasts, nrow = 1) 

    } 

     

    not_tested = which(pvalue_flags[matching_rows, j] == -9999) 

    to_be_tested = matching_rows[not_tested] 

     

    # Calculate p-values for the current contrasts 

    pvals = rep(0, nrow(contrasts)) 

    for (l in 1:nrow(contrasts)) { 

      test_data = contingency.table[, c(1, (which(contrasts[l, ] == 1) + 1))] 

      if (all(rowSums(test_data) != c(0, 0))) { 

        pvals[l] = fisher.test(test_data, alternative = "two.sided", 

simulate.p.value = simulate.p.value)[[1]] 

      } else { 
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        pvals[l] = 1 

      } 

    } 

     

    # Update p-value flags and track maximum p-value 

    pvalue_flags[to_be_tested, j] = pvals 

    if (j > 1) { 

      pvals_combined = c(pvals, pvalue_flags[matching_rows[-not_tested], j]) 

    } else { 

      pvals_combined = pvals 

    } 

    pvalues[j] = max(pvals_combined) 

     

    # Propagate the p-values to the next step 

    if (j < (length(treatment_names) - 1)) { 

      pvalue_flags[, j + 1] = pvalue_flags[, j] 

    } 

  } 

   

  n = length(treatment_names) 

  significances = rep(NA, n - 1) 

   

  # Assign significance levels based on p-values 

  for (j in 1:(n - 1)) { 

    if (pvalues[j] < 0.05) { 

      if (pvalues[j] < 0.01) { 

        if (pvalues[j] < 0.001) { 

          significances[j] = "***" 

        } else { 

          significances[j] = "**" 

        } 

      } else { 

        significances[j] = "*" 

      } 

    } else { 
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      significances[j] = "." 

    } 

  } 

   

  # Get NOEC and LOEC 

  NOEC = treatment_names[1] 

  LOEC = treatment_names[2] 

  for (j in 1:(n - 1)) { 

    if (pvalues[j] < 0.05) { 

      break 

    } 

    NOEC = treatment_names[j+1] 

    if (j == (n - 1)) { 

      LOEC = NA 

      break 

    } 

    LOEC = treatment_names[j+2] 

  } 

  info = rbind(info, paste0("NOEC: ", NOEC, ", LOEC: ", ifelse(is.na(LOEC), 

"outside tested dose/concentration", LOEC),  

                ". Assuming that any effects are adverse. Otherwise, NOEC and LOEC 

should be reconsidered.")) 

   

  results = data.frame(Treatment = treatment_names[-1], p.values = pvalues, Signif. 

= significances) 

   

  # Add information about the use of simulated p-values 

  if (simulate.p.value) { 

    info = rbind(info, "Simulated p-values used.") 

  } 

   

  # Set header for information object 

  colnames(info) = "Information and warnings:" 

   

  # Provide output 

  if (show.output) { 
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    print(structure(list('Results' = results, Info=info)), row.names = F, quote = 

F, right = F) 

  } else { 

    invisible(structure(list('Results' = results, Info=info))) 

  } 

} 
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B Appendix – Data from the literature 

B.1 Count data from Lehmann et al. (2016) 

Table 8: Example count data from Lehmann et al. (2016) used for validation. 

Dataset Groups Counts 

1 Control 23 

1 Control 22 

1 Control 24 

1 Control 23 

1 Control 21 

1 Control 21 

1 1.06 18 

1 1.06 22 

1 1.06 22 

1 1.59 23 

1 1.59 23 

1 1.59 21 

1 2.38 20 

1 2.38 19 

1 2.38 21 

1 3.53 10 

1 3.53 8 

1 3.53 9 

1 5.29 6 

1 5.29 4 

1 5.29 6 

1 7.93 2 

1 7.93 2 

1 7.93 0 

2 Control 67 



TEXTE Evaluation and implementation of statistical methods to assess effects in count data  

68 

 

Dataset Groups Counts 

2 Control 59 

2 Control 64 

2 Control 71 

2 Control 63 

2 Control 58 

2 1.06 47 

2 1.06 48 

2 1.06 58 

2 1.59 55 

2 1.59 66 

2 1.59 56 

2 2.38 39 

2 2.38 48 

2 2.38 50 

2 3.53 12 

2 3.53 9 

2 3.53 10 

2 5.29 6 

2 5.29 4 

2 5.29 6 

2 7.93 2 

2 7.93 2 

2 7.93 0 

3 Control 154 

3 Control 130 

3 Control 134 

3 Control 155 

3 Control 142 
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Dataset Groups Counts 

3 Control 139 

3 1.06 115 

3 1.06 104 

3 1.06 116 

3 1.59 118 

3 1.59 120 

3 1.59 120 

3 2.38 71 

3 2.38 76 

3 2.38 83 

3 3.53 12 

3 3.53 10 

3 3.53 10 

3 5.29 6 

3 5.29 4 

3 5.29 6 

3 7.93 2 

3 7.93 2 

3 7.93 0 

4 Control 139 

4 Control 131 

4 Control 138 

4 Control 116 

4 0.2 94 

4 0.2 140 

4 0.2 100 

4 0.2 89 

4 1 147 
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Dataset Groups Counts 

4 1 109 

4 1 98 

4 1 139 

4 5 84 

4 5 105 

4 5 79 

4 5 73 

4 25 33 

4 25 42 

4 25 39 

4 25 46 

6 Control 12 

6 Control 14 

6 Control 15 

6 Control 14 

6 Control 13 

6 Control 16 

6 T1 10 

6 T1 9 

6 T1 11 

6 T1 10 

6 T1 8 

6 T1 8 

6 T2 9 

6 T2 8 

6 T2 8 

6 T2 9 

6 T2 7 
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Dataset Groups Counts 

6 T2 8 

6 T3 16 

6 T3 18 

6 T3 15 

6 T3 19 

6 T3 17 

6 T3 20 

6 T4 31 

6 T4 35 

6 T4 33 

6 T4 39 

6 T4 41 

6 T4 42 

6 T5 61 

6 T5 53 

6 T5 64 

6 T5 67 

6 T5 59 

6 T5 65 

7 Control 25 

7 Control 22 

7 Control 24 

7 T1 27 

7 T1 29 

7 T1 30 

7 T2 19 

7 T2 18 

7 T2 19 
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Dataset Groups Counts 

7 T3 34 

7 T3 35 

7 T3 30 

7 T4 15 

7 T4 12 

7 T4 13 

7 T5 13 

7 T5 10 

7 T5 9 

 

B.2 Quantal data from Lehmann et al. (2018b) 

Table 9: Example data 1 from Lehmann et al. (2018b) used for validation. 

Replicate Survived 

/ Dead 

Control T 1.5 T 3 T 6.25 T 12.5 T 25 T 50 T 100 

1 Survived 14 14 15 8 13 11 15 7 

1 Dead 1 1 0 7 2 4 0 8 

2 Survived 13 13 13 14 9 11 9 6 

2 Dead 2 2 2 1 6 4 6 9 

3 Survived 15 12 10 14 10 11 6 6 

3 Dead 0 3 5 1 5 4 9 9 

4 Survived 15 15 12 10 14 15 9 9 

4 Dead 0 0 3 5 1 0 6 6 

5 Survived 14 - - - - - - - 

5 Dead 1 - - - - - - - 
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Replicate Survived 

/ Dead 

Control T 1.5 T 3 T 6.25 T 12.5 T 25 T 50 T 100 

Combined Survived 71 54 50 46 46 48 39 28 

Combined Dead 4 6 10 14 14 12 21 32 

 

Table 10: Example data 2 from Lehmann et al. (2018b) used for validation. 

Replicate Dead / Survived Control T 1 T 2 T 3 T 4 T 5 T 6 T 7 

1 Dead 1 1 1 1 1 1 1 1 

1 Survived 0 0 0 0 0 0 0 0 

2 Dead 0 1 1 1 1 1 1 1 

2 Survived 1 0 0 0 0 0 0 0 

3 Dead 0 0 0 1 1 1 1 1 

3 Survived 1 1 1 0 0 0 0 0 

4 Dead 0 0 0 1 1 1 1 1 

4 Survived 1 1 1 0 0 0 0 0 

5 Dead 0 0 0 1 1 1 1 1 

5 Survived 1 1 1 0 0 0 0 0 

6 Dead 0 0 0 1 1 1 1 1 

6 Survived 1 1 1 0 0 0 0 0 

7 Dead 0 0 0 1 1 1 1 1 

7 Survived 1 1 1 0 0 0 0 0 

8 Dead 0 0 0 0 1 1 1 1 

8 Survived 1 1 1 1 0 0 0 0 
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Replicate Dead / Survived Control T 1 T 2 T 3 T 4 T 5 T 6 T 7 

9 Dead 0 0 0 0 1 1 1 1 

9 Survived 1 1 1 1 0 0 0 0 

10 Dead 0 0 0 0 1 1 1 1 

10 Survived 1 1 1 1 0 0 0 0 

11 Dead 0 0 0 0 1 1 1 1 

11 Survived 1 1 1 1 0 0 0 0 

12 Dead 0 0 0 0 0 1 1 1 

12 Survived 1 1 1 1 1 0 0 0 

13 Dead 0 0 0 0 0 0 1 1 

13 Survived 1 1 1 1 1 1 0 0 

14 Dead 0 0 0 0 0 0 1 1 

14 Survived 1 1 1 1 1 1 0 0 

15 Dead 0 0 0 0 0 0 1 1 

15 Survived 1 1 1 1 1 1 0 0 

16 Dead 0 0 0 0 0 0 1 1 

16 Survived 1 1 1 1 1 1 0 0 

17 Dead 0 0 0 0 0 0 1 1 

17 Survived 1 1 1 1 1 1 0 0 

18 Dead 0 0 0 0 0 0 1 1 

18 Survived 1 1 1 1 1 1 0 0 

19 Dead 0 0 0 0 0 0 1 0 
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Replicate Dead / Survived Control T 1 T 2 T 3 T 4 T 5 T 6 T 7 

19 Survived 1 1 1 1 1 1 0 1 

20 Dead 0 0 0 0 0 0 1 0 

20 Survived 1 1 1 1 1 1 0 1 

21 Dead 0 - - - - - - - 

21 Survived 1 - - - - - - - 

22 Dead 0 - - - - - - - 

22 Survived 1 - - - - - - - 

23 Dead 0 - - - - - - - 

23 Survived 1 - - - - - - - 

24 Dead 0 - - - - - - - 

24 Survived 1 - - - - - - - 

Combined Dead 1 2 2 7 11 12 20 18 

Combined Survived 23 18 18 13 9 8 0 2 

 

B.3 Count data from Hothorn and Kluxen (2020) 

In the following table, data from a daphnia dataset (data taken from Hothorn and Kluxen, 2020; 

see table below) was used as input data for CPCAT to illustrate the format of the output. It was 

also used for verification of the Dunnett.GLM implementation. 

Table 11: Input data for CPCAT example output. 

Concentration Young_daphnia 

0 
0 
0 
0 
0 
0 
0 

27 
30 
29 
31 
16 
15 
18 



TEXTE Evaluation and implementation of statistical methods to assess effects in count data  

76 

 

Concentration Young_daphnia 

0 
0 
0 

17 
14 
27 

1.56 
1.56 
1.56 
1.56 
1.56 
1.56 
1.56 
1.56 
1.56 
1.56 

32 
35 
32 
26 
18 
29 
27 
16 
35 
13 

3.12 
3.12 
3.12 
3.12 
3.12 
3.12 
3.12 
3.12 
3.12 
3.12 

39 
30 
33 
33 
36 
33 
33 
27 
38 
44 

6.25 
6.25 
6.25 
6.25 
6.25 
6.25 
6.25 
6.25 
6.25 
6.25 

27 
34 
36 
34 
31 
27 
33 
21 
33 
31 

12.5 
12.5 
12.5 
12.5 
12.5 
12.5 
12.5 
12.5 
12.5 
12.5 

10 
13 
7 
7 
7 
10 
10 
16 
12 
2 

25 
25 
25 
25 
25 
25 
25 
25 

0 
0 
0 
0 
0 
0 
0 
0 
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Concentration Young_daphnia 

25 
25 

0 
0 

 



TEXTE Evaluation and implementation of statistical methods to assess effects in count data  

78 

 

C Appendix – Example for CPCAT output format 

C.1 Example for CPCAT input and output 

In the following example, data from a daphnia dataset (data from Hothorn and Kluxen, 2020; see 

Table 11) was used as input data for CPCAT to illustrate the format of the output.  

The CPCAT function call looks as follows (default setting were not changed): 

CPCAT(groups=Concentration, counts=Young_daphnia) 

The result is as follows: 

$Results 

 Hypothesis     p.values Signif. 

 H0: 0 <-> 1.56 0.0748   .       

 H0: 0 <-> 3.12 0.0001   ***     

 H0: 0 <-> 6.25 0.0020   **      

 H0: 0 <-> 12.5 0.0000   ***     

 H0: 0 <-> 25   0.0000   ***     

 

$Info 

 Information and warnings:                                                                                       

 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1                                                  

 There was under-dispersed data identified in treatment(s) 3.12 (HI: -

11.2), 6.25 (HI: -10.5). HI = Hampel Identifier.  

 There was over-dispersed data identified in treatment(s) 0 (HI: 25.6), 

1.56 (HI: 37.7), 12.5 (HI: 5.8). HI = Hampel Identifier. 

 NOEC: 0, LOEC: 1.56. Assuming that any effects are adverse. Otherwise, 

NOEC and LOEC should be reconsidered. 
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