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TEXTE Evaluation and implementation of statistical methods to assess effects in count data

Abstract: Evaluation and implementation of statistical methods to assess effects in count data

The Federal Environment Agency (UBA) is currently reviewing the OECD Test Guideline No. 54,
which outlines the statistical methods used in the analysis of ecotoxicological data. As part of
this evaluation, the UBA identified a need to assess alternative statistical methods not covered in
the guideline, particularly for Poisson-distributed data, common in mesocosm and field studies
(e.g. non-target arthropod species). Additionally, the issue of multiple testing, which can lead to
areduction in test power, was identified as a concern.

The main objective of this project was to develop an R package to enhance the analysis of
Poisson-distributed data using methods such as ‘CPCAT". Initially, errors in the existing CPCAT R
script were corrected, including removing one-sided test options and addressing issues with p-
values for control treatments with zero values. The package was further expanded implementing
a similar test for binomial data (CPFISH) and a GLM-based Dunnett test (Dunnett.GLM)
applicable for overdispersed count data.

Power calculations for CPCAT, CPFISH, and Dunnett.GLM were performed using simulated effect
sizes to reflect typical reproduction and field test designs. Results showed that CPCAT and
CPFISH exhibit sensitivity to the number of treatment groups without effects, potentially
influencing p-values of affected groups. Therefore, caution is advised when using these methods
in regulatory contexts. The project concluded with the successful development of a publicly
available R package on CRAN and GitHub, providing statistical tools for the analysis of count
data, which will support future revisions of OECD Test Guideline No. 54.

Kurzbeschreibung: Bewertung und Implementierung statistischer Methoden zur Beurteilung von
Effekten in Zahldaten

Das Umweltbundesamt (UBA) iiberarbeitet derzeit die OECD-Priifrichtlinie Nr. 54, in der
statistische Methoden fiir die Analyse dkotoxikologischer Daten beschrieben sind. Im Rahmen
dieser Bewertung stellte das UBA fest, dass alternative statistische Methoden, die nicht in der
Richtlinie enthalten sind, bewertet werden miissen, insbesondere Methoden fiir Poisson-
verteilte Daten, die in Mesokosmen- und Feldstudien hiufig vorkommen (z. B. bei non-target
Arthropodenarten). Dariiber hinaus wurde die Frage der gangigen Mehrfachtests, die zu einer
Verringerung der Teststdrke fithren kénnen, als Problem erkannt.

Das Hauptziel dieses Projekts war die Entwicklung eines R-Pakets zur Verbesserung der Analyse
von Poisson-verteilten Daten mit Methoden wie ,CPCAT". Zunachst wurden Fehler im
bestehenden CPCAT-R-Skript korrigiert, einschlieflich der Entfernung einseitiger Testoptionen
und der Losung von Problemen mit p-Werten fiir Kontrollgruppen mit Nullwerten. Das Paket
wurde durch die Implementierung eines dhnlichen Tests fiir Binomialdaten (CPFISH) und eines
GLM-basierten Dunnett-Tests (Dunnett.GLM) erweitert, der auch fiir iiberdispergierte Zahldaten
(Varianz > Mittelwert) geeignet ist.

Power-Berechnungen fiir CPCAT, CPFISH und Dunnett.GLM wurden unter Verwendung
simulierter Effektgrofien durchgefiihrt, um typische Reproduktions- und Feldtestdesigns
widerzuspiegeln. Die Ergebnisse haben gezeigt, dass CPCAT und CPFISH sensitiv auf die Anzahl
der Treatment-Gruppen ohne Effekte reagieren, was die p-Werte der betroffenen Gruppen
beeinflussen kann. Daher ist bei der Anwendung dieser Methoden im regulatorischen Kontext
Vorsicht geboten. Das Projekt wurde mit der erfolgreichen Entwicklung eines o6ffentlich
zuganglichen R-Pakets auf CRAN und GitHub abgeschlossen, das statistische Tools fiir die
Analyse von Zihldaten bereitstellt und kiinftige Uberarbeitungen der OECD-Priifrichtlinie Nr. 54
unterstiitzen wird.
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Summary

The Federal Environment Agency (UBA) is currently reviewing the recommendations of the
OECD Test Guideline No. 54 according to the current state of the knowledge. In the context of
this project, it was considered necessary to evaluate alternative methods - not mentioned in this
guideline - for the statistical analysis of Poisson-distributed data, which are typical endpoints of
mesocosm studies or field studies (e.g. non-target arthropod species). Another issue was
considered to be multiple testing (e.g. for several dose groups), for which correction methods
are used, which can result in the reduction of alpha. The aim of the present project was to
develop an R package, containing functions to statistically analyse Poisson-distributed data,
namely the ‘CPCAT’ method. Initially, errors in the existing R script were corrected, including the
removal of one-sided test procedures and issues with p-values for control treatments with all-
zero values. The package was then expanded to include additional features, such as a measure
for overdispersed and underdispersed data, the integration of the ‘CPFISH’ test, which is a
similar test as CPCAT, but is used for binomial data, and the development of a ‘Dunnett.GLM’ test
function. The ‘Dunnett.GLM’ test is a test based on a Dunnett test for the model parameters of a
GLM (Generalized Linear Model) which can model overdispersed count data. Furthermore,
power calculations for the three implemented methods were performed based on simulated
effect sizes for typical reproduction and field test designs. It was found that the Closure
Principle, specifically CPCAT and CPFISH, seem to have a high sensitivity to the number of
treatment groups without effects, i.e. that p-values of treatment groups with effects might
strongly be affected by adding treatment groups without effects. It is therefore recommended to
use CPCAT and CPFISH for the evaluation of field studies with more than one treatment group
without any effect with caution as effects might be overseen. The final R package has been made
publicly available on CRAN and GitHub.
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Zusammenfassung

Das Umweltbundesamt (UBA) iiberpriift derzeit die Inhalte der OECD-Priifrichtlinie Nr. 54 im
Hinblick auf den aktuellen Stand von Wissenschaft und Technik. Im Rahmen dieses Projektes
wurde es als notwendig erachtet, alternative Methoden fiir die statistische Analyse von Poisson-
verteilten Daten zu evaluieren. Ziel des vorliegenden Projekts war die Entwicklung eines R-
Pakets, das Funktionen zur statistischen Analyse von Poisson-verteilten Daten enthélt,
namentlich die Methode ,CPCAT". Zunichst wurden Fehler im bestehenden R-Skript korrigiert,
einschliefdlich der Entfernung von einseitigen Testverfahren und Problemen mit p-Werten fiir
Kontrollbehandlungen mit Nullwerten. Das Paket wurde um zuséatzliche Funktionen erweitert,
wie z. B. ein MaR fiir eine Uber- und Unterdispersion der Daten, die Integration des ,CPFISH'-
Tests (dhnlich CPCAT, aber fiir binomial-verteilte Daten) und die Entwicklung einer
,Dunnett.GLM‘-Test-Funktion. Der 'Dunnett.GLM'-Test ist ein Test auf der Grundlage eines
Dunnett Tests fiir die Modellparameter eines GLM (Generalized Linear Model), das auch
Zahldaten mit Uberdispersion modellieren kann. Dariiber hinaus wurden Power-Berechnungen
fiir die drei Methoden auf der Grundlage simulierter Effektgrofden fiir typische Reproduktions-
und Feldtestdesigns durchgefiihrt. Es wurde festgestellt, dass das Closure Principle,
insbesondere CPCAT und CPFISH, eine hohe Sensitivitat gegeniiber der Anzahl der Treatment-
Gruppen ohne Effekte zu haben scheint. Die p-Werte von Behandlungsgruppen mit Effekten
durch das Hinzufiigen von Behandlungsgruppen ohne Effekte stark beeinflusst werden kdnnen.
Es wird daher empfohlen, CPCAT und CPFISH unter Vorliegen von mehreren
Behandlungsgruppen ohne Effekte mit Vorsicht zu verwenden. Das R-Paket wurde auf CRAN
und GitHub veroffentlicht.
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1 Background

1.1 Introduction

The Federal Environment Agency’s mandate regarding chemical safety includes testing the
effects of chemicals on ecosystems and groundwater, in line with European regulations. These
regulations include data requirements for risk assessments based on standardized
ecotoxicological laboratory and field tests, which are described in OECD Test Guidelines (TGs).
The primary reference for statistical evaluation is the OECD TG No. 54, ‘Current approaches in
the statistical analysis of ecotoxicity data: a guidance to application’ (2006). However, some
methods mentioned in TG No. 54 need revision. A particularly important point, which is very
relevant for the risk assessment of chemicals, is the statistical analysis of non-normally
distributed data, in particular of count data, which are typically Poisson distributed. Such data
occurs frequently in aquatic mesocosms and field studies on soil organisms and arthropods.
Poisson-distributed data, which tends toward a normal distribution for large sample sizes, are
often analysed using methods that assume (usually incorrectly) a normal distribution.
Alternatively, non-parametric methods are sometimes used, which may have a poorer statistical
performance (Daniels et al., 2021).

Since the publication of the OECD TG No. 54, a new method for evaluating such Poisson
distributed data, named ‘CPCAT’, has been published (Lehmann et al., 2016). This method has
specifically been developed for the analysis of count data, and it also addresses another issue,
which is currently not yet covered sufficiently by OECD TG No. 54: The decrease of test power
when conducting multiple tests (die to so called ‘a-inflation’). Similar methods have also been
developed for binomial data expressed as discrete values (e.g. ‘12 out of 20 animals affected’),
like the Closure Principle and Fisher-Freeman-Halton test (CPFISH) or Cochran-Armitage test.
These methods are possible candidates for a revised OECD TG No. 54.

Currently, no update to OECD Document No. 54 is planned in the OECD Test Guidelines
Programme. Since December 2023, the Federal Environment Agency has been working on
updating Document No. 54 through an in-house research project. This project involves a
comprehensive literature review to identify available statistical methods for laboratory and field
test data evaluation. The identified methods are currently being assessed for their applicability
and suitability within the chemical risk assessment. The present project has been initiated
within this context. In particular, the evaluation of the methods CPCAT, CPAFISH and
Dunnett.GLM were evaluated and an R-package was developed to make the methods more
accessible to stakeholders.

1.2 Description of CPCAT/CPFISH

When conducting statistical tests with multiple treatments, such as a control group and
increasing concentrations of a test substance, ANOVA and parametric post-hoc tests (e.g.
Dunnett’s test) are commonly used. However, these tests require the assumptions of
homogeneous variances and normally distributed data. For count data (e.g. counts of animals),
these assumptions are typically violated, as the data are usually Poisson-distributed.
Additionally, multiple testing using post-hoc tests can lead to a-inflation. To address these
issues, CPCAT was proposed by Lehmann et al. (2016).

CPCAT has two components. The first is the Closure Principle (CP), developed by Bretz et al.
(2010), which aims to eliminate a-inflation. CP applies a stepwise approach to identify at which
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concentration effects begin to occur. For example, in a study with a control group and three test
concentrations, the following hypotheses are tested to determine if effects exist between the
control mean p0 and the lowest concentration group mean p1:

» H1;2;3: u0=pl =p2=pu3
» H1;3: p0=pl1 =p3

» HL;2: pu0=pl =p2

» H1:p0=pl

An effect is only considered statistically significant for a given concentration, if all the possible
sub-hypotheses including the evaluated concentration are rejected.

The second part of CPCAT is the actual significance test, CAT (Computational Approach Test;
introduced by Chang et al,, 2010), which uses a test based on the Poisson distribution rather
than a parametric test based on normal distribution assumptions. The CAT basically consists of
the following steps:

1. Estimate individual Poisson parameter for each group

2. Calculate the test statistic for the input data (‘distance’ between the Poisson parameters of

the control and the Poisson parameters of the treatment groups)

Estimate overall Poisson parameter from all groups (including the control)

4. Generate artificial datasets using parametric bootstrapping with the overall Poisson
parameter

5. Calculate the test statistic for each artificial dataset

6. Calculate the p-value from the proportion of test statistics of the artificial datasets greater
than the initially calculated test statistic for the input data

w

CPCAT is designed for the evaluation of Poisson distributed data (mean = variance). Therefore,
the prerequisite for its application is to check the data distribution for Poisson distribution.
Deviations from these assumptions, explicitly over- and underdispersion of data, should be
within an acceptable range. Lehmann et al (2018a) suggested the ‘Hampel Identifier’ as a tool for
detecting deviations from the standard assumption. However, the definition of a threshold for
mild violations from the standard assumption needs to be discussed.

For quantal data (e.g. survival data, ‘14 out of 20 animals died’) e.g. in the form of a contingency
table, a similar method “CPFISH” was proposed by Lehmann et al. (2018b). Like CPCAT, CPFISH
is based on the Closure Principle, but instead of a bootstrapping approach, a Fisher test is
performed for all sub-hypotheses to be analyzed.

15
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2 Overview about working tasks

The general aim of this project was to provide technical support for the Federal Environment
Agency's current in-house research project to review OECD Document No. 54. Specifically, the
aim of the project was to develop an R package that includes a function for the statistical analysis
of Poisson-distributed data using the ‘CPCAT’ method (Lehmann et al., 2016). The source code
had been documented in the original publication of Lehmann et al. (2016). A citable R package
needed to be created within this project, documented and made available to the public on the
CRAN repository (for access and maintenance reasons, it was agreed that the UBA would upload
the data to the platforms). In addition, the source code had to be uploaded on the GitHub
https://opencode.de/de.

The following steps and sub-steps were formulated before the start of the project and were
partially reformulated during the course of the project in consultation with the Federal
Environment Agency. Changes to the steps are explained in more detail in the results section.

In a first step, errors already identified in the existing R source code for CPCAT should to be
corrected, including:

» Removing the source code for possible use as a one-sided test procedure. Only the two-sided
test shall be implemented.

» Error correction for the analysis of data sets with only zero values in all replicates of the
control treatment: Currently, for treatments without response (also all replicates =0), a p-
value=0 is output in these cases (instead of p~1). A simple workaround for error correction
exists and must be implemented.

In a second step, the R package to be developed shall be expanded to include the following
functions and properties in addition to the CPCAT function:

» For the CPCAT test, a measure of the degree of overdispersion shall be output in the results
display for all treatments in the data set (for example, ‘Hampel Identifier’, see Lehmann et al,
2018a).

» An additional R function shall be implemented for the statistical test CPFISH (Lehmann et al,,
2018b).

» For the above-mentioned tests (CPCAT, CPFISH), an additional argument should be
integrated within the functions to allow confidence intervals to be output for the calculated
toxicity thresholds according to the concept of Mair et al (2020). Bootstrap methods can be
used for this purpose.

» A further R function shall be generated that performs a GLM-Dunnett test with a quasi-
Poisson link function (Hothorn et al., 2020) and outputs p-values with corresponding
NOEC/LOEC derivations. The method can access the R package multcomp.

» The implemented functions are to be compared with results from the literature and thus
validated.

» The functions to be developed for the above-mentioned test methods (CPCAT, CPFISH)
should output all p-values of the respective sub-hypotheses and the corresponding
maximum p-values of all treatments, including a derivation of the corresponding
NOEC/LOEC value, as a summarised result.
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In a third step, power calculations of the three implemented methods are performed as a
function of simulated effect sizes for typical test designs of reproduction and field tests and
reported.
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3 Results

3.1 Step 1: Error correction

3.1.1 One-sided test procedure

In the original publication by Lehmann et al. (2016), the option of performing the CPCAT method
as a one- or two-sided test was implemented. This option was removed from the function.

3.1.2 Erroneous p-values for all-zero data

With the original R code from Lehmann et al. (2016), it was not possible to generate correct
results in every case. If all values in the control group were zero and all values in a treatment
group were also zero, the method as described in Lehmann et al. (2016) may return an incorrect
(too small) p-value or even a p-value of 0. However, a p-value of 1 should actually be returned,
as the groups are identical. For this reason, the code was modified to address such scenarios.

Specifically, an additional check was added to the code to determine whether all values of the
control and all values of the considered treatments are zero. In this case, a p-value of 1 is now
returned directly. The problem emerged from the calculation of the p-values when comparing
the test statistic of the measured data with those of the data artificially generated using
bootstrapping. If all input data is zero, the parametric bootstrapping is conducted with a Poisson
parameter of 0 producing always the same results. Therefore, the artificial data can never differ
from the input data and subsequently also the test statistics are all the same and identical to the
test statistic of the input data. As Lehmann et al. (2016) defined the p-value to be the proportion
of test statistics from artificial data greater than the test statistic of the measured data, this
proportion was always zero (test statistics were always identical).

3.2 Step 2: Development of R functions

3.2.1 CPCAT

The basic algorithm of CPCAT was provided by the Federal Environment Agency. The code was
thoroughly revised, particularly with regard to names of variables and comments in the code, to
enhance readability. Furthermore, checks were introduced in the code to prevent errors (e.g.
incorrect formatting of input data) and new functionality was added (see table below).

Table 1: CPCAT function parameters introduced to the source code
Parameter (see code) Description Default value
groups Vector containing group No default, must be specified

information (e.g. dose or
concentration); numbers or
character strings allowed

counts Vector containing count data; No default, must be specified
only non-negative numbers
allowed
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Parameter (see code)

control.name

bootstrap.runs

hampel.threshold

use.fixed.random.seed

get.contrasts.and.p.values

show.output

Description

Character string specifying the
control group name; if not
specified, the first group in the
groups vector is considered the
control

Number of bootstrap runs

Threshold for Hampel identifier
(measure for over- and under-
dispersed data)

Use or don’t use fixed random
seed for the bootstrapping
procedure to enable reproducible
results

Get each row of the contrast
matrices evaluated

Print out results in the console
(results will always be returned as
R object when calling the
function)

Default value

NULL

10000

TRUE

FALSE

TRUE

Further details can be found in the published source code (provided in the Appendix, section

A2).

3.2.2 Measure of degree of overdispersion and underdispersion

By definition, the variance of Poisson-distributed data is equal to the mean of the data. If the
variance is greater than the mean, there is overdispersion in the data. If the variance is less than
the mean, there is underdispersion in the data. To quantify the over- and underdispersion, the
‘Hampel identifier’ was implemented as a measure, as used in Daniels et al. (2021). The data is
considered underdispersed, if the difference between the mean and variance is greater than a
certain threshold (default threshold of 5 can be adjusted by changing a function parameter). The
analogue applies to overdispersion.

If data is considered to be over- or underdispersed, a notification text is printed when the CPCAT
function is called. Further details can be found in the published source code.

3.23 CPFISH

The basic algorithm of CPFISH was provided by the Federal Environment Agency. The code was
thoroughly revised, particularly with regard to names of variables and comments in the code, to
enhance readability. Furthermore, checks were introduced in the code to prevent errors (e.g.
incorrect formatting of input data) and new functionality was added (see table below).
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Table 2: CPFISH function parameters introduced to the source code
Parameter (see code) Description Default value
contingency.table The contingency table is a matrix | No default, must be specified

with observed data (e.g. survival
counts, whereas survival must be
in the first row)

control.name Character string specifying the NULL
control group name; if not
specified, the first column in the
contingency table is considered
the control

simulate.p.value Use simulated p-values in TRUE
implemented Fisher test or not
(not to use simulated p-values
may lead to errors for higher
sample sizes)

use.fixed.random.seed Use or don’t use fixed random TRUE
seed for simulating p-values in
the Fisher test to enable
reproducible results

show.output Print out results in the console TRUE
(results will always be returned as
R object when calling the
function)

Further details can be found in the published source code (provided in the Appendix, section
A4).

3.24 Confidence limits for toxicity thresholds

The calculation of confidence intervals for toxicity thresholds was originally intended to be
implemented in the main functions of the tests (CPCAT, CPFISH and Dunnett.GLM) and based on
the concept of Mair et al. (2020). However, it was found that this was not reasonable as the data
was transformed in Mair et al. (2020) to obtain approximated normally distributed data.
However, this procedure is not appropriate in the context of CPCAT, as an explicit advantage of
the method is that the data are not transformed and continue to be Poisson-distributed.

An appropriate alternative for implementing power analyses and MDD (Minimum Detectable
Difference) calculation is the use of the bootstrapping method (bMDD = bootstrap MDD).
However, this means that the bootstrapping-based concept of CPCAT has to be wrapped by
another bootstrapping iteration. The resulting time needed for the calculations is not suitable for
integrating the functionality into the main functions of the tests. Instead, the calculation of the
bMDD was outsourced and implemented in a joint function due to the similarity in content to the
power calculation. Further details can be found in the chapter on power calculation.

3.2.5 Dunnett.GLM test

Another way to analyse count data is to fit a GLM and then apply a Dunnett test to the model
parameters. By using a quasi-Poisson distribution and a logarithmic link function, even
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overdispersed data can be modelled. The approach is also suitable for analysing count data as it
can be used for non-normally distributed data (which is common for count data) and at the same
time the Dunnett test controls the type I error rate when comparing multiple experimental
groups with a control group. Therefore, the Dunnett.GLM function was implemented as an
alternative for the CPCAT approach.

The basic approach of the method was taken from the publication by Hothorn and Kluxen
(2020). The code has been thoroughly reviewed, revised and extended, particularly with regard
to error handling and commenting of the code.

Since the method from Hothorn and Kluxen (2020) provides a quasi-Poisson link function for
the GLM and the data are transformed accordingly, there is a methodological difficulty with all-
zero treatment groups. Although no results should actually emerge, the GLM returns an estimate
with an extremely high standard error, which leads to a very high p-value for the all-zero
treatment group (i.e. the deviation of this treatment group from the control is assessed as not
statistically significant, even if the effect is very pronounced). To deal with this methodological
shortcoming, two options were implemented:

» The ‘identity.link’ option: the ‘identity’ link is used in the GLM instead of the ‘log’ link, i.e. the
data are no longer transformed. Note that this means a methodological deviation from
Hothorn and Kluxen (2020), which may distort the results.

» The ‘log(x+1)’ option: The ‘log’ link is retained and 1 is added to each count value at the start
of the procedure so that the subsequent log-transformation can be carried out without any
problems. Note that the preceding data transformation may distort the results.

Both options can only be used if the data contains groups that only contain zeros. A notification
text is provided in the results if one of the options was actually used.

A complete list of implemented function parameters is shown below.

Table 3: Dunnett.GLM function parameters introduced to the source code
Parameter (see code) Description Default value
groups Vector containing group No default, must be specified

information (e.g. dose or
concentration); numbers or
character strings allowed

counts Vector containing count data; No default, must be specified
only non-negative numbers
allowed

control.name Character string specifying the NULL

control group name; if not
specified, the first group in the
groups vector is considered the
control

zero.treatment.action Character string specifying the “identity.link”
method for dealing with
treatments only containing zeros;
either use “identity.link” or
"log(x+1)"
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Parameter (see code) Description Default value

show.output Print out results in the console TRUE
(results will always be returned as
R object when calling the
function)

Further details can be found in the published source code (provided in the Appendix, section
A.3).

3.2.6 Verification of the code by comparison with results from the literature

To verify the implementation of the functions CPCAT, CPFISH, and Dunnett.GLM, results from
CPCAT were compared to results provided in Lehmann et al. (2016), results from CPFISH were
compared to results provided in Lehmann et al. (2018b) and results from Dunnett.GLM were
compared to results provided in Hothorn and Kluxen (2020). The comparison of the results
refers to the data specified in the respective publication (simulation runs with artificial data and
parameter variation excluded).

CPCAT results from Lehmann et al. (2016) were identical to those from the implemented CPCAT
function (see following table). Results for dataset 4 were not included in the table as the raw
data were not provided in the original publication.

Table 4: CPCAT results from Lehmann et al. (2016) compared with results from the
implementation provided in the present document.

Dataset Dose group Indicated as statistically Indicated as statistically
significantly different from control | significantly different from control
in Lehmann et al. (2016) by present CPCAT implementation

1 1.06 No No

1 1.59 No No

1 2.38 No No

1 3.53 Yes Yes

1 5.29 Yes Yes

1 7.93 Yes Yes

2 1.06 Yes Yes

2 1.59 No No

2 2.38 Yes Yes

2 3.53 Yes Yes

2 5.29 Yes Yes
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Dataset

Dose group

7.93

1.06

1.59

2.38

3.53

5.29

7.93

0.2

25

T1

T2

T3

T4

T5

T1

T2

T3

T4

T5

Indicated as statistically
significantly different from control
in Lehmann et al. (2016)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

No

Yes

Yes

No

No

No

Yes

Yes

Indicated as statistically
significantly different from control
by present CPCAT implementation

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

No

Yes

Yes

No

No

No

Yes

Yes

CPFISH results from Lehmann et al. (2018b) were identical to those from the implemented
CPFISH function (see following table).
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Table 5: CPFISH results from Lehmann et al. (2018b) compared with results from the
implementation provided in the present document.
Dataset Reference point according to Lehmann et Reference point according to present
al. (2018b) CPFISH implementation
1 NOEL at 3 mg/L (treatment 2) NOEL at 3 mg/L (treatment 2)
2 LOEL at 3 mg/L (treatment 3) LOEL at 3 mg/L (treatment 3)

In order to compare the Dunnett.GLM calculations with each other, the settings in the function
call of Hothorn and Kluxen (2020) had to be adjusted (instead of a one-sided test, a two-sided
test was used). In the implementation of Hothorn and Kluxen (2020), the zero values in the
highest dose group cause that this group is no longer considered statistically significantly
different from the control. In the present implementation of the Dunnett.GLM function, the
method is adapted accordingly so that dose groups with all-zero values can also be considered.
Consequently, the results differ with regard to the highest dose group (see following table).

Table 6: Dunnett.GLM results based on source code from Hothorn and Kluxen (2020)
compared with results from the implementation in the present document
(‘daphnia’ data from Hothorn and Kluxen, 2020, used for comparison).

Dose group p-values based on p-values from present p-values from present
implementation implementation of the implementation of the
provided in Hothorn and | Dunnett.GLM function Dunnett.GLM function
Kluxen (2020) (log(x+1) transformation | (identity link used)

used)

1.56 0.401 0.393 0.342

3.12 <0.001 <0.001 <0.001

6.25 0.006 0.006 0.006

12.5 <0.001 <0.001 <0.001

25 1.000 <0.001 <0.001

3.2.7 Output format

The standard output of the R functions for CPCAT, CPFISH and Dunnett.GLM includes an R list
object with a results variable containing hypothesis-specific p-values and levels of significance
and an information variable containing additional information (e.g. Hampel identifier info for
overdispersion if detected, information about used settings such as using simulated p-values for
the Fisher test in CPFISH, or derivations for the NOEC and LOEC).

An example of the output is provided in the Appendix (section C.1).
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3.3 Sensitivity and test power

In order to interpret the results of a statistical test, it is important to find out which effect size
can be detected with which power. Otherwise, a test could show statistically insignificant
differences simply because the difference between control and treatment was too small to be
detected, e.g. due to a small sample size. The difference between the values of a control and
those of a treatment group that can just be shown to be statistically significant with a given
power (set to 80 %) is called Minimum Detectable Difference, MDD (Duquesne et al., 2020; Zar,
2013). While MDD calculations are frequently used for parametric tests, such as the t-test, they
can also be calculated for non-parametric tests using bootstrapping.

The idea behind the bootstrap MDD (bMDD) calculation is to initially assume an effect size of 0
for each treatment individually in a bootstrapping procedure and to gradually increase the effect
size (the effect sizes of the other treatments remain unchanged). In each step, N data sets are
generated by parametric sampling (N = number of bootstrap runs). The corresponding statistical
test is carried out with each data set generated in this way. The proportion of statistically
significant differences between the control and the considered treatment group corresponds to
the power of the test for the given effect size. Conversely, the effect size can be interpreted as
bMDD corresponding to the associated power. A similar method for bMDD determination has
already been published by van der Hoeven (2007) involving a gradual shift in the data to
determine an bMDD for the non-parametric Mann-Whitney-U test.

More specifically, bMDD calculations for CPCAT and the Dunnett.GLM test were implemented as
follows:

1. Estimate Poisson parameter from the control group
2. Conduct number of bootstrap iterations for each treatment group:

a. Sample data from a Poisson distribution for the currently evaluated treatment group
starting with the Poisson parameters of the control (data of other groups remain
unchanged)

b. Conduct the statistical test (CPCAT or Dunnett.GLM) and check for significance

3. Stepwise shift the Poisson parameter and repeat the bootstrapping until all tests of step 2b
showed significant differences

4. The bMDD is considered the lowest shift value for which at least 80 % of the bootstrap runs
showed significant differences (higher shift values are not allowed to result in less than 80 %
significant differences)

For CPFISH, contingency tables (quantal data) are used, i.e. the effect size must be controlled via
the gradual change in the probability of a binomial distribution. Therefore, the bMDD calculation
for CPFISH must be modified accordingly:

1. Estimate probability of ‘success’ from the control group
2. Conduct number of bootstrap iterations for each treatment group:

a. Sample data from a binomial distribution for the currently evaluated treatment group
starting with the ‘success’ probability of the control (data of other groups remain
unchanged)

b. Conduct CPFISH and check for significance

3. Stepwise shift the probability and repeat the bootstrapping until all tests of step 2b showed
significant differences

4. The bMDD is considered the lowest shift value for which at least 80 % of the bootstrap runs
showed significant differences (higher shift values are not allowed to result in less than 80 %
significant differences)
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Calculating the power for a given data set is straightforward: parametric bootstrapping is used
to generate artificial data for each treatment group individually, which is then used to perform
the statistical test. The proportion of significant results from the bootstrapping describes the
power of the test for the corresponding treatment group.

Further details can be found in the published source code. Exemplary power and bMDD
calculations for the implemented methods were conducted as a function of simulated effect sizes
for typical test designs of reproduction and field tests and reported in the appendix to the R
package documentation.

Finally, in order to test the influence of the effect size on the test power of CPCAT, Dunnett.GLM
and CPFISH, artificial data sets were analysed. Data sets with different numbers of groups and
replicates, different mean control counts and different dispersion factors were tested
(dispersion factor DF=variance/mean; R package ZIGP used for sampling).

Similar to the procedure for the bMDD calculation, the effect size was gradually increased for the
highest concentration in relation to the control and the power was determined using parametric
bootstrapping. For CPCAT and Dunnett.GLM two scenarios were used for four groups,
representing one control and three treatments: In a first scenario, a deviation from the control
was assumed in the highest dose group, while no deviations from the control were assumed in
the other two dose groups. In the second scenario, a monotonically increasing deviation
compared to the control was assumed across all three treatment groups (the first treatment
showed 1/3 deviation of the deviation in the third treatment and the second treatment had 2/3
of the deviation of the third treatment). An example of the selected deviations is provided in the
following table.

Table 7: Example for deviation implementation with mean control count of 25 and 20 %
effect in the highest treatment group. The mean counts correspond to the lambda
parameter of the Poisson distribution used for sampling.

Group Mean counts for effects only in Mean counts for effects
highest treatment monotonically increasing
(% of control / % effect) (% of control / % effect)
Control 25.00 25.00
(100.0 % / 0.0 %) (100.0 % / 0.0 %)
T1 25.00 23.33
(100.0 % / 0.0 %) (93.3%/6.7%)
T2 25.00 21.67
(100.0 % / 0.0 %) (86.7% / 13.3 %)
T3 20.00 20.00
(80.0 % / 20.0 %) (80.0 % / 20.0 %)

As expected, the relationship between effect size and power was described by a sigmoid curve
(see figures in following sections). However, it was noticeable that the curve shifted depending
on the total number of control and treatment groups. The same power is only achieved for data
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with more groups with a more pronounced effect size. This phenomenon was analysed in more
detail in the following chapter in order to determine the characteristics of the test procedures.

As a first step the relationship between power and effect size was compared between CPCAT and
Dunnett.GLM for a data set with four groups (including one control and three treatments), ten
replicates per group and a mean control count of 25. For additional validation of the
Dunnett.GLM approach, a standard Dunnett test (ANOVA post-hoc test) was also included. The
Dunnett.GLM approach showed the best performance for scenarios with effects only in the
highest treatment group (see Figure 1). Differences between the three methods were more
pronounced for the scenario with deviations in the highest treatment group and no deviations in
the two lower treatments (see Figure 1). The differences narrowed, when monotonic effects
across all treatment groups were assumed (see Figure 2).

Figure 1: Relationship between effect size and power of CPCAT, Dunnett.GLM and a standard
Dunnett test for four groups (one control and three treatments with effects only in
highest treatment).
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Source: own illustration, WSC Scientific GmbH.
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Figure 2: Relationship between effect size and power of CPCAT, Dunnett.GLM and a standard
Dunnett test for four groups (one control and three treatments with monotonically
increasing effects).

Source: own illustration, WSC Scientific GmbH.

When considering only two groups (one control and one treatment with effects), the differences
between CPCAT and Dunnett.GLM vanished and both methods performed slightly better than
the standard Dunnett test due to the more appropriate distributional assumptions (see Figure
3). It should be noted, that the complexity of the tests is reduced when only two groups are
considered, i.e. the Closure Principle of CPCAT is not applied and the Dunnett test is reduced to a
t-test.
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Figure 3: Relationship between effect size and power of CPCAT, Dunnett.GLM and a standard
Dunnett test for two groups (one control and one treatment with effects).

Source: own illustration, WSC Scientific GmbH.

3.3.1 CPCAT and Dunnett.GLM power analysis

The following sections and figures describe the relationship between power and effect size for
CPCAT and Dunnett.GLM considering various characteristics a dataset might have (different
numbers of groups and replicates, different mean control counts and different dispersion
factors). The default setup included four dose/concentration groups (including one control and
three treatments), ten replicates per group, a mean control count of 25 and a dispersion factor of
one (i.e. variance = mean). One of these parameters was varied while the others were fixed in
order to evaluate the influence of the parameter. Each analysis was performed either with
effects only in the highest treatment group or with monotonically increasing effects across all
treatment groups.

3.3.1.1 Varying the number of treatment groups

To evaluate the sensitivity of CPCAT and Dunnett.GLM to the number of tested treatment groups,
the tests were performed with two, four and six groups (including one control group).

The graphs showing power vs. effect size for both CPCAT and Dunnett.GLM shifted with an
increasing number of treatment groups. For two groups (one control and one treatment), CPCAT
and Dunnett.GLM delivered almost identical results. For four and six treatment groups, Dunnett-
GLM had a higher power than CPCAT, whereby the difference was greater if only effects in the
highest treatment group were assumed (see Figure 4). Differences between both methods
became smaller, if monotonically increasing effects were present across all treatment groups
(see Figure 5). The reduction in the differences was mainly due to the change in the power of
CPCAT; the implementation of the effects (only in the highest treatment group or monotonically
increasing) had no significant influence on Dunnett.GLM.
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Figure 4: Relationship between effect size and power of CPCAT and Dunnett.GLM for
different numbers of groups (one control and one to five treatments with effects
only in the highest treatment).

Source: own illustration, WSC Scientific GmbH.

Figure 5: Relationship between effect size and power of CPCAT and Dunnett.GLM for
different numbers of groups (one control and one to five treatments with
monotonically increasing effects).

Source: own illustration, WSC Scientific GmbH.

30



TEXTE Evaluation and implementation of statistical methods to assess effects in count data

3.3.1.2 Varying the number of replicates

The graphs, showing power vs. effect size for both CPCAT and Dunnett.GLM, shifted for raising
numbers of replicates. Considering four groups (one control and three treatments),
Dunnett.GLM showed a higher power for all numbers of replicates tested, compared to CPCAT.
The power difference between the two methods was smaller for monotonically increasing
effects over the treatment groups (see Figure 7) and larger for the scenario with effects only in
the highest treatment group (see Figure 6). The power of CPCAT changed slightly more than the
power of Dunnett.GLM.

Figure 6: Relationship between effect size and power of CPCAT and Dunnett.GLM for
different numbers of replicates (one control and three treatments with effects only
in the highest treatment).

Source: own illustration, WSC Scientific GmbH.
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Figure 7: Relationship between effect size and power of CPCAT and Dunnett.GLM for
different numbers of replicates (one control and three treatments with
monotonically increasing effects).

Source: own illustration, WSC Scientific GmbH.

3.3.1.3 Varying the mean control count

Additional calculations were conducted in order to test if the abundance has an effect on the
performance of the tests, e.g. if CPCAT or Dunnett.GLM is more or less sensitive for higher or
lower counts.

The graphs, showing power vs. effect size for both CPCAT and Dunnett.GLM, shifted for different
mean control counts. Considering four groups (one control and three treatments), Dunnett.GLM
showed a slightly higher power for all mean control counts tested compared to CPCAT. The
power difference between the two methods was smaller for monotonically increasing effects
over the treatment groups (see Figure 9) and larger for effects only in the highest treatment
group (see Figure 8).

32



TEXTE Evaluation and implementation of statistical methods to assess effects in count data

Figure 8: Relationship between effect size and power of CPCAT and Dunnett.GLM for
different mean control counts (one control and three treatments with effects only
in the highest treatment).

Source: own illustration, WSC Scientific GmbH.

Figure 9: Relationship between effect size and power of CPCAT and Dunnett.GLM for
different mean control counts (one control and three treatments with
monotonically increasing effects).

Source: own illustration, WSC Scientific GmbH.

33.14 Varying the dispersion factor

Since the dispersion of measured data may vary considerably, in particular regarding field trials,
it was also analysed how the test power of the CPCAT and Dunnett.GLM changes for differently
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dispersed data. A dispersion factor of 1 means that mean=variance. A dispersion factor < 1
represents underdispersion, a dispersion factor > 1 represents overdispersion (e.g. a dispersion
factor of 2 means that the variance is twice as large as the mean value).

The graphs, showing power vs. effect size for Dunnett.GLM, shifted for different dispersion
factors. The curves for CPCAT varied around an inflection point and were not shifted with the
effect size (see Figure 10 and Figure 11). This was expected, as CPCAT only takes the group
mean values into account for the data evaluation (the within-group variability is ignored in the
calculations). Considering four groups (one control and three treatments), Dunnett.GLM showed
a higher power for underdispersed data (dispersion factor < 1) and lower power for
overdispersed data (dispersion factor > 1), compared to CPCAT. However, CPCAT showed a
higher probability for false positive detection of significant effects, when evaluating
overdispersed data. This can be explained, as CPCAT does not consider the within-group
variability > or < mean. When comparing the power results of CPCAT, the power was generally
higher for monotonically increasing effects over three treatment groups compared to effects
only in the highest treatment group and no deviations from the control in two lower treatments.

Figure 10: Relationship between effect size and power of CPCAT and Dunnett.GLM for
different dispersion factors (one control and three treatments with effects only in
the highest treatment).

Source: own illustration, WSC Scientific GmbH.
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Figure 11: Relationship between effect size and power of CPCAT and Dunnett.GLM for
different dispersion factors (one control and three treatments with monotonically
increasing effects).

Source: own illustration, WSC Scientific GmbH.

3.3.2 CPFISH power analysis

The following figures describe the relationship between power and effect size for CPFISH
considering various characteristics a data set might have (different numbers of groups and
replicates). The default setup included four dose/concentration groups, four replicates per
group and 10 introduced individuals per group. The number of groups and replicates were
varied while the other parameters were fixed.

3.3.2.1 Varying the number of treatment groups

To evaluate the sensitivity of CPFISH to the number of tested treatment groups, the tests were
performed with two, four, six and eight groups (including control group).

The number of treatment groups was first varied assuming 100 % survival in the control.
As the number of groups seemed to have no impact on the power (see Figure 12), another
parameter (the background mortality / control survival) was varied and it could be shown that
the number of groups affects the power, only if the survival in the control is lower than 100 %
(see Figure 13).
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Figure 12: Relationship between effect size and power of CPFISH for different numbers of
groups (one control and one to seven treatments with effects only in the highest
treatment) assuming 100 % survival in the control.

Source: own illustration, WSC Scientific GmbH.

Figure 13: Relationship between effect size and power of CPFISH for different numbers of
groups (one control and one to seven treatments with effects only in the highest
treatment) assuming 50 % survival in the control.

Source: own illustration, WSC Scientific GmbH.
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Figure 14: Relationship between effect size and power of CPFISH for different survival levels in
the control (one control and three treatments with effects only in the highest
treatment).

Source: own illustration, WSC Scientific GmbH.
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3.3.2.2 Varying the number of replicates

The graphs showing power vs. effect size for CPFISH shifted significantly for different numbers
of replicates. Considering four groups (one control and three treatments), CPFISH showed a
higher power for a higher number of replicates (see Figure 15).

Figure 15. Relationship between effect size and power of CPFISH for different numbers of
replicates (one control and three treatments with effects only in the highest
treatment).

Source: own illustration, WSC Scientific GmbH.
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3.4 Influence of increasing treatment levels

3.4.1 The sensitivity of p-values to the number of treatments without effects

During the testing of CPCAT and CPFISH it was observed that the test power was particularly
low when there were several treatment levels without an effect. Therefore, it was decided to
analyse systematically, how the sensitivity of the test methods change depending on the number
of treatment groups without effects.

To find out how sensitively the p-values react to different numbers of treatment groups without
effects, the following configuration was set up:

» Each group had a sample size of 5.

» For the control and treatment groups without effects one set of Poisson-distributed data was
sampled with a Poisson parameter of 30 (count of 30 individuals on average).

» For the treatment group with effects (e.g. the highest concentration) effects of 10 %, 35 %
and 65 % were assumed. To generate this data, the control data was multiplied with a factor
of 0.9, 0.65 or 0.35.

» The procedure started with the control group and the effect group (2 groups in total, no
additional treatment groups without effects). Then treatment groups without effects were
added. For each group constellation the test was conducted 500 times. The p-values for the
effect group were saved and compared with each other at the end.

It was shown that the p-values from CPCAT for data sets with many treatment groups without
effects were significantly higher than for data sets with fewer groups. The calculations showed
that CPCAT is particularly sensitive to the number of treatment groups without effects.

The following graphs illustrates how quickly significant differences between groups with effects
and the control are shown to be non-significant when treatment groups without effects are
gradually added to the data set.
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Figure 16: P-values for a treatment with 10 % effect when evaluating additional treatment
groups without effects using CPCAT.

Source: own illustration, WSC Scientific GmbH.

Figure 17: P-values for a treatment with 35 % effect when evaluating additional treatment
groups without effects using CPCAT.

Source: own illustration, WSC Scientific GmbH.
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Figure 18: P-values for a treatment with 65 % effect when evaluating additional treatment
groups without effects using CPCAT.

Source: own illustration, WSC Scientific GmbH.

The same procedure was performed for the implemented Dunnett.GLM test. It was not shown to
be particularly susceptible to this phenomenon and at the same time generally showed a higher
sensitivity than CPCAT. It can also be seen, that there was a greater variance in the p-values from
Dunnett.GLM compared to results from CPCAT. However, median p-values for Dunnet.GLM were
consistently lower than the p-values from CPCAT.

Figure 19: P-values for a treatment with 10 % effect when evaluating additional treatment
groups without effects using Dunnett.GLM.

Source: own illustration, WSC Scientific GmbH.
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Figure 20: P-values for a treatment with 35 % effect when evaluating additional treatment
groups without effects using Dunnett.GLM.

Source: own illustration, WSC Scientific GmbH.

Figure 21: P-values for a treatment with 65 % effect when evaluating additional treatment
groups without effects using Dunnett.GLM.

Source: own illustration, WSC Scientific GmbH.

Sensitivity to added treatment groups without effects was also assessed for CPFISH. However,
since binomial data are processed in CPFISH, the setup had to be adapted for the evaluation:

» Each group had a sample size of 100 (higher number of individuals needed for a finer
resolution of p-values as binomial data is always discrete).
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» For the control and treatment groups without effects one set of binomial-distributed data
was sampled with a probability of 75 % (‘success event’ for 75 out of 100 individuals on
average).

» For the treatment group with effects (e.g. the highest concentration) a reduction of ‘success
events’ of 10 %, 15 %, 20 %, 35 % and 65 % were assumed (15 % and 20 % were added as
there were already no differences in scenarios using 35 % and 65 %).

» The procedure started with the control group and the effect group (2 groups in total, no
additional treatment groups without effects). Then treatment groups without effects were
added. For each group constellation the test was conducted 500 times. The p-values for the
effect group were saved and compared with each other at the end.

The results were similar to the results from CPCAT. It was shown that the p-values from CPFISH
for data sets with many treatment groups without effects were significantly higher than for data
sets with fewer groups. The calculations showed that CPFISH is particularly sensitive to the
number of treatment groups without effects for effect sizes up to 20 %. For effect sizes of 35 %
or higher, there was no difference observed in the scenario used (all p-values were zero).
However, for other scenarios (e.g. using a different number of individuals introduced per group
or using another level of background mortality), a difference might occur.

Figure 22: P-values for a treatment with 10 % effect when evaluating additional treatment
groups without effects using CPFISH.

Source: own illustration, WSC Scientific GmbH.
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Figure 23: P-values for a treatment with 15 % effect when evaluating additional treatment
groups without effects using CPFISH.

Source: own illustration, WSC Scientific GmbH.

Figure 24: P-values for a treatment with 20 % effect when evaluating additional treatment
groups without effects using CPFISH.

Source: own illustration, WSC Scientific GmbH.
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Figure 25: Sensitivity of p-values for a treatment with 35 % effect when evaluating additional
treatment groups without effects using CPFISH.

Source: own illustration, WSC Scientific GmbH.

Figure 26: Sensitivity of p-values for a treatment with 65 % effect when evaluating additional
treatment groups without effects using CPFISH.

Source: own illustration, WSC Scientific GmbH.
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4 Conclusions

For most of the tested scenarios, CPCAT and Dunnett.GLM showed only slight differences in
power and performance. Both methods showed variations in power, if more than one treatment
was tested. CPCAT performed comparably well to Dunnett.GLM, when only two groups (one
control and one treatment) were considered, delivering reliable results due to its appropriate
distributional assumptions.

For treatments with monotonous increasing effects, which are expected in ecotoxicology, both
methods performed well. Please note that within this report no comparisons to other standard
hypothesis tests (e.g. Jonkheere-Terpstra, U-test, etc.) were conducted.

CPCAT and CPFISH demonstrated a high sensitivity to the number of treatment groups without
effects, making their power and p-values particularly susceptible to study designs with multiple
non-effect groups. This sensitivity can result in non-significant findings for pronounced
deviations in treatments compared to the control at high concentrations in studies with many
treatment groups. Similar effects might be detected in test designs with fewer dose groups.
Those mechanisms are well-known from statistical analyses with alternative multiple test
methods (especially Bonferroni-Holm methods but also Williams and Dunnett test).

For overdispersed data, CPCAT shows higher probability for false positive detection of
significant effects compared to the evaluation of the same data with Dunnett.GLM. This
limitation may restrict the use of CPCAT in datasets with high variability. In future, a threshold
for mild violations from the standard assumption (mean = variance) needs to be formulated and
implemented as prerequisite for the use of CPCAT. In contrast, Dunnett.GLM adjusts for
overdispersion and demonstrated more consistent power across the tested scenarios.

For scenarios with effects only in the highest treatment group, Dunnett.GLM showed slightly
higher power compared to CPCAT. Moreover, the sensitivity of Dunnett.GLM is less affected by
the number of non-effect groups, compared to CPCAT.

The finding of our evaluations emphasize, that CPCAT and CPFISH should be used with caution
in study designs involving numerous non-effect groups or overdispersed data. Adjusting the
design to minimize non-effect groups or variability may enhance the reliability of results, as
CPCAT is still considered a robust choice for simpler test designs with fewer groups and less
variability.
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A Appendix —Source code

A.1 Source code needed for the Closure Principle

# Function to generate hypotheses for the Closure Principle concept using 0/1

contrast matrices
CP.hypotheses = function(n, treatment.names = NULL) {

combinations list = list()

# Generate all possible combinations of treatments
for (subset size in 1:n) {

combinations list[[subset size]] = combn(l:n, subset size)
hypothesis matrix list = list()
# Create a hypothesis matrix for each treatment
for (treatment in 1:n) {

# Initialize a matrix with zeros

hypothesis matrix = matrix (0, ncol = n, nrow = (2%(n - 1)))

# Set column names for the matrix

if (!is.null (treatment.names) & length(treatment.names) == n) {
colnames (hypothesis matrix) = treatment.names

} else {
colnames (hypothesis matrix) = paste("treatment", 1:n)

}

row_index = 1 # Start at the first row

# Fill the matrix based on the combinations
for (subset size in l:length(combinations list)) {
for (col in 1l:ncol(combinations list[[subset size]])) {
# Check if the current treatment is in the combination
if (any(combinations list[[subset size]][, col] == treatment)) {

# Mark the corresponding columns in the matrix
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hypothesis matrix[row index, combinations list[[subset size]][, col]] =1

row_index = row index + 1 # Move to the next row

# Store the matrix in the list

hypothesis matrix list[[treatment]] = hypothesis matrix

# Name each hypothesis matrix according to its treatment

names (hypothesis matrix list) = paste("HO: mu 0 = mu ", 1l:n, sep = "")

return (hypothesis matrix list)

A.2 Source code for CPCAT

# Helper function for CPCAT

CPCAT.Poisson.sub.test = function (dat, # data to be evaluated
contrast, # contrast matrix
bootstrap.runs = 10000) { # number of bootstrap runs

# Exclude the treatment groups that are not indicated by the contrast information

datsheets = c (1, which(contrast == 1) + 1) # Index to control and CONSIDERED
treatments
dat2 = list () # Control and considered treatment

data as a list

# Populate dat2 with data from the specified treatments
for (1 in 1l:length(datsheets)) {

dat2[[1]] = dat[[datsheets[1l]]]

# Initialize vectors for statistics

musML = ns = xs = rep(0, length(dat2))
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# Calculate sample sizes, total abundance, and mean abundance for each group

for (i in 1l:length (musML)) {

ns[i] = nrow(dat2[[1]]) # Sample size per group
xs[i] = sum(dat2[[1i]1]1[, 11) # Total abundance per group
musML[1] = xs[1i] / ns[i] # Mean abundance per group

# Calculate 'total distance' etaML between control and all considered treatments
etaML = sum((sqgrt (musML[-1]) - sgrt(musML[1]))"2)

n = sum(ns) # Total sample size over control and

considered treatments

X = sum(xs) # Total abundance over control and considered
treatments

muORML = x / n # Mean abundance over control and considered
treatments

# Return a p-value of 1 if control and all (considered) treatments are zero

(i.e., no difference)
if (muORML == 0) {

return (1)

# Create artificial data (Poisson distributed)
artificialdata = pseudomus = list()
for (j in 1l:length(dat2)) {

artificialdatal[[]j]] = rpois(bootstrap.runs, ns[j] * muORML) # Artificial total

abundance per group

pseudomus [[J]] = artificialdatal[j]] / ns[]] # Artificial mean abundance per

group

}

# Calculate pseudo etas for the artificial data
pseudoetasML = rep (0, bootstrap.runs)
for (1 in l:bootstrap.runs) {

pseudomushelp = vector ()

for (i in 1l:length (pseudomus)) {

pseudomushelp[i] = pseudomus|[[i]][1]
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}

pseudoetasML[1l] = sum((sgrt (pseudomushelp[-1]) - sqgrt (pseudomushelp[l]))"2)

# Calculate p-value from the number of artificial datasets causing a higher

distance

pvalue = length (which (pseudoetasML > etaML)) / bootstrap.runs

return (pvalue)

# Helper function for CPCAT

CPCAT.Poisson.test = function(dat, contrastmatrix, bootstrap.runs = 10000) {
# Re-structure the input data as a list object
dat2 = list ()

treatments = levels (dat$Groups)

# Organize data by treatment
for (j in l:length(treatments)) {
index = which (dat$Groups == treatments[]j])

dat2[[j]] = dat[index, ]

# Initialize p-values vector

pvalues = rep (0, nrow(contrastmatrix))

# Perform Poisson test for each hypothesis (each row in contrastmatrix)
for (j in l:nrow(contrastmatrix)) {
pvalues[]j] = CPCAT.Poisson.sub.test(dat = dat2z2,
contrast = contrastmatrix[j, ],

bootstrap.runs = bootstrap.runs)

# For each treatment, provide the maximum p-value from all treatment-related

hypotheses
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return(list (contrastmatrix pvalues = cbind(contrastmatrix, pvalues), maxpvalue =

max (pvalues)))

}

# CPCAT main function

CPCAT = function (groups, # group vector
counts, # vector with count data
control.name = NULL, # character string with control group name
bootstrap.runs = 10000, # number of bootstrap runs
hampel.threshold = 5, # default threshold for Hampel identifier

(measure for over-/underdispersion)

use.fixed.random.seed = TRUE, # use fixed seed for reproducible

results

get.contrasts.and.p.values = FALSE, # get each row of the contrast

matrices evaluated

show.output = T) { # show/hide output

# check if there is count data for each replicate (length of count and group

vectors) - groups[i] 1s one replicate
if (length(groups) != length(counts)) {
stop ("Lengths of groups and counts don't match!")
}
# check format of input data

if (!is.numeric (counts) | min(counts < 0)) { # | 'all (counts ==

floor (counts))

stop ("Counts must be non-negative numeric values!")

# setup information to be stored
info = data.frame (matrix (nrow = 0, ncol = 1))

14

info = rbind(info, "Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 *.” 0.1 ?
l")

# Re-structure the input to a data frame

dat = data.frame (Counts = counts, Groups = groups)

# Assign new order of levels if control.name was specified
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if (!is.null (control.name)) {
if (!is.character (control.name)) {
stop ("Specified control must be provided as a character string!")
}
if (!is.element (control.name, unique (dat$Groups))) {

stop ("Specified control cannot be found!")

# Put desired control in the first place
dat.temp.l = dat[dat$Groups == control.name, ]
dat.temp.2 = dat[dat$Groups != control.name, ]

dat = rbind(dat.temp.l, dat.temp.2)

# Convert groups column to a factor, specifying the desired order of levels

dat$Groups = factor (dat$Groups, levels = unique (dat$Groups))

# Use treatments vector for convenience

treatments = levels (dat$Groups)

# Exit if not enough data left
if (dim(na.omit (dat)) [1] < 2) {
stop ("Too few valid data!")
}
if (dim(dat) [1l] !'= dim(na.omit(dat)) [1]) {

info = rbind(info, pastelO(dim(dat)[l] != dim(na.omit(dat))[1l], " rows with NA

values were excluded!"))

}

dat = na.omit (dat)

# Check for over- and under-dispersion using the Hampel identifier with a default

cut-off value of 5
mean.dat = aggregate (dat$Counts, by=list (dat$Groups), mean) $x
var.dat = aggregate (dat$Counts, by=list (dat$Groups), var)S$x

hampel.value = var.dat - mean.dat
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if (min (hampel.value) < -hampel.threshold) {

info = rbind(info, pasteO("There was under-dispersed data identified in
treatment(s) ",
pastel (pastel (treatments, " (HI: ", round (hampel.value,
digits=1l), ")") [which (hampel.value < -hampel.threshold)], collapse =", "),

". HI = Hampel Identifier."))
}
if (max (hampel.value) > hampel.threshold) {

info = rbind(info, pasteO("There was over-dispersed data identified in

treatment (s) ",

pastel (pastel (treatments, " (HI: ", round (hampel.value,

digits=1l), ")") [which (hampel.value > hampel.threshold)], collapse =", "),

". HI = Hampel Identifier."))

# All hypotheses to be tested
n = length(levels (dat$Groups))

allhypotheses = CP.hypotheses(n = n - 1, treatment.names = treatments)

# Transform list to table data.frame
allhypothesescompact = numeric()
for (1 in l:length(allhypotheses)) {

allhypothesescompact = rbind(allhypothesescompact, allhypotheses[[1]])

# Only unique rows are selected

allhypothesescompact = unique (allhypothesescompact)

results = list ()
# Flag all hypotheses which have already been tested by assigning a p-value,
# else p-value = -9999

flagpvalues = matrix(-9999, nrow = nrow(allhypothesescompact), ncol =

ncol (allhypothesescompact))

pvalsCPCAT = rep(l, n - 1)

# Fix seed for random numbers if desired (enables to reproduce results)

54



TEXTE Evaluation and implementation of statistical methods to assess effects in count data

if (use.fixed.random.seed) {

set.seed(123)

for (j in 1:(n - 1)) |
# Identify contrasts a p-value != -9999 has been assigned to
# These contrasts must not be tested again
contrasts = CP.hypotheses(n = n - 1, treatment.names = treatments) [[]]]
matchingrows = numeric()
for (i in l:nrow(contrasts)) {

matchingrows = c(matchingrows, which (apply(allhypothesescompact, 1,

identical, contrasts[i, 1)))

}

alreadyflaggedindex = which(flagpvalues[matchingrows, j] != -9999)

# Shorten contrasts to be tested by elimination of already tested contrasts

if (length(alreadyflaggedindex) > 0) {

contrasts = contrasts|[-alreadyflaggedindex, ]

# In the last step the contrast matrix reduces to a vector

# Make it a matrix consisting of nrow = 1
if (is.matrix (contrasts) == FALSE) {
contrasts = matrix(contrasts, nrow = 1)
}
notflaggedindex = which (flagpvalues[matchingrows, j] == -9999)

# Flag p-values which are still -9999
# After CPCAT corresponding p-values will be != -9999

tobeflagged = matchingrows[notflaggedindex]

results[[]j]] = CPCAT.Poisson.test(dat = dat,

contrastmatrix = contrasts,

bootstrap.runs = bootstrap.runs) [[1]]
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contrasts.and.p.values = results[[]]]
} else {
contrasts.and.p.values = rbind(contrasts.and.p.values, results[[j]])

# Write obtained p-values into column j of flagpvalues and find max p-value
pvalshelp = results[[]j]][, ncol(results[[j]])]

flagpvalues|[tobeflagged, j] = pvalshelp

# Put together new p-values of reduced contrast matrix and relevant p-values in

flagpvalues|[, Jjl
if (3 > 1) { # In step j = 1 all flagpvalues equal -9999
pvalshelp2 = c(pvalshelp, flagpvalues[matchingrows[-notflaggedindex], jl)
} else {
pvalshelp2 = pvalshelp
}

pvalsCPCAT[]j] = max(pvalshelp?2)

# Copy p-values obtained so far to the next column of flagpvalues
if (3 < (n - 1)) |

flagpvalues[, j + 1] = flagpvalues[, j]

# Assign significance levels based on p-values
significances = rep(NA, n - 1)
for (j in 1:(n - 1)) {
if (pvalsCPCATI[j] < 0.05) {
if (pvalsCPCATI[j] < 0.01) {

if (pvalsCPCAT[]j] < 0.001) {

significances[j] = "*x*"
} else {
significances([j] = "**"
}
} else {
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significances([j] = "*"
}
} else {

significances([]j] =

# Get NOEC and LOEC
NOEC = treatments[1]
LOEC = treatments[2]
for (j in 1:(n - 1)) |
if (pvalsCPCAT[j] < 0.05) {
break
}

NOEC = treatments[7j]

if (J == (n - 1)) {
LOEC = NA
break

LOEC = treatments[j+1]

}

info = rbind(info, pasteO("NOEC: ", NOEC, ", LOEC: ", ifelse(is.na(LOEC),

"outside tested dose/concentration", LOEC),

". Assuming that any effects are adverse. Otherwise, NOEC and LOEC

should be reconsidered."))

# Compile results into a data.frame

"

results = data.frame (Hypothesis = pasteO("HO: ", treatments[1l], " <-> ",

treatments([2:n]), p.values = pvalsCPCAT, Signif. = significances)

# Set header for information object

colnames (info) = "Information and warnings:"

# Show output if desired
if (show.output) {

if (get.contrasts.and.p.values) {
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print (structure (list (Contrasts=data.frame (contrasts.and.p.values),

Results=results, Info=info)), row.names = F, quote = F, right = F)
} else {
print (structure (list (Results=results, Info=info)), row.names = F, quote = F,
right = F)

}

# Provide output as object even if not shown
if (get.contrasts.and.p.values) {

invisible (structure(list (Contrasts=data.frame (contrasts.and.p.values),

Results=results, Info=info)))
} else {

invisible (structure (list (Results=results, Info=info)))

A.3 Source code for Dunnett.GLM

# Dunnett GLM

Dunnett.GLM = function( groups, # group vector

counts, # vector with count data

control.name = NULL, # character string with control group
name

zero.treatment.action = "identity.link", # method for dealing with
treatments only containing zeros (alternative: "log(x+1)")

show.output = T) { # show/hide output

# do some error handling
if (length(groups) != length(counts)) {

stop ("Lengths of groups and counts don't match!")

if (!is.numeric (counts) | min(counts < 0)) { # | 'all(counts == floor (counts))

stop ("Counts must be non-negative numeric values!")
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if (zero.treatment.action != "identity.link" & zero.treatment.action !=

"log(x+1)") {

stop ("Parameter zero.treatment.action must be either \"identity.link\" or

\"log (x+1)\"!")

}

# setup information to be stored

info = data.frame (matrix(nrow = 0, ncol = 1))

# Re-structure the input to a data frame

dat = data.frame (Counts = counts, Groups = groups)

# Assign new order of levels if control.name was specified
if (!is.null (control.name)) {
if (!is.character (control.name)) {
stop ("Specified control must be provided as a character string!")
}
if (!is.element (control.name, unique (dat$Groups))) {

stop ("Specified control cannot be found!")

# Put desired control in the first place

dat.temp.1l dat [dat$Groups == control.name, ]

dat.temp.?2 dat [dat$Groups != control.name, ]

dat = rbind(dat.temp.l, dat.temp.2)

# Convert groups column to a factor, specifying the desired order of levels

dat$Groups = factor (dat$Groups, levels = unique (dat$Groups))

# Use treatments vector for convenience

treatments = levels (dat$Groups)

# Exit if not enough data left

if (dim(na.omit (dat)) [1] < 2) {
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stop ("Too few valid data!")

}

if (dim(dat) [1l] != dim(na.omit (dat)) [1]) {
info = rbind(info, pasteO(dim(dat)[1l] != dim(na.omit(dat))[1l], " rows with NA
values were excluded!"))

}

dat = na.omit (dat)

agg = aggregate (dat$Counts, by=list (dat$Groups), mean)

if (min(agg$x) > 0) {

# Dunnett GLM with quasi-Poisson link-function

mod = glm(Counts~Groups, data=dat, family=quasipoisson(link = "log"))
} else {
info = rbind(info, pasteO("A treatment contained only zeros, hence, the

zero.treatment.action \"", zero.treatment.action, "\" was applied."))

# Use either the identity link or a data transformation if one treatment mean

is zero (standard log link would fail)
if (zero.treatment.action == "identity.link") {
# use another link function (link="identity", i.e. E(Y) = b0 + bl * X)

mod = try(glm(Counts~Groups, data=dat, family=quasipoisson(link =

"identity")), silent = T)
if ("try-error" %in% class (mod)) {

stop ("Error in GLM calculation. Consider to change argument

zero.treatment.action to \"log(x+1)\".")
}
} else {

# modify data to always get positive estimates using log link (link="log",

i.e. log(E(Y)) = b0 + bl * X)
dat$Counts = dat$Counts + 1

mod = try(glm(dat$Counts~Groups, data=dat, family=quasipoisson(link =
"log")), silent = T)

if ("try-error" %in% class (mod)) {

stop ("Error in GLM calculation. Consider to change argument

zero.treatment.action to \"identity.link\".")
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results = summary (glht (mod, linfct = mcp(Groups = "Dunnett"),

alternative="two.sided"))

# Set header for information object

colnames (info) = "Information and warnings:"

# Provide output
if (show.output) {

print (structure (list ('Results' = results, Info=info)), row.names = F, quote =
F, right = F)

} else {

invisible (structure (list ('Results' = results, Info=info)))

A.4 Source code for CPFISH

# CPFISH function for testing hypotheses using Fisher's exact test

CPFISH = function(contingency.table, # contingency.table is a matrix with

observed data (e.g. survival counts, survival must be in first row)

control.name = NULL, # character string with control group name

simulate.p.value = TRUE, # use simulated p-values or not

use.fixed.random.seed = TRUE, # use fixed seed for reproducible
results

show.output = T) { # show/hide output

# setup information to be stored

info = data.frame (matrix(nrow = 0, ncol = 1))

info
1")

rbind(info, "Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 '.” 0.1 7/

# Assign new order of levels if control.name was specified

if (!is.null (control.name)) {
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if (!is.character (control.name)) {
stop ("Specified control must be provided as a character string!")
}
if (!is.element (control.name, unique (colnames (contingency.table)))) {

stop ("Specified control cannot be found!")

# Put desired control in the first place

dat.temp.l = data.frame (contingency.table[, which(colnames (contingency.table)

== control.name) ])
colnames (dat.temp.l) = control.name

dat.temp.2 = contingency.table[, which(colnames (contingency.table) !=

control.name) ]

contingency.table = cbind(dat.temp.l, dat.temp.2)

treatment names = colnames (contingency.table)
num_treatments = ncol (contingency.table) - 1
if (is.null (treatment names)) {

treatment names = as.character(l: (num treatments+1))

# Vector to store p-values for each treatment

pvalues = rep(l, num_ treatments)

# Generate all possible hypotheses

all hypotheses = CP.hypotheses(n = length(treatment names) - 1, treatment.names =

treatment names)
compact hypotheses = do.call(rbind, all hypotheses)

compact hypotheses = unique (compact hypotheses)

# Matrix to track tested hypotheses and their p-values

pvalue flags = matrix(-9999, nrow = nrow(compact hypotheses), ncol =

ncol (compact hypotheses))

# Fix seed for random numbers if desired (enables to reproduce results)
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if (use.fixed.random.seed) {

set.seed(123)

for (j in l:num treatments) {
# Retrieve contrast matrix for the current treatment hypothesis

contrasts = CP.hypotheses(n = num treatments, treatment.names =

treatment names) [[]]]

matching rows = numeric()
for (i in l:nrow(contrasts)) {
matching rows = c(matching rows, which (apply(compact hypotheses, 1,

identical, contrasts[i, 1)))

}

already tested = which(pvalue flags[matching rows, j] != -9999)

# Remove already tested contrasts from the matrix to be tested

if (length(already tested) > 0) {

contrasts = contrasts[-already tested, ]

# Ensure contrasts matrix is still a matrix after subsetting

if (!is.matrix(contrasts)) {
contrasts = matrix(contrasts, nrow = 1)
}
not tested = which(pvalue flags[matching rows, j] == -9999)

to be tested = matching rows[not tested]

# Calculate p-values for the current contrasts
pvals = rep(0, nrow(contrasts))

for (1 in l:nrow(contrasts)) {

test data = contingency.table[, c(1, (which(contrasts([l, ] == 1) + 1))]
if (all(rowSums (test data) != c(0, 0))) {
pvals([l] = fisher.test(test data, alternative = "two.sided",
simulate.p.value = simulate.p.value) [[1]]
} else {
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pvals[l] =1

# Update p-value flags and track maximum p-value
pvalue flags[to be tested, j] = pvals

if (3 > 1) |

pvals combined c(pvals, pvalue flags[matching rows[-not tested], Jj])
} else {
pvals combined = pvals

}

pvalues[j] = max(pvals combined)

# Propagate the p-values to the next step
if (J < (length(treatment names) - 1)) {

pvalue flags[, j + 1] = pvalue flags[, Jj]

n = length (treatment names)

significances = rep(NA, n - 1)

# Assign significance levels based on p-values
for (3 in 1:(n - 1)) {
if (pvalues[j] < 0.05) {
if (pvalues[j] < 0.01) {
if (pvalues[j] < 0.001) {
significances([j] = "***"
} else {
significances([j] = "**"
}
} else {

significances([j] = "*"

} else {
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significances([]j] =

# Get NOEC and LOEC
NOEC = treatment names[1]
LOEC = treatment names[Z2]
for (j in 1:(n - 1)) |
if (pvalues[j] < 0.05) {
break
}

NOEC = treatment names[j+1]

if (J == (n - 1)) {
LOEC = NA
break

LOEC = treatment names[j+2]

}

info = rbind(info, pasteO("NOEC: ", NOEC, ", LOEC: ", ifelse(is.na(LOEC),

"outside tested dose/concentration", LOEC),

". Assuming that any effects are adverse. Otherwise, NOEC and LOEC

should be reconsidered."))

results = data.frame (Treatment = treatment names[-1], p.values = pvalues,

= significances)

# Add information about the use of simulated p-values
if (simulate.p.value) {

info = rbind(info, "Simulated p-values used.")

# Set header for information object

colnames (info) = "Information and warnings:"

# Provide output
if (show.output) {
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print (structure (list ('Results' = results, Info=info)), row.names = F, quote =
F, right = F)

} else {

invisible (structure (list ('Results' = results, Info=info)))
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B Appendix — Data from the literature

B.1 Count data from Lehmann et al. (2016)

Table 8: Example count data from Lehmann et al. (2016) used for validation.
Dataset Groups Counts
1 Control 23
1 Control 22
1 Control 24
1 Control 23
1 Control 21
1 Control 21
1 1.06 18
1 1.06 22
1 1.06 22
1 1.59 23
1 1.59 23
1 1.59 21
1 2.38 20
1 2.38 19
1 2.38 21
1 3.53 10
1 3.53 8
1 3.53 9
1 5.29 6
1 5.29 4
1 5.29 6
1 7.93 2
1 7.93 2
1 7.93 0
2 Control 67
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Dataset Groups Counts
2 Control 59
2 Control 64
2 Control 71
2 Control 63
2 Control 58
2 1.06 47
2 1.06 48
2 1.06 58
2 1.59 55
2 1.59 66
2 1.59 56
2 2.38 39
2 2.38 48
2 2.38 50
2 3.53 12
2 3.53 9

2 3.53 10
2 5.29 6

2 5.29 4

2 5.29 6

2 7.93 2

2 7.93 2

2 7.93 0

3 Control 154
3 Control 130
3 Control 134
3 Control 155
3 Control 142
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Dataset Groups Counts
3 Control 139
3 1.06 115
3 1.06 104
3 1.06 116
3 1.59 118
3 1.59 120
3 1.59 120
3 2.38 71
3 2.38 76
3 2.38 83
3 3.53 12
3 3.53 10
3 3.53 10
3 5.29 6

3 5.29 4

3 5.29 6

3 7.93 2

3 7.93 2

3 7.93 0

4 Control 139
4 Control 131
4 Control 138
4 Control 116
4 0.2 94
4 0.2 140
4 0.2 100
4 0.2 89
4 1 147
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Dataset Groups Counts
4 1 109
4 1 98
4 1 139
4 5 84
4 5 105
4 5 79
4 5 73
4 25 33
4 25 42
4 25 39
4 25 46
6 Control 12
6 Control 14
6 Control 15
6 Control 14
6 Control 13
6 Control 16
6 T1 10
6 T1 9

6 T1 11
6 T1 10
6 T1 8

6 T1 8

6 T2 9

6 T2 8

6 T2 8

6 T2 9

6 T2 7
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Dataset Groups Counts
6 T2 8
6 T3 16
6 T3 18
6 T3 15
6 T3 19
6 T3 17
6 T3 20
6 T4 31
6 T4 35
6 T4 33
6 T4 39
6 T4 41
6 T4 42
6 T5 61
6 T5 53
6 T5 64
6 T5 67
6 T5 59
6 T5 65
7 Control 25
7 Control 22
7 Control 24
7 T1 27
7 T1 29
7 T1 30
7 T2 19
7 T2 18
7 T2 19
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Dataset

7

Groups
T3
T3
T3
T4
T4
T4
T5
T5

T5

Counts

34

35

30

15

12

13

13

10

B.2 Quantal data from Lehmann et al. (2018b)

Table 9: Example data 1 from Lehmann et al. (2018b) used for validation.
Replicate Survived | Control | T1.5 T3 T 6.25 T125 T25 T50 T 100
/ Dead
1 Survived | 14 14 15 8 13 11 15 7
1 Dead 1 1 0 7 2 4 0 8
2 Survived | 13 13 13 14 9 11 9 6
2 Dead 2 2 2 1 6 4 6 9
3 Survived | 15 12 10 14 10 11 6 6
3 Dead 0 3 5 1 5 4 9 9
4 Survived | 15 15 12 10 14 15 9 9
4 Dead 0 0 3 5 1 0 6 6
5 Survived | 14 - - - - - - -
5 Dead 1 - - = o - - -
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Replicate Survived | Control | T 1.5 T3 T6.25 T125 T25 T50 T 100
/ Dead
Combined | Survived | 71 54 50 46 46 48 39 28
Combined Dead 4 6 10 14 14 12 21 32
Table 10: Example data 2 from Lehmann et al. (2018b) used for validation.
Replicate Dead / Survived Control | T1 T2 T3 T4 T5 T6 T7
1 Dead 1 1 1 1 1 1 1 1
1 Survived 0 0 0 0 0 0 0 0
2 Dead 0 1 1 1 1 1 1 1
2 Survived 1 0 0 0 0 0 0 0
3 Dead 0 0 0 1 1 1 1 1
3 Survived 1 1 1 0 0 0 0 0
4 Dead 0 0 0 1 1 1 1 1
4 Survived 1 1 1 0 0 0 0 0
5 Dead 0 0 0 1 1 1 1 1
5 Survived 1 1 1 0 0 0 0 0
6 Dead 0 0 0 1 1 1 1 1
6 Survived 1 1 1 0 0 0 0 0
7 Dead 0 0 0 1 1 1 1 1
7 Survived 1 1 1 0 0 0 0 0
8 Dead 0 0 0 0 1 1 1 1
8 Survived 1 1 1 1 0 0 0 0
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Replicate

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

Dead / Survived

Dead

Survived

Dead

Survived

Dead

Survived

Dead

Survived

Dead

Survived

Dead

Survived

Dead

Survived

Dead

Survived

Dead

Survived

Dead

Survived

Dead

Control

T1

74

T2

T3

T4

T5

T6
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Replicate Dead / Survived Control | T1 T2 T3 T4 T5 T6 T7
19 Survived 1 1 1 1 1 1 0 1
20 Dead 0 0 0 0 0 0 1 0
20 Survived 1 1 1 1 1 1 0 1
21 Dead 0 - - - - - - -
21 Survived 1 - - - s - - -
22 Dead 0 - - - - - - -
22 Survived 1 - - = s - - -
23 Dead 0 - - - - - - -
23 Survived 1 - - - s - - -
24 Dead 0 - - - - - - -
24 Survived 1 - - = s - - -
Combined Dead 1 2 2 7 11 12 20 18
Combined Survived 23 18 18 13 9 8 0 2

B.3 Count data from Hothorn and Kluxen (2020)

In the following table, data from a daphnia dataset (data taken from Hothorn and Kluxen, 2020;
see table below) was used as input data for CPCAT to illustrate the format of the output. It was
also used for verification of the Dunnett.GLM implementation.

Table 11: Input data for CPCAT example output.

Concentration Young_daphnia

27
30
29
31
16
15
18

O OO OO0 OoOOo
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Concentration Young_daphnia
0 17
0 14
0 27
1.56 32
1.56 35
1.56 32
1.56 26
1.56 18
1.56 29
1.56 27
1.56 16
1.56 35
1.56 13
3.12 39
3.12 30
3.12 33
3.12 33
3.12 36
3.12 33
3.12 33
3.12 27
3.12 38
3.12 A4
6.25 27
6.25 34
6.25 36
6.25 34
6.25 31
6.25 27
6.25 33
6.25 21
6.25 33
6.25 31
12.5 10
12.5 13
125 7
125 7
125 7
12.5 10
12.5 10
12.5 16
12.5 12
12.5 2
25 0
25 0
25 0
25 0
25 0
25 0
25 0
25 0
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25 0
25 0
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C Appendix — Example for CPCAT output format

C.1 Example for CPCAT input and output

In the following example, data from a daphnia dataset (data from Hothorn and Kluxen, 2020; see
Table 11) was used as input data for CPCAT to illustrate the format of the output.
The CPCAT function call looks as follows (default setting were not changed):
CPCAT (groups=Concentration, counts=Young daphnia)
The result is as follows:
SResults
Hypothesis p.values Signif.

HO: 0 <-> 1.56

(@}

.0748

HO: 0 <-> 3.12 0.0001 KA K
HO: 0 <-> 6.25 0.0020 *x

HO: 0 <-> 12.5 0.0000 KA K

HO: 0 <-> 25 0.0000 Fxx

$Info
Information and warnings:
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*" 0.05 .7 0.1 * " 1

There was under-dispersed data identified in treatment(s) 3.12 (HI: -
11.2), 6.25 (HI: -10.5). HI = Hampel Identifier.

There was over-dispersed data identified in treatment(s) 0 (HI: 25.6),
1.56 (HI: 37.7), 12.5 (HI: 5.8). HI = Hampel Identifier.

NOEC: 0, LOEC: 1.56. Assuming that any effects are adverse. Otherwise,
NOEC and LOEC should be reconsidered.
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